JP3891378B2 - Self-propelled soil improvement machine - Google Patents

Self-propelled soil improvement machine Download PDF

Info

Publication number
JP3891378B2
JP3891378B2 JP32446398A JP32446398A JP3891378B2 JP 3891378 B2 JP3891378 B2 JP 3891378B2 JP 32446398 A JP32446398 A JP 32446398A JP 32446398 A JP32446398 A JP 32446398A JP 3891378 B2 JP3891378 B2 JP 3891378B2
Authority
JP
Japan
Prior art keywords
soil
contact
turned
self
remote control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32446398A
Other languages
Japanese (ja)
Other versions
JP2000136527A (en
Inventor
泰弘 吉田
洋 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP32446398A priority Critical patent/JP3891378B2/en
Publication of JP2000136527A publication Critical patent/JP2000136527A/en
Application granted granted Critical
Publication of JP3891378B2 publication Critical patent/JP3891378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Disintegrating Or Milling (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建設現場等から出る残土をその場で土質改良剤と混ぜて良質土に改良する自走式土質改良機に関する。
【0002】
【従来の技術】
従来の自走式土質改良機を、図1に示す自走式土質改良機を参照して説明する。車体フレーム1aの後方端部には原料土を蓄える原料土ホッパ2が設置され、原料土ホッパ内には出口部分に掻出しロータ3が設置される。原料土ホッパ2の前方には改良剤を蓄える改良剤ホッパ4が設置され、改良剤ホッパ4内には改良剤フィーダ5が設置される。原料土ホッパ2と改良剤ホッパ4の下方には両方に旦って原料土コンベア6が設置され、原料土コンベア6の前方には原料土と改良剤とを混合して改良土を生成する混合機7が設置される。また、混合機7の下方から前方にかけて混合機7から排出される改良土の排出コンベア11が設置される。また、車体フレーム1aの前部側端にはオペレータが地上から前記各機器を操作可能な位置に車載操作盤12が設置される。車載操作盤12には、走行モードと土質改良作業を行う作業モードとを切り換える操作モード切換スイッチ、自走式土質改良機を全面的に停止させる全停止スイッチ、各機器の連動開始スイッチ、連動停止スイッチの他、原料土コンベア正転・逆転スイッチ、掻出しロータ正転・逆転スイッチ、及び改良剤フィーダ正転・逆転スイッチ等の各機器の単独操作用のスイッチが設置される。作業機モード時には、オペレータは地上から車載操作盤12の前記スイッチを操作して前記各機器を作動させている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の自走式土質改良機においては、清掃や土詰まり排除等の点検、整備の際、原料土コンベア6、改良剤フィーダ5、混合機7等の各機器の動きを見ながら操作する必要がある。ところが、1人で操作するときは原料土コンベア6や改良剤フィーダ5等の稼働状態がよく確認できる位置、例えば、原料土ホッパ2や改良剤ホッパ4の上部と、車載操作盤12との間を行き来する必要があり、このため、操作が煩わしく、作業性が悪い。また、操作性を上げるためには、機器の動きが見える位置で1人が合図し、他の1人が地上で車載操作盤を操作するといった2人作業とならざるを得ず、土質改良作業能率が低下する問題があった。
【0004】
本発明は上記従来技術の問題点に着目して、自走式土質改良機の点検、整備を1人作業で容易にでき、土質改良作業能率を向上させる自走式土質改良機を提供することを目的とする。
【0005】
【課題を解決するための手段、作用及び効果】
上記目的を達成するために、本願第1の発明に係る自走式土質改良機は、原料土ホッパの原料土を搬送する原料土コンベアと、改良剤ホッパの改良剤を供給する改良剤フィーダと、原料土コンベアで搬送される原料土と改良剤フィーダから供給される改良剤とを解砕、混合して改良土とする混合機とを車体上に備える自走式土質改良機において、各機器の点検、整備時必要な箇所で各機器を単独で遠隔操作可能とする遠隔操作手段を備え、各機器の点検、整備が可能な整備モードと、各機器の土質改良作業が可能な作業モードとを切り換える操作モード切換手段を設け、前記遠隔操作手段の操作スイッチの機能は整備モード時と作業モード時とで切り換えることを特徴とする。
【0006】
第1の発明によれば、遠隔操作手段により自走式土質改良機の各機器点検、整備時に必要な箇所、例えば原料土ホッパや改良剤ホッパ等の位置で単独で遠隔操作可能となるので、車載操作盤と各機器の間の往復動作が不要となり、1人作業でも容易に点検、整備が可能となる。従って、自走式土質改良機の各機器の点検、整備作業能率が大幅に向上する。また、同じ遠隔操作盤を作業モードと整備モードとで兼用することにより、回路の共通化や部品点数の低減を行い、コスト低減や小型、軽量化を図れる。また、作業モードでは、自走式土質改良機のオペレータは離れた場所、例えば車載操作盤以外の位置でも各機器を操作できると共に、積込機のオペレータでも自走式土質改良機の各機器を遠隔操作できるため自走式土質改良機のオペレータが不在でも自走式土質改良機の各機器を遠隔操作できる。このため、土質改良作業能率が向上する。また、整備モードと作業モードとの切り換えで各モード間での誤操作を防止できる。
【0007】
本願第2の発明に係る自走式土質改良機は、第1の発明において、遠隔操作可能な操作は、原料土コンベアの正転、逆転及び改良剤フィーダの正転、逆転の内、少なくとも1つであることを特徴とする。
【0008】
第2の発明によれば、清掃、土詰まり排除等の点検、整備を特に多く必要とする原料土コンベアの正転・逆転及び改良剤フィーダの正転・逆転の内、少なくともいずれか1つを遠隔操作することにより点検、整備が容易となる。従って、自走式土質改良機の点検、整備作業能率が非常に向上する。
【0013】
本願第の発明に係る自走式土質改良機は、第1又は2の発明において、遠隔操作手段はラジコンにより信号を送受信することを特徴とする。
【0014】
の発明によれば、遠隔操作手段はラジコンにより信号を送受信するので、有線に比べてケーブル処理が不要になる。これにより、途中で電線が絡むことがなく、また、遠隔操作手段を持って楽に移動することができるため操作性が一層向上する。
【0015】
【発明の実施の形態】
本発明の実施形態を図1〜7により説明する。
図1は本発明に係る自走式土質改良機10の一実施形態を示す側面図であり、装軌式車両1の車体フレーム1aには次のような各装置が設置されて自走式土質改良機10が構成される。車体フレーム1aの後方端部には土質改良される原料土を貯蔵する原料土ホッパ2が設置される。原料土ホッパ2の下部には、車両の前後方向に開口部が設けられており、開口部の内方側端部近傍には掻出しロータ3が左右方向水平軸回りに回転自在に設置される。原料土ホッパ2の前方には改良剤を蓄える改良剤ホッパ4が設置される。原料土ホッパ2と改良剤ホッパ4の下方には両方に旦って原料土ホッパ2の原料土を車両前方に搬送する原料土コンベア6が設置される。改良剤ホッパ4の底面部には、改良剤ホッパ4から原料コンベア6上の原料土に改良剤を供給する改良剤フィーダ5が設置される。原料土コンベア6の前方には、内部に回転自在な切刃やハンマーを有する混合機7が設置される。混合機7は原料土と改良剤とを解砕、混合して改良土を生成し、下部の開口部から排出する。また、混合機7の前方には搭乗床8とエンジン室9とが順に設置され、これら混合機7、搭乗床8、エンジン室9の下方には混合機7から排出される改良土を車両前方側へ搬送する排出コンベア11が設置される。これら掻出しロータ3、改良剤フィーダ5、原料土コンベア6、混合機7、排出コンベア11は油圧モータ(詳細は後述する)により駆動されるようになっている。
【0016】
搭乗床8の側方で車両の左右一端(ここでは右端側)にはオペレータが地上から操作可能な位置に自走式土質改良機10の車載操作盤12が設置される。この車載操作盤12には、走行モードと作業モードと整備モードとを切り換える操作モード切換スイッチ13及びラジコンスイッチ14(共に図3参照)の他に、図示しない、自走式土質改良機10の作業機器を全面的に停止させる全停止スイッチ、フィーダON(原料土と改良土の流れの下流側の機器から順に起動)・OFF(原料土と改良土の流れの上流側の機器から順に停止)・逆転スイッチ、原料土コンベア正転・逆転スイッチ、掻出しロータ正転・逆転スイッチ、改良剤フィーダ正転・逆転スイッチ等が設けられる。また、車載操作盤12のラジコンスイッチ14をラジコン操作に切り換えると共に、操作モード切換スイッチ13を作業モードあるいは整備モードに切り換えると、後述するような遠隔操作盤による土質改良作業、あるいは清掃や土詰まり等の点検、整備作業が可能となる。なお、本実施形態では装軌式車両1について説明するが、これに限るものではなくローダ等の装輪式車両であっても同様である。
【0017】
図1の作動を説明する。原料土ホッパ2には自走式土質改良機10の後方から図示しない積込機によって原料土が積載される。車載操作盤12の操作モード切換スイッチ13を作業モードに切り換えて、各スイッチを作業開始時には原料土と改良土の流れの下流側の機器から順に起動し、作業停止時には原料土と改良土の流れの上流側の機器から順に停止するように操作する。すると、原料土コンベア6上に載置される原料土ホッパ2内の原料土は掻出しロータ3と協働して前方に搬送され、改良剤フィーダ5から供給される改良剤ホッパ3内の改良剤と共に混合機7内に搬送される。混合機7内に搬送された原料土と改良剤とは解砕、混合されて改良土となり、混合機7から排出される改良土は排出コンベア11によって自走式土質改良機10外に排出されて埋戻し材として再利用される。
【0018】
図2は遠隔操作手段30を構成する遠隔操作盤(送信機)31の一実施形態を示す図で、遠隔操作盤31には第1スイッチR1〜第4スイッチR4のスイッチが4個配設される。各スイッチR1〜R4の下部には、図1に示す車載操作盤12に配設される操作モード切換スイッチ13(図3参照)により作業モードと整備モードとに切り換えられた場合の、各スイッチR1〜R4の操作に対応する自走式土質改良機10の作動を説明する銘盤31aが取着される。即ち、土質改良作業中に使用頻度が高いフィーダ正転・停止・逆転、及び緊急性の高い全停止スイッチは、ラジコンスイッチ14(図3参照)をラジコン操作に切り換えることにより遠隔操作も可能となっている。第1スイッチR1〜第4スイッチR4のいずれかを押すと、そのスイッチに対応する指令信号がラジコンにより、後述する受信器32に送信されるようになっている。図3及び図5〜図7に示す遠隔制御回路33A,33B,33Cの各実施形態で説明するように、同一スイッチ操作でも作業モードと整備モードとによって自走式土質改良機10の作動を異ならせて、チャンネル数を半分にして遠隔操作盤(ラジコン送信器)31及び受信器32の小型化及び軽量化を図っている。なお、遠隔操作盤31と受信器32と遠隔制御回路33とにより構成される遠隔操作手段30はラジコン式により説明するが、これに限るものではなく有線式であっても遠隔操作としては同様の作用効果が得られる。
【0019】
図3,4により本発明に係る自走式土質改良機の制御回路について説明する。図3は遠隔制御回路の第1実施形態の説明図である。受信器32は、図2に示す遠隔操作盤31の第1スイッチR1〜第4スイッチR4のON操作に応じてオンする第1接点CH1〜第4接点CH4を備える。操作モード切換スイッチ13の接点13aは作業モード接点、接点13bは整備モード接点、接点13cは走行モード(説明省略)接点を示す。遠隔制御回路33Aを構成する、並列接続されたリレーRYA〜RYDのコイルは、操作モード切換スイッチ13の接点13bを介して、車載バッテリ等の電源部に接続された電源ラインVc に直列に接続される。リレーRYA〜RYDの各ノルマルクローズ接点(以後、b接点と記す)A1,B1,C1,D1と各ノルマルオープン接点(以後、a接点と記す)A2,B2,C2,D2とは、それぞれ一端をコントローラ34に並列に接続される。また、接点A1とA2の他端は受信器32の第1接点CH1の一端に接続され、接点B1とB2の他端は受信器32の第2接点CH2の一端に接続され、接点C1とC2の他端は受信器32の第3接点CH3の一端に接続され、接点D1とD2の他端は受信器32の第4接点CH4の一端に接続される。また、受信器32の各接点CH1〜CH4の他端は接地される。また、コントローラ34は各機器を駆動する油圧回路部の各操作弁のソレノイド部に接続される。第1操作弁22のソレノイド22a,22bと、第2操作弁24のソレノイド24a,24bと、第3操作弁26のソレノイド26a,26bとはコントローラに接続される。
【0020】
図4は図1に示す自走式土質改良機10の油圧駆動回路20の一例を示す図である。なお、ここでは、本発明に係る改良剤フィーダ5を駆動する第1油圧モータ23、掻出しロータ3を駆動する第2油圧モータ25、及び原料土コンベア6を駆動する第3油圧モータ27について説明する。その他の排出コンベアや混合機7を駆動する各油圧モータについては本発明に直接関係しないため省略する。エンジン室9内に設置されるエンジンにより駆動される油圧ポンプ21は、第1操作弁22を介して改良剤フィーダ5を駆動する第1油圧モータ23に接続され、第2操作弁24を介して掻出しロータ3を駆動する第2油圧モータ25に接続され、第3操作弁26を介して原料土コンベア6を駆動する第3油圧モータ27に接続される。また、コントローラ34は各機器を駆動するそれぞれの油圧モータの第1操作弁22〜第3操作弁26のソレノイド部に接続される。なお、油圧ポンプ21の吐出管路は安全弁28に接続されて油圧駆動回路20を保護する。
【0021】
図4の作動を説明する。第1操作弁22のソレノイド22aを励磁するとa位置となり改良剤フィーダ5は正転(搬送方向の回転)し、ソレノイド22bを励磁するとb位置となり改良剤フィーダ5は逆転する。ソレノイド22a,22bを共に消磁するとc位置となり改良剤フィーダ5は停止する。同様に、第2操作弁24のソレノイド24aを励磁するとa位置となり掻出しロータ3は正転(搬送方向の回転)し、ソレノイド24bを励磁するとb位置となり掻出しロータ3は逆転し、ソレノイド24a,24bを共に消磁するとc位置となり掻出しロータ3は停止する。また、第3操作弁26のソレノイド26aを励磁するとa位置となり原料土コンベア6は正転(搬送方向の回転)し、ソレノイド26bを励磁するとb位置となり原料土コンベア6は逆転し、ソレノイド26a,26bを共に消磁するとc位置となり原料土コンベア6は停止する。
【0022】
コントローラ34は、次のように構成される。コントローラ34に接点A1及びCH1を介して入力電流が流れると、第2操作弁24のソレノイド24aと第3操作弁26のソレノイド26aとを励磁し、接点B1及びCH2を介して入力電流が流れると、第2操作弁24の両ソレノイド24a,24bと第3操作弁26の両ソレノイド26a,26bのいずれにも通電せず、接点C1及びCH3を介して入力電流が流れると、第2操作弁24のソレノイド24bと第3操作弁26のソレノイド26bとを励磁し、接点D1及びCH4を介して入力電流が流れると、走式土質改良機10の全作業機の停止信号を出力する。また、コントローラ34は、接点A2を介して入力電流が流れると第1操作弁22のソレノイド22aを励磁し、接点B2を介して入力電流が流れると第1操作弁22のソレノイド22bを励磁し、接点C2を介して入力電流が流れると第3操作弁26のソレノイド26aを励磁し、接点D2を介して入力電流が流れると第3操作弁26のソレノイド26bを励磁する。
【0023】
次に、第1実施形態による作用を説明する。ラジコンスイッチ14をONにすると、受信器32の電源部に接続された電源ラインVcが入り、遠隔操作盤31との送・受信が可能となる。土質改良作業時に操作モード切換スイッチ13を作業モードに切り換えると、接点13aがオンし、遠隔制御回路33AはリレーRYA〜RYDが消磁されてb接点A1,B1,C1,D1がオンし、a点A2,B2,C2,D2がオフする。この状態において、例えば、遠隔操作盤31の第1スイッチR1をオンすると、受信器32の第1接点CH1がオンしてコントローラ34から接点A1を介して入力電流が流れると、コントローラ34は掻出しロータ3と原料土コンベア6とを正転制御する。また、遠隔操作盤31の第2スイッチR2をオンすると、受信器32の第2接点CH2がオンされてコントローラ34から接点B1を介して入力電流が流れると、コントローラ34は掻出しロータ3と原料土コンベア6とを停止制御する。遠隔操作盤31の第3スイッチR3をオンすると、受信器32の第3接点CH3がオンされてコントローラ34から接点C1を介して入力電流が流れると、コントローラ34は掻出しロータ3と原料土コンベア6とを逆転制御する。遠隔操作盤31の第4スイッチR4をオンすると、受信器32の第4接点CH4がオンされてコントローラ34から接点D1を介して入力電流が流れると、コントローラ34は自走式土質改良機10の全作業機の駆動を停止制御する。
【0024】
次に、点検、整備時にラジコンスイッチ14をオンすると共に、操作モード切換スイッチ13を整備モードに切り換えると接点13bがオンし、遠隔制御回路33AはリレーRYA〜RYDが励磁されてb接点A1,B1,C1,D1がオフし、a接点A2,B2,C2,D2がオンする。この状態において、遠隔操作盤31の第1スイッチR1をオンすると、受信器32の第1接点CH1がオンしてコントローラ34から接点A2を介して入力電流が流れ、コントローラ34は改良剤フィーダ5を正転(改良剤供給方向の回転)制御する。遠隔操作盤31の第2スイッチR2をオンすると、受信器32の第2接点CH2がオンしてコントローラ34から接点B2を介して入力電流が流れ、コントローラ34は改良剤フィーダ5を逆転制御する。遠隔操作盤31の第3スイッチR3をオンすると、受信器32の第3接点CH3がオンしてコントローラ34から接点C3を介して入力電流が流れ、コントローラ34は原料土コンベア6を正転(原料土搬送方向の回転)制御する。遠隔操作盤31の第4スイッチR4をオンすると、受信器32の第4接点CH4がオンしてコントローラ34から接点D2を介して入力電流が流れ、コントローラ34は原料土コンベア6を逆転制御する。以上のように、遠隔操作盤31の各スイッチR1〜R4の機能は作業モード(土質改良作業時のモード)時と整備モード(清掃や土詰まり点検時等のモード)時で、次表の通り切り換わる。
【0025】
【表1】

Figure 0003891378
【0026】
表1中、フィーダとは原料土コンベア6と掻出しロータ3との連動を表す。
このように、4チャンネルのラジコンで8チャンネルに相当する機能を持たせている。すなわち、作業モード用と整備モード用のラジコン送信機をそれぞれ装備する必要がなくなり、また、ラジコンにチャンネルを追加する代わりに受信器からの信号入力回路にリレー等を用いることにより対応できるので、遠隔操作盤31の小型化及び軽量化が図られるため、操作性が向上すると共にコストが低減する。
【0027】
図5,6により遠隔操作手段30を構成する遠隔制御回路33の第2実施形態を説明する。図3に示す第1実施形態と同様の構成要素には同一符合を付してその説明を省略する。図5に示すように、遠隔制御回路33Bを構成するリレーRYEは操作モード切換スイッチ13の接点13bを介して電源ラインVcに直列に接続される。遠隔制御回路33Bを構成するリレーRYa〜RYdのコイルの一端は共に並列接続されると共に、リレーRYEのb接点E1を介して接地され、他端はそれぞれ受信器32の各接点CH1〜CH4を介して電源ラインVcに接続される。また、遠隔制御回路33Bを構成するリレーRYe〜RYhのコイルの一端は共に並列接続されると共に、リレーRYEのa接点E2を介して接地され、他端はそれぞれ受信器32の各接点CH1〜CH4を介して電源部に接続された電源ラインVcに接続される。また、図6に示すように、図5の各リレーRYa〜RYhのコイルに対応するa接の各接点A3〜H3は、一端をそれぞれコントローラ34に接続され、他端は接地される。なお、油圧駆動回路20は、図4と同様である。
【0028】
また、コントローラ34は次のように構成される。コントローラ34からリレーRYaのa接点A3を介して入力電流が流れると第2操作弁24のソレノイド24aと第3操作弁26のソレノイド26aとを励磁し、リレーRYbのa接点B3を介して入力電流が流れると第2操作弁24の両ソレノイド24a,24bと第3操作弁26の両ソレノイド26a,26bのいずれにも通電せず、リレーRYcのa接点C3を介して入力電流が流れると第2操作弁24のソレノイド24bと第3操作弁26のソレノイド26bを励磁し、リレーRYdのa接点D3を介して入力電流が流れると自走式土質改良機10の全作業機の駆動を停止させる。また、a接点E3を介して入力電流が流れると第1操作弁22のソレノイド22aを励磁し、a接点F3を介して入力電流が流れると第1操作弁22のソレノイド22bを励磁し、a接点G3を介して入力電流が流れると第3操作弁26のソレノイド26aを励磁し、a接点H3を介して入力電流が流れると第3操作弁26のソレノイド26bを励磁する。
【0029】
図5,6の作用を説明する。土質改良作業時に操作モード切換スイッチ13を作業モードに切り換えて接点13aをオンすると共に、ラジコンスイッチ14をオンすると、遠隔制御回路33BはリレーRYEが消磁されてb接点E1がオンし、a接点E2がオフする。このため、遠隔操作盤31の第1スイッチR1をオンすると、受信器32の第1接点CH1がオンするためリレーRYaが励磁されて接点aがオンされ、接点aを介して入力電流が流れると、コントローラ34は掻出しロータ3と原料土コンベア6とを正転制御する。遠隔操作盤31の第2スイッチR2をオンすると、受信器32の第2接点CH2がオンするためリレーRYbが励磁されて接点bがオンされ、接点bを介して入力電流が流れると、コントローラ34は掻出しロータ3と原料土コンベア6とを停止制御する。遠隔操作盤31の第3スイッチR3をオンすると、受信器32の第3接点CH3がオンするためリレーRYcが励磁されて接点cがオンされ、接点cを介して入力電流が流れると、コントローラ34は原料土コンベア6と掻出しロータ3を逆転制御する。遠隔操作盤31の第4スイッチR4をオンすると、受信器32の第4接点CH4がオンするためリレーRYdが励磁されて接点dがオンされ、接点dを介して入力電流が流れると、コントローラ34は自走式土質改良機10の全作業機の駆動を停止制御する。
【0030】
次に、点検、整備時にモード切換スイッチ13を整備モードに切り換えて接点13bをオンすると共に、ラジコンスイッチ14をオンすると、遠隔制御回路33BはリレーRYEが励磁されてb接点E1がオフし、a接点E2がオンする。このため、遠隔操作盤31の第1スイッチR1をオンすると、受信器32の第1接点CH1がオンするためリレーRYeが励磁されて接点E3がオンされ、接点E3を介して入力電流が流れると、コントローラ34は改良剤フィーダ5を正転(改良剤供給方向の回転)制御する。遠隔操作盤31の第2スイッチR2をオンすると、受信器32の第2接点CH2がオンするためリレーRYfが励磁されて接点F3がオンされ、接点F3を介して入力電流が流れると、コントローラ34は改良剤フィーダ5を逆転制御する。遠隔操作盤31の第3スイッチR3をオンすると、受信器32の第3接点CH3がオンするためRYgが励磁されて接点G3がオンされ、接点G3を介して入力電流が流れると、コントローラ34は原料土コンベア6を正転(原料土搬送方向の回転)制御する。遠隔操作盤31の第4スイッチR4をオンすると、受信器32の第4接点CH4がオンするためリレーRYhが励磁されて接点H3がオンされ、接点H3を介して入力電流が流れると、コントローラ34は原料土コンベア6を逆転制御する。
【0031】
図7により遠隔操作手段30を構成する遠隔制御回路33の第3実施形態を説明する。図4に示す第1実施形態と同様な部分には同一符合を付してその説明を省略する。リレーRYQのコイルの一端は操作モード切換スイッチ13の接点13bを介して電源ラインVcに直列に接続されると共に、コントローラ34に入力され(整備モード信号M)、他端は接地される。遠隔制御回路33Cを構成する並列接続のリレーRYS〜RYVのコイルの一端はそれぞれ、受信器32の各接点CH1〜CH4を介して接地されると共に、コントローラ34に接続される。リレーRYS〜RYVのコイルの他端はそれぞれ、互いに接続される共に、リレーRYQのa接の接点Qを介して電源ラインVcに接続される。また、リレーRYS〜RYVのそれぞれのa接の接点S〜Vの一端はコントローラ34に接続され、他端は接地される。なお、油圧駆動回路20は、図4と同様である。
【0032】
そして、コントローラ34は次のように構成される。操作モード切換スイッチ13の整備モードが選択され、接点13bがオンすると、リレーRYQのコイルが励磁されると共に、コントローラ34に整備モード信号Mが入力される。コントローラ34はこの整備モード信号Mを入力すると受信器32の各接点CH1〜CH4を介して入力する信号を無視する。また、整備モード信号MがOFFのとき、コントローラ34は、第1接点CH1を介して入力電流が流れると、第2操作弁24のソレノイド24aと第3操作弁26のソレノイド26aとを励磁し、第2接点CH2を介して入力電流が流れると、第2操作弁24の両ソレノイド24a,24bと第3操作弁26の両ソレノイド26a,26bのいずれにも通電せず、第3接点CH3を介して入力電流が流れると、第2操作弁24のソレノイド24bと第3操作弁26のソレノイド26bとが励磁し、第4接点CH4を介して入力電流が流れると、自走式土質改良機10の全作業機の駆動を停止させる。また、接点Sを介して入力電流が流れると第1操作弁22のソレノイド22aを励磁し、接点Tを介して入力電流が流れると第1操作弁22のソレノイド22bを励磁し、接点Uを介して入力電流が流れると第3操作弁26のソレノイド26aを励磁し、接点Vを介して入力電流が流れると第3操作弁26のソレノイド26bを励磁する。
【0033】
図7の作用を説明する。土質改良作業時に操作モード切換スイッチ13を作業モードに切り換えて作業モード接点13aをオンすると、遠隔制御回路33CはリレーRYQが消磁されて接点Qがオフすると共に、整備モード信号Mがオフする。このため、ラジコンスイッチ14をオンして遠隔操作盤31の第1スイッチR1をオンすると、受信器32の第1接点CH1がオンしてコントローラ34から第1接点CH1を介して入力電流が流れ、コントローラ34は掻出しロータ3と原料土コンベア6とを正転制御する。遠隔操作盤31の第2スイッチR2をオンすると、受信器32の第2接点CH2がオンしてコントローラ34から第2接点CH2を介して入力電流が流れ、コントローラ34は掻出しロータ3と原料土コンベア6とを停止制御する。遠隔操作盤31の第3スイッチR3をオンすると、受信器32の第3接点CH3がオンしてコントローラ34から第3接点CH3を介して入力電流が流れ、コントローラ34は掻出しロータ3と原料土コンベア6とを逆転制御する。遠隔操作盤31の第4スイッチR4をオンすると、受信器32の第4接点CH4がオンしてコントローラ34から第4接点CH4を介して入力電流が流れ、コントローラ34は自走式土質改良機10の全作業機の駆動を停止制御する。
【0034】
次に、点検、整備時に操作モード切換スイッチ13を整備モードに切り換えて接点13bをオンすると、遠隔制御回路33CはリレーRYQが励磁されて接点Qがオンする。このときには、操作モード切換スイッチ13からコントローラ34に整備モード信号Mが入力され、受信器32の第1接点CH1〜第4接点CH4を介して入力する信号は無視される。ラジコンスイッチ14をオンして遠隔操作盤31の第1スイッチR1をオンすると、受信器32の第1接点CH1がオンするためリレーRYSが励磁されて接点Sがオンし、コントローラ34から接点Sを介して入力電流が流れ、コントローラ34は改良剤フィーダ5を正転(改良剤供給方向の回転)制御する。遠隔操作盤31の第2スイッチR2をオンすると、受信器32の第2接点CH2がオンするためリレーRYTが励磁されて接点Tがオンし、コントローラ34から接点Tを介して入力電流が流れ、コントローラ34は改良剤フィーダ5を逆転制御する。遠隔操作盤31の第3スイッチR3をオンすると、受信器32の第3接点CH3がオンするためリレーRYUが励磁されて接点Uがオンし、コントローラ34から接点Uを介して入力電流が流れ、コントローラ34は原料土コンベア6を正転(原料土搬送方向の回転)制御する。遠隔操作盤31の第4スイッチR4をオンすると、受信器32の第4接点CH4がオンするためリレーRYVが励磁されて接点Vがオンし、コントローラ34から接点Vを介して入力電流が流れ、コントローラ34は原料土コンベア6を逆転制御する。
【0035】
以上、本発明によると、自走式土質改良機の各機器の清掃、土詰まり排除等の点検、整備時に、点検、整備を必要とする機器の側で例えば、原料土ホッパや改良剤ホッパの中が見える位置で各機器を単独で遠隔操作することにより、車載操作盤と各機器の間の往復動作が不要となり、1人作業でも容易に点検、整備が可能となる。従って、点検、整備作業能率が大幅に向上する。
【図面の簡単な説明】
【図1】本発明に係る自走式土質改良機の一実施形態を示す側面図である。
【図2】本発明に係る遠隔操作盤の一実施形態を示す図で、(A)は本体、(B)操作説明図である。
【図3】本発明に係る遠隔制御回路の第1実施形態を示す図である。
【図4】本発明に係る油圧駆動回路の一例を示す図である。
【図5】本発明に係る遠隔制御回路の第2実施形態(第1部分)を示す図である。
【図6】本発明に係る遠隔制御回路の第2実施形態(第2部分)を示す図である。
【図7】本発明に係る遠隔制御回路の第3実施形態を示す図である。
【符号の説明】
1…装軌式車両、1a…車体フレーム、2…原料土ホッパ、3…掻出しロータ、4…改良剤ホッパ、5…改良剤フィーダ、6…原料土コンベア、7…混合機、8…搭乗床、9…エンジン室、10…自走式土質改良機、11…排出コンベア、12…車載操作盤、13…操作モード切換スイッチ、14、ラジコンスイッチ、20…油圧駆動回路、21…油圧ポンプ、22…第1操作弁、23…第1油圧モータ、24…第2操作弁、25…第2油圧モータ、26…第3操作弁、27…第3油圧モータ、30…遠隔操作手段、31…遠隔操作盤、32…受信器、33,33A,33B,33C…遠隔制御回路、34…コントローラ、R1…第1スイッチ、R2…第2スイッチ、R3…第3スイッチ、R4…第4スイッチ。[0001]
BACKGROUND OF THE INVENTION
  The present invention is a self-propelled soil that improves the quality of soil by mixing residual soil from the construction site with a soil conditioner on the spot.Improved machineAbout.
[0002]
[Prior art]
A conventional self-propelled soil conditioner will be described with reference to the self-propelled soil conditioner shown in FIG. A raw material soil hopper 2 for storing raw material soil is installed at the rear end of the body frame 1a, and a scraping rotor 3 is installed at the outlet portion in the raw material soil hopper. An improver hopper 4 for storing an improver is installed in front of the raw soil hopper 2, and an improver feeder 5 is installed in the improver hopper 4. Below the raw material soil hopper 2 and the improving agent hopper 4, a raw material soil conveyor 6 is installed on both sides, and in the front of the raw material soil conveyor 6, the raw material soil and the improving agent are mixed to produce improved soil. Machine 7 is installed. In addition, a discharge conveyor 11 for improved soil discharged from the mixer 7 from below to the front of the mixer 7 is installed. An in-vehicle operation panel 12 is installed at a position where the operator can operate each device from the ground at the front side end of the body frame 1a. The in-vehicle operation panel 12 includes an operation mode changeover switch for switching between a running mode and a work mode for performing soil improvement work, a full stop switch for stopping the self-propelled soil improvement machine completely, a linked start switch for each device, a linked stop In addition to the switches, switches for independent operation of each device such as the raw material conveyor forward / reverse switch, scraping rotor forward / reverse switch, and improver feeder forward / reverse switch are installed. In the work machine mode, the operator operates the switches by operating the switches on the vehicle-mounted operation panel 12 from the ground.
[0003]
[Problems to be solved by the invention]
However, the conventional self-propelled soil improvement machine is operated while checking the movement of each device such as the raw soil conveyor 6, the improver feeder 5, the mixer 7 and the like during inspection and maintenance such as cleaning and removal of clogging. There is a need. However, when operating alone, a position where the operating state of the raw material soil conveyor 6 and the improver feeder 5 can be confirmed well, for example, between the upper portion of the raw material soil hopper 2 and the improver hopper 4 and the in-vehicle operation panel 12. Therefore, the operation is troublesome and the workability is poor. In addition, in order to improve operability, one person must signal at a position where the movement of the equipment can be seen, and the other person must operate the on-board control panel on the ground. There was a problem that efficiency decreased.
[0004]
  The present invention pays attention to the above-mentioned problems of the prior art, and the self-propelled soil improvement machine can be easily inspected and maintained by a single person to improve the soil improvement work efficiency.Improved machineThe purpose is to provide.
[0005]
[Means, actions and effects for solving the problems]
  In order to achieve the above object, the self-propelled soil according to the first invention of the present applicationImproved machineThe material soil conveyor for conveying the material soil of the material soil hopper, the improver feeder for supplying the improver for the improver hopper, the material soil conveyed by the material soil conveyor and the improver supplied from the improver feeder A self-propelled soil with a mixer that breaks down and mixes to improve soilImproved machineIn the inspection and maintenance of each deviceInRemotely control each device independently where neededAn operation mode switching means for switching between a maintenance mode in which inspection and maintenance of each device can be performed and a work mode in which soil improvement work for each device can be performed is provided, and the operation switch of the remote operation means Switch between maintenance mode and work modeIt is characterized by that.
[0006]
  According to the first invention,By remote control meansSelf-propelled soil improvement machineofDuring inspection and maintenanceNecessary placeFor example,Raw material hopper and improver hopperEtc.Remote control by itselfBecause it becomes possibleThe reciprocating operation between the in-vehicle operation panel and each device is unnecessary, and the inspection and maintenance can be easily performed even by one person work. Therefore,Self-propelled soil improvement machineInspection and maintenance work efficiency is greatly improved.In addition, by using the same remote control panel for both the work mode and the maintenance mode, the circuit can be shared and the number of parts can be reduced, thereby reducing cost, size, and weight. In the work mode, the operator of the self-propelled soil conditioner can operate each device at a remote location, for example, at a position other than the in-vehicle operation panel. Since it can be operated remotely, it is possible to remotely control each device of the self-propelled soil improvement machine even if there is no operator of the self-propelled soil improvement machine. For this reason, soil improvement work efficiency improves. In addition, switching between the maintenance mode and the work mode can prevent erroneous operation between the modes.
[0007]
  Self-propelled soil according to the second invention of the present applicationImproved machineIn the first invention,RemoteoperationPossible operationsIs characterized in that it is at least one of normal rotation and reverse rotation of the raw soil conveyor and normal rotation and reverse rotation of the improver feeder.
[0008]
  According to the second invention, normal rotation / reverse rotation of the raw material soil conveyor that requires particularly a lot of inspection and maintenance such as cleaning, clogging, etc.as well asInspection and maintenance are facilitated by remotely operating at least one of the forward and reverse rotations of the improver feeder. Therefore, the inspection and maintenance work efficiency of the self-propelled soil improvement machine is greatly improved.
[0013]
  No. of this application3Self-propelled soil according to the inventionImproved machineThe second1 or 2In the present invention, the remote control means transmits and receives signals using a radio control.
[0014]
  First3According to this invention, since the remote control means transmits and receives signals by the radio control, cable processing becomes unnecessary as compared with the wired method. Thereby, the electric wire does not get tangled in the middle, and the operability can be further improved since it can be easily moved with the remote control means.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a side view showing an embodiment of a self-propelled soil improvement machine 10 according to the present invention, and the following devices are installed on a body frame 1a of a tracked vehicle 1 to provide a self-propelled soil quality. An improved machine 10 is configured. A material soil hopper 2 for storing material soil whose soil quality is improved is installed at the rear end of the body frame 1a. An opening is provided in the lower part of the raw soil hopper 2 in the front-rear direction of the vehicle, and a scraping rotor 3 is installed in the vicinity of the inner side end of the opening so as to be rotatable about a horizontal axis in the left-right direction. . An improver hopper 4 for storing an improver is installed in front of the raw soil hopper 2. Below both the raw material soil hopper 2 and the improver hopper 4, a raw material soil conveyor 6 is installed for conveying the raw material soil of the raw material soil hopper 2 forward of the vehicle. On the bottom surface of the improver hopper 4, an improver feeder 5 that supplies the improver from the improver hopper 4 to the raw material soil on the raw material conveyor 6 is installed. In front of the raw soil conveyor 6, a mixer 7 having a rotatable cutting blade and hammer inside is installed. The mixer 7 crushes and mixes the raw material soil and the improving agent to generate improved soil, which is discharged from the lower opening. In addition, a boarding floor 8 and an engine room 9 are installed in front of the mixer 7, and improved soil discharged from the mixer 7 is placed under the mixer 7, the boarding floor 8, and the engine room 9 in front of the vehicle. A discharge conveyor 11 for conveying to the side is installed. The scraping rotor 3, the improver feeder 5, the raw soil conveyor 6, the mixer 7, and the discharge conveyor 11 are driven by a hydraulic motor (details will be described later).
[0016]
On-board operation panel 12 of self-propelled soil conditioner 10 is installed at a position where the operator can operate from the ground at the left and right ends (here, the right end side) of the vehicle on the side of boarding floor 8. The in-vehicle operation panel 12 includes an operation mode changeover switch 13 and a radio control switch 14 (both refer to FIG. 3) for switching between a traveling mode, an operation mode, and a maintenance mode. All stop switch to stop the entire equipment, Feeder ON (starts in order from the equipment on the downstream side of the flow of raw soil and improved soil), OFF (stops in order from the equipment on the upstream side of the flow of raw material and improved soil), A reverse rotation switch, a material soil conveyor forward / reverse switch, a scraping rotor forward / reverse switch, a improver feeder forward / reverse switch, etc. are provided. Further, when the radio control switch 14 of the in-vehicle operation panel 12 is switched to the radio control operation and the operation mode switching switch 13 is switched to the work mode or the maintenance mode, soil improvement work by a remote control panel as described later, cleaning, clogging, etc. Inspection and maintenance work becomes possible. In addition, although this embodiment demonstrates the tracked vehicle 1, it is not restricted to this, It is the same also with wheeled vehicles, such as a loader.
[0017]
The operation of FIG. 1 will be described. The raw material soil hopper 2 is loaded with the raw material soil from behind the self-propelled soil improvement machine 10 by a loader (not shown). The operation mode changeover switch 13 of the vehicle-mounted operation panel 12 is switched to the work mode, and each switch is started in order from the equipment on the downstream side of the flow of the raw material soil and the improved soil at the start of the work, and the flow of the raw material soil and the improved soil when the operation is stopped. Operate to stop in order from the upstream equipment. Then, the material soil in the material soil hopper 2 placed on the material soil conveyor 6 is conveyed forward in cooperation with the scraping rotor 3, and the improvement in the improver hopper 3 supplied from the improver feeder 5. It is conveyed in the mixer 7 together with the agent. The raw material soil and the improving agent conveyed into the mixer 7 are crushed and mixed to become improved soil. The improved soil discharged from the mixer 7 is discharged out of the self-propelled soil improver 10 by the discharge conveyor 11. And reused as backfill material.
[0018]
FIG. 2 is a view showing an embodiment of a remote control panel (transmitter) 31 constituting the remote control means 30. The remote control panel 31 is provided with four switches of the first switch R1 to the fourth switch R4. The Below each switch R1 to R4, each switch R1 when it is switched between the work mode and the maintenance mode by the operation mode switching switch 13 (see FIG. 3) disposed on the vehicle-mounted operation panel 12 shown in FIG. A name plate 31a for explaining the operation of the self-propelled soil improvement machine 10 corresponding to the operation of ~ R4 is attached. That is, the feeder normal rotation / stop / reverse and urgent all stop switches that are frequently used during soil improvement work can be operated remotely by switching the radio control switch 14 (see FIG. 3) to radio control operation. ing. When one of the first switch R1 to the fourth switch R4 is pressed, a command signal corresponding to the switch is transmitted to the receiver 32 described later by the radio control. As described in each embodiment of the remote control circuits 33A, 33B, and 33C shown in FIGS. 3 and 5 to 7, even if the same switch is operated, the operation of the self-propelled soil conditioner 10 differs depending on the work mode and the maintenance mode. Thus, the number of channels is halved to reduce the size and weight of the remote control panel (radio control transmitter) 31 and the receiver 32. The remote operation means 30 constituted by the remote operation panel 31, the receiver 32, and the remote control circuit 33 will be described using a radio control type, but the present invention is not limited to this. The effect is obtained.
[0019]
The control circuit of the self-propelled soil improvement machine according to the present invention will be described with reference to FIGS. FIG. 3 is an explanatory diagram of the first embodiment of the remote control circuit. The receiver 32 includes a first contact CH1 to a fourth contact CH4 that are turned on in response to an ON operation of the first switch R1 to the fourth switch R4 of the remote control panel 31 shown in FIG. The contact 13a of the operation mode changeover switch 13 is a work mode contact, the contact 13b is a maintenance mode contact, and the contact 13c is a travel mode (not shown) contact. The coils of the relays RYA to RYD connected in parallel and constituting the remote control circuit 33A are connected in series to a power supply line Vc connected to a power supply unit such as an in-vehicle battery via the contact point 13b of the operation mode changeover switch 13. The Each normally closed contact (hereinafter referred to as b contact) A1, B1, C1, D1 and each normally open contact (hereinafter referred to as a contact) A2, B2, C2, D2 of relays RYA to RYD has one end respectively. The controller 34 is connected in parallel. The other ends of the contacts A1 and A2 are connected to one end of the first contact CH1 of the receiver 32, the other ends of the contacts B1 and B2 are connected to one end of the second contact CH2 of the receiver 32, and the contacts C1 and C2 Is connected to one end of the third contact CH3 of the receiver 32, and the other ends of the contacts D1 and D2 are connected to one end of the fourth contact CH4 of the receiver 32. The other ends of the contacts CH1 to CH4 of the receiver 32 are grounded. Moreover, the controller 34 is connected to the solenoid part of each operation valve of the hydraulic circuit part which drives each apparatus. The solenoids 22a and 22b of the first operation valve 22, the solenoids 24a and 24b of the second operation valve 24, and the solenoids 26a and 26b of the third operation valve 26 are connected to a controller.
[0020]
FIG. 4 is a diagram showing an example of the hydraulic drive circuit 20 of the self-propelled soil improvement machine 10 shown in FIG. Here, the first hydraulic motor 23 that drives the improver feeder 5 according to the present invention, the second hydraulic motor 25 that drives the scraping rotor 3, and the third hydraulic motor 27 that drives the raw soil conveyor 6 will be described. To do. The other discharge conveyors and the hydraulic motors that drive the mixer 7 are not directly related to the present invention, and are therefore omitted. A hydraulic pump 21 driven by an engine installed in the engine chamber 9 is connected to a first hydraulic motor 23 that drives the improver feeder 5 via a first operation valve 22, and via a second operation valve 24. It is connected to a second hydraulic motor 25 that drives the scraping rotor 3, and is connected to a third hydraulic motor 27 that drives the raw soil conveyor 6 via a third operation valve 26. Moreover, the controller 34 is connected to the solenoid part of the 1st operation valve 22-the 3rd operation valve 26 of each hydraulic motor which drives each apparatus. The discharge line of the hydraulic pump 21 is connected to a safety valve 28 to protect the hydraulic drive circuit 20.
[0021]
The operation of FIG. 4 will be described. When the solenoid 22a of the first operating valve 22 is energized, the position of the improving agent feeder 5 is rotated forward (rotation in the conveying direction), and when the solenoid 22b is excited, the position of the improving agent feeder 5 is reversed. When both solenoids 22a and 22b are demagnetized, the position of the improver feeder 5 is stopped. Similarly, when the solenoid 24a of the second operation valve 24 is energized, the position of the scraping rotor 3 is rotated forward (rotation in the conveying direction), and when the solenoid 24b is excited, the position of the scraping rotor 3 is reversed and the scraping rotor 3 is rotated reversely. , 24b are demagnetized, the position c is reached, and the scraping rotor 3 stops. When the solenoid 26a of the third operation valve 26 is energized, the position of the material soil conveyor 6 is rotated forward (rotation in the conveying direction), and when the solenoid 26b is excited, the position of the material soil conveyor 6 is reversed and the material soil conveyor 6 is rotated in reverse. If both 26b are demagnetized, it will be in position c and the raw soil conveyor 6 will stop.
[0022]
The controller 34 is configured as follows. When the input current flows to the controller 34 via the contacts A1 and CH1, the solenoid 24a of the second operation valve 24 and the solenoid 26a of the third operation valve 26 are excited, and the input current flows via the contacts B1 and CH2. When the solenoids 24a and 24b of the second operating valve 24 and the solenoids 26a and 26b of the third operating valve 26 are not energized and an input current flows through the contacts C1 and CH3, the second operating valve 24 When the solenoid 24b and the solenoid 26b of the third operation valve 26 are excited and an input current flows through the contacts D1 and CH4, a stop signal for all the work machines of the traveling soil conditioner 10 is output. The controller 34 excites the solenoid 22a of the first operating valve 22 when an input current flows through the contact A2, and excites the solenoid 22b of the first operating valve 22 when an input current flows through the contact B2. When an input current flows through the contact C2, the solenoid 26a of the third operation valve 26 is excited, and when an input current flows through the contact D2, the solenoid 26b of the third operation valve 26 is excited.
[0023]
Next, the operation according to the first embodiment will be described. When the radio control switch 14 is turned ON, the power supply line Vc connected to the power supply unit of the receiver 32 enters, and transmission / reception with the remote control panel 31 becomes possible. When the operation mode change-over switch 13 is switched to the work mode during soil improvement work, the contact 13a is turned on, the remote control circuit 33A is demagnetized by the relays RYA to RYD, and the b contacts A1, B1, C1, and D1 are turned on. A2, B2, C2, and D2 are turned off. In this state, for example, when the first switch R1 of the remote operation panel 31 is turned on, when the first contact CH1 of the receiver 32 is turned on and an input current flows from the controller 34 via the contact A1, the controller 34 scrapes. The rotor 3 and the raw soil conveyor 6 are controlled to rotate forward. When the second switch R2 of the remote control panel 31 is turned on, the second contact CH2 of the receiver 32 is turned on, and when the input current flows from the controller 34 via the contact B1, the controller 34 detects the scraping rotor 3 and the raw material. The earth conveyor 6 is stopped and controlled. When the third switch R3 of the remote control panel 31 is turned on, the third contact CH3 of the receiver 32 is turned on and when an input current flows from the controller 34 via the contact C1, the controller 34 detects the scraping rotor 3 and the raw soil conveyor. 6 and reverse control. When the fourth switch R4 of the remote control panel 31 is turned on, the fourth contact CH4 of the receiver 32 is turned on, and when the input current flows from the controller 34 via the contact D1, the controller 34 is connected to the self-propelled soil conditioner 10. Stops driving of all work machines.
[0024]
Next, when the radio control switch 14 is turned on at the time of inspection and maintenance and the operation mode changeover switch 13 is switched to the maintenance mode, the contact 13b is turned on, and the remote control circuit 33A activates the relays RYA to RYD and the b contacts A1, B1. , C1, D1 are turned off, and the a contacts A2, B2, C2, D2 are turned on. In this state, when the first switch R1 of the remote control panel 31 is turned on, the first contact CH1 of the receiver 32 is turned on, and the input current flows from the controller 34 via the contact A2, and the controller 34 turns the improver feeder 5 on. Controls forward rotation (rotation in the direction in which the improving agent is supplied). When the second switch R2 of the remote control panel 31 is turned on, the second contact CH2 of the receiver 32 is turned on and an input current flows from the controller 34 via the contact B2, and the controller 34 controls the improving agent feeder 5 in reverse. When the third switch R3 of the remote control panel 31 is turned on, the third contact CH3 of the receiver 32 is turned on, and an input current flows from the controller 34 via the contact C3. Rotation in the soil transport direction). When the fourth switch R4 of the remote control panel 31 is turned on, the fourth contact CH4 of the receiver 32 is turned on and an input current flows from the controller 34 via the contact D2, and the controller 34 controls the raw soil conveyor 6 in reverse. As described above, the functions of the switches R1 to R4 of the remote operation panel 31 are as follows in the work mode (mode during soil improvement work) and maintenance mode (mode during cleaning and clogging inspection). Switch.
[0025]
[Table 1]
Figure 0003891378
[0026]
In Table 1, the feeder represents the interlocking between the raw soil conveyor 6 and the scraping rotor 3.
Thus, a 4-channel radio control is provided with a function corresponding to 8 channels. In other words, it is not necessary to equip the radio control transmitters for the work mode and the maintenance mode, respectively, and it is possible to cope by using a relay or the like in the signal input circuit from the receiver instead of adding a channel to the radio control. Since the operation panel 31 can be reduced in size and weight, the operability is improved and the cost is reduced.
[0027]
A second embodiment of the remote control circuit 33 constituting the remote control means 30 will be described with reference to FIGS. Constituent elements similar to those in the first embodiment shown in FIG. As shown in FIG. 5, the relay RYE constituting the remote control circuit 33 </ b> B is connected in series to the power supply line Vc via the contact point 13 b of the operation mode changeover switch 13. One ends of the coils of the relays RYa to RYd constituting the remote control circuit 33B are connected in parallel and grounded via the b contact E1 of the relay RYE, and the other ends are connected to the contacts CH1 to CH4 of the receiver 32, respectively. To the power line Vc. One end of the coils of the relays RYe to RYh constituting the remote control circuit 33B is connected in parallel and grounded via the a contact E2 of the relay RYE, and the other end is connected to each contact CH1 to CH4 of the receiver 32, respectively. To the power supply line Vc connected to the power supply unit. Further, as shown in FIG. 6, each of the a-contacts A3 to H3 corresponding to the coils of the relays RYa to RYh in FIG. 5 has one end connected to the controller 34 and the other end grounded. The hydraulic drive circuit 20 is the same as that shown in FIG.
[0028]
The controller 34 is configured as follows. When an input current flows from the controller 34 via the a contact A3 of the relay RYa, the solenoid 24a of the second operation valve 24 and the solenoid 26a of the third operation valve 26 are excited, and the input current passes through the a contact B3 of the relay RYb. Current flows, neither the solenoids 24a, 24b of the second operating valve 24 nor the solenoids 26a, 26b of the third operating valve 26 are energized, and the second current flows when the input current flows through the a contact C3 of the relay RYc. When the solenoid 24b of the operation valve 24 and the solenoid 26b of the third operation valve 26 are excited and an input current flows through the a contact D3 of the relay RYd, the drive of all the work machines of the self-propelled soil improvement machine 10 is stopped. Further, when an input current flows through the a contact E3, the solenoid 22a of the first operation valve 22 is excited, and when an input current flows through the a contact F3, the solenoid 22b of the first operation valve 22 is excited, and the a contact When an input current flows through G3, the solenoid 26a of the third operation valve 26 is excited, and when an input current flows through the a contact H3, the solenoid 26b of the third operation valve 26 is excited.
[0029]
The operation of FIGS. 5 and 6 will be described. When the operation mode changeover switch 13 is switched to the work mode during the soil improvement work and the contact 13a is turned on, and the radio control switch 14 is turned on, the remote control circuit 33B turns off the relay RYE, turns on the b contact E1, and turns on the a contact E2. Turns off. Therefore, when the first switch R1 of the remote operation panel 31 is turned on, the first contact CH1 of the receiver 32 is turned on, so that the relay RYa is excited and the contact a is turned on, and an input current flows through the contact a. The controller 34 controls forward rotation of the scraping rotor 3 and the raw soil conveyor 6. When the second switch R2 of the remote control panel 31 is turned on, the second contact CH2 of the receiver 32 is turned on, so that the relay RYb is excited and the contact b is turned on. When an input current flows through the contact b, the controller 34 Stops and controls the scraping rotor 3 and the raw soil conveyor 6. When the third switch R3 of the remote control panel 31 is turned on, the third contact CH3 of the receiver 32 is turned on, so that the relay RYc is excited and the contact c is turned on. When an input current flows through the contact c, the controller 34 Controls reverse rotation of the raw soil conveyor 6 and the scraping rotor 3. When the fourth switch R4 of the remote control panel 31 is turned on, the fourth contact CH4 of the receiver 32 is turned on, so that the relay RYd is excited and the contact d is turned on. When an input current flows through the contact d, the controller 34 Controls stop of all the working machines of the self-propelled soil improvement machine 10.
[0030]
Next, at the time of inspection and maintenance, the mode changeover switch 13 is switched to the maintenance mode to turn on the contact 13b, and when the radio control switch 14 is turned on, the remote control circuit 33B turns on the relay RYE and turns off the b contact E1. The contact E2 is turned on. Therefore, when the first switch R1 of the remote operation panel 31 is turned on, the first contact CH1 of the receiver 32 is turned on, so that the relay RYe is excited and the contact E3 is turned on, and an input current flows through the contact E3. The controller 34 controls the forward rotation of the improving agent feeder 5 (rotation in the improving agent supply direction). When the second switch R2 of the remote control panel 31 is turned on, the second contact CH2 of the receiver 32 is turned on, so that the relay RYf is excited and the contact F3 is turned on, and when an input current flows through the contact F3, the controller 34 Controls reverse of the improver feeder 5. When the third switch R3 of the remote control panel 31 is turned on, the third contact CH3 of the receiver 32 is turned on so that RYg is excited and the contact G3 is turned on. When an input current flows through the contact G3, the controller 34 The material soil conveyor 6 is controlled to rotate forward (rotation in the material soil conveyance direction). When the fourth switch R4 of the remote control panel 31 is turned on, the fourth contact CH4 of the receiver 32 is turned on, so that the relay RYh is excited and the contact H3 is turned on. When an input current flows through the contact H3, the controller 34 Controls reverse rotation of the raw soil conveyor 6.
[0031]
A third embodiment of the remote control circuit 33 constituting the remote control means 30 will be described with reference to FIG. The same parts as those in the first embodiment shown in FIG. One end of the coil of the relay RYQ is connected in series to the power supply line Vc via the contact 13b of the operation mode changeover switch 13, and is input to the controller 34 (maintenance mode signal M), and the other end is grounded. One end of each of the coils of the parallel-connected relays RYS to RYV constituting the remote control circuit 33C is grounded via each contact CH1 to CH4 of the receiver 32 and is connected to the controller 34. The other ends of the coils of relays RYS to RYV are connected to each other and are connected to power supply line Vc via contact Q of relay RYQ. Further, one end of each of the contacts a to V of the relays RYS to RYV is connected to the controller 34, and the other end is grounded. The hydraulic drive circuit 20 is the same as that shown in FIG.
[0032]
The controller 34 is configured as follows. When the maintenance mode of the operation mode switch 13 is selected and the contact 13b is turned on, the coil of the relay RYQ is excited and the maintenance mode signal M is input to the controller 34. When the maintenance mode signal M is input, the controller 34 ignores signals input via the contacts CH1 to CH4 of the receiver 32. When the maintenance mode signal M is OFF, the controller 34 excites the solenoid 24a of the second operation valve 24 and the solenoid 26a of the third operation valve 26 when an input current flows through the first contact CH1. When an input current flows through the second contact CH2, neither the solenoids 24a, 24b of the second operation valve 24 nor the solenoids 26a, 26b of the third operation valve 26 are energized, and the third contact CH3 is used. When the input current flows, the solenoid 24b of the second operation valve 24 and the solenoid 26b of the third operation valve 26 are excited, and when the input current flows through the fourth contact CH4, the self-propelled soil improvement machine 10 Stop driving all work machines. Further, when an input current flows through the contact S, the solenoid 22a of the first operation valve 22 is excited, and when an input current flows through the contact T, the solenoid 22b of the first operation valve 22 is excited, via the contact U. When the input current flows, the solenoid 26a of the third operation valve 26 is excited, and when the input current flows through the contact V, the solenoid 26b of the third operation valve 26 is excited.
[0033]
The operation of FIG. 7 will be described. When the operation mode change-over switch 13 is switched to the work mode and the work mode contact 13a is turned on during soil improvement work, the remote control circuit 33C turns off the relay RYQ, turns off the contact Q, and turns off the maintenance mode signal M. For this reason, when the radio control switch 14 is turned on and the first switch R1 of the remote control panel 31 is turned on, the first contact CH1 of the receiver 32 is turned on, and an input current flows from the controller 34 via the first contact CH1, The controller 34 controls forward rotation of the scraping rotor 3 and the raw soil conveyor 6. When the second switch R2 of the remote control panel 31 is turned on, the second contact CH2 of the receiver 32 is turned on, and an input current flows from the controller 34 via the second contact CH2, and the controller 34 is connected to the scraping rotor 3 and the raw material soil. The conveyor 6 is controlled to stop. When the third switch R3 of the remote operation panel 31 is turned on, the third contact CH3 of the receiver 32 is turned on and an input current flows from the controller 34 via the third contact CH3. The conveyor 6 is reversely controlled. When the fourth switch R4 of the remote control panel 31 is turned on, the fourth contact CH4 of the receiver 32 is turned on and an input current flows from the controller 34 via the fourth contact CH4. Stops the drive of all work machines.
[0034]
Next, when the operation mode selector switch 13 is switched to the maintenance mode and the contact 13b is turned on during inspection and maintenance, the remote control circuit 33C is energized by the relay RYQ and the contact Q is turned on. At this time, the maintenance mode signal M is input from the operation mode changeover switch 13 to the controller 34, and signals input via the first contact CH1 to the fourth contact CH4 of the receiver 32 are ignored. When the radio control switch 14 is turned on and the first switch R1 of the remote control panel 31 is turned on, the first contact CH1 of the receiver 32 is turned on, so that the relay RYS is excited and the contact S is turned on. An input current flows through the controller 34, and the controller 34 controls the forward rotation of the improving agent feeder 5 (rotation in the improving agent supply direction). When the second switch R2 of the remote control panel 31 is turned on, the second contact CH2 of the receiver 32 is turned on, so that the relay RYT is excited and the contact T is turned on, and an input current flows from the controller 34 via the contact T. The controller 34 reversely controls the improver feeder 5. When the third switch R3 of the remote operation panel 31 is turned on, the third contact CH3 of the receiver 32 is turned on, so that the relay RYU is excited and the contact U is turned on, and an input current flows from the controller 34 via the contact U. The controller 34 controls normal rotation (rotation in the raw soil conveyance direction) of the raw soil conveyor 6. When the fourth switch R4 of the remote control panel 31 is turned on, the fourth contact CH4 of the receiver 32 is turned on, so that the relay RYV is excited and the contact V is turned on, and an input current flows from the controller 34 via the contact V. The controller 34 reversely controls the raw soil conveyor 6.
[0035]
As described above, according to the present invention, cleaning of each device of the self-propelled soil improvement machine, inspection for removing clogging, etc., during maintenance, on the side of the device requiring inspection and maintenance, for example, the raw material soil hopper and the improver hopper By remotely operating each device independently at a position where the inside can be seen, reciprocation between the on-board operation panel and each device is not necessary, and inspection and maintenance can be easily performed even by one person. Therefore, the inspection and maintenance work efficiency is greatly improved.
[Brief description of the drawings]
FIG. 1 is a side view showing an embodiment of a self-propelled soil improvement machine according to the present invention.
FIGS. 2A and 2B are diagrams showing an embodiment of a remote control panel according to the present invention, in which FIG. 2A is a main body, and FIG.
FIG. 3 is a diagram showing a first embodiment of a remote control circuit according to the present invention.
FIG. 4 is a diagram showing an example of a hydraulic drive circuit according to the present invention.
FIG. 5 is a diagram showing a second embodiment (first portion) of a remote control circuit according to the present invention.
FIG. 6 is a diagram showing a second embodiment (second portion) of the remote control circuit according to the present invention.
FIG. 7 is a diagram showing a third embodiment of a remote control circuit according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Tracked vehicle, 1a ... Body frame, 2 ... Raw material hopper, 3 ... Scraping rotor, 4 ... Improvement agent hopper, 5 ... Improvement agent feeder, 6 ... Raw material conveyor, 7 ... Mixer, 8 ... Boarding Floor, 9 ... Engine room, 10 ... Self-propelled soil conditioner, 11 ... Discharge conveyor, 12 ... In-vehicle operation panel, 13 ... Operation mode switch, 14, Radio control switch, 20 ... Hydraulic drive circuit, 21 ... Hydraulic pump, 22 ... 1st operation valve, 23 ... 1st hydraulic motor, 24 ... 2nd operation valve, 25 ... 2nd hydraulic motor, 26 ... 3rd operation valve, 27 ... 3rd hydraulic motor, 30 ... Remote operation means, 31 ... Remote control panel, 32 ... receiver, 33, 33A, 33B, 33C ... remote control circuit, 34 ... controller, R1 ... first switch, R2 ... second switch, R3 ... third switch, R4 ... fourth switch.

Claims (3)

原料土ホッパの原料土を搬送する原料土コンベアと、改良剤ホッパの改良剤を供給する改良剤フィーダと、原料土コンベアで搬送される原料土と改良剤フィーダから供給される改良剤とを解砕、混合して改良土とする混合機とを車体上に備える自走式土質改良機において、
各機器の点検、整備時に必要な箇所で各機器を単独で遠隔操作可能とする遠隔操作手段(30)を備え、
各機器の点検、整備が可能な整備モードと、各機器の土質改良作業が可能な作業モードとを切り換える操作モード切換手段 (13) を設け、
前記遠隔操作手段 (30) の操作スイッチ (R1 R4) の機能は整備モード時と作業モード時とで切り換える
ことを特徴とする自走式土質改良機。
Dissolve the material soil conveyor that transports the material soil of the material soil hopper, the improver feeder that supplies the improver for the improver hopper, and the material soil that is conveyed by the material soil conveyor and the improver that is supplied from the improver feeder. In a self-propelled soil improvement machine equipped with a mixer on the vehicle body that is crushed and mixed to make improved soil,
It is equipped with remote control means (30) that enables remote control of each device independently at the necessary locations for inspection and maintenance of each device ,
An operation mode switching means (13) is provided for switching between a maintenance mode in which inspection and maintenance of each device can be performed and a work mode in which soil improvement work for each device can be performed .
The self-propelled soil improvement machine, wherein the functions of the operation switches (R1 to R4) of the remote control means (30) are switched between the maintenance mode and the work mode .
請求項1記載の自走式土質改良機において、
遠隔操作可能な操作は、原料土コンベア(6) の正転、逆転及び改良剤フィーダ(5) の正転、逆転の内、少なくとも1つである
ことを特徴とする自走式土質改良機
In the self-propelled soil improvement machine according to claim 1,
The self-propelled soil conditioner is characterized in that at least one of the forward operation and reverse rotation of the material soil conveyor (6) and the normal rotation and reverse rotation of the improver feeder (5) can be operated remotely .
請求項1又は2記載の自走式土質改良機において、
遠隔操作手段(30)はラジコンにより信号を送受信する
ことを特徴とする自走式土質改良機。
In the self-propelled soil improvement machine according to claim 1 or 2 ,
The remote control means (30) is a self-propelled soil improvement machine characterized by transmitting and receiving signals by radio control.
JP32446398A 1998-10-30 1998-10-30 Self-propelled soil improvement machine Expired - Fee Related JP3891378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32446398A JP3891378B2 (en) 1998-10-30 1998-10-30 Self-propelled soil improvement machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32446398A JP3891378B2 (en) 1998-10-30 1998-10-30 Self-propelled soil improvement machine

Publications (2)

Publication Number Publication Date
JP2000136527A JP2000136527A (en) 2000-05-16
JP3891378B2 true JP3891378B2 (en) 2007-03-14

Family

ID=18166102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32446398A Expired - Fee Related JP3891378B2 (en) 1998-10-30 1998-10-30 Self-propelled soil improvement machine

Country Status (1)

Country Link
JP (1) JP3891378B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI5905U1 (en) * 2003-05-12 2003-08-15 Metso Minerals Tampere Oy Processing plant for mineral materials
JP4527521B2 (en) * 2004-12-22 2010-08-18 日立建機株式会社 Wood crusher
JP6012079B2 (en) * 2013-08-07 2016-10-25 キャタピラー エス エー アール エル Construction machine remote control system
JP7130607B2 (en) * 2019-06-28 2022-09-05 日立建機株式会社 working machine

Also Published As

Publication number Publication date
JP2000136527A (en) 2000-05-16

Similar Documents

Publication Publication Date Title
US7673713B2 (en) Multi-purpose mobile power generating machine
CN104411935A (en) Work vehicle
US5797548A (en) Self-propelled crushing machine
EP3199425B1 (en) Work vehicle
JP3891378B2 (en) Self-propelled soil improvement machine
JP3105160U (en) Mineral material processing equipment
JP2000355954A (en) Self-propelled soil improvement machine
CN113134790B (en) Shot blasting robot for ship deck and operation method
US5103951A (en) Operation control system for automotive working vehicles
US7234655B2 (en) Travel control device for self-propelled recycle machine
JP2000033285A (en) Crusher of crushing machine
JP3790066B2 (en) Manufacturing method of self-propelled crusher
JP3679947B2 (en) Self-propelled crusher
JP3709279B2 (en) Drive unit for self-propelled crusher
JPH093820A (en) Pavement vehicle
WO1996034689A1 (en) Transportable crusher
JPH08158404A (en) Hydraulic shovel
CN110979488A (en) Crawler-type electric engineering operation vehicle and operation method thereof
JP4330695B2 (en) Operation control device for collecting device in garbage truck and operation control method for the collecting device
JPH11165878A (en) Material earth feeder
JP2000225356A (en) Crushing control system of crusher
JPH09291778A (en) Self-propelled batcher
JPH0827835A (en) Hydraulic shovel
JPH11333318A (en) Crushing control system for crushing machine
EP1533771A1 (en) Control method and system for machine tools and industrial vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees