JP3891054B2 - Structure of electrode tab lead-out part of stacked battery - Google Patents

Structure of electrode tab lead-out part of stacked battery Download PDF

Info

Publication number
JP3891054B2
JP3891054B2 JP2002190549A JP2002190549A JP3891054B2 JP 3891054 B2 JP3891054 B2 JP 3891054B2 JP 2002190549 A JP2002190549 A JP 2002190549A JP 2002190549 A JP2002190549 A JP 2002190549A JP 3891054 B2 JP3891054 B2 JP 3891054B2
Authority
JP
Japan
Prior art keywords
electrode tab
negative electrode
positive electrode
battery
tab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002190549A
Other languages
Japanese (ja)
Other versions
JP2004039274A (en
Inventor
典彦 枚田
諭 中條
孝憲 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002190549A priority Critical patent/JP3891054B2/en
Publication of JP2004039274A publication Critical patent/JP2004039274A/en
Application granted granted Critical
Publication of JP3891054B2 publication Critical patent/JP3891054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、電池の発電要素の外装にラミネートフィルムを用いて、その周縁部を熱溶着により接合するとともに、発電要素の正,負極板にそれぞれ接続したタブをラミネートフィルムの接合部分から外方に引き出すようにした積層型電池の電極タブ取出し部構造に関する。
【0002】
【従来の技術】
近年、自動車の排ガスによる大気汚染が世界的な問題となっている中で、電気を動力源とする電気自動車やエンジンとモータを組み合わせて走行するハイブリッドカーが注目を集めており、これらに搭載する高エネルギ密度、高出力密度となる高出力型電池の開発が産業上重要な位置を占めている。
【0003】
このような高出力型電池としては例えばリチウムイオン電池があり、この場合、正極板と負極板との間にセパレータを介在させて巻回した円筒型電池や、平板状の正極板と負極板とをセパレータを介在させつつ積層した積層型電池がある。
【0004】
後者の積層型電池では、扁平状の発電要素の両面を一対のラミネートフィルムで挟み、その周縁部を熱溶着により接合して発電要素とともに電解液を密封している。このような積層型電池では、例えば特開2000−77044号公報に開示されているように、正極板および負極板にそれぞれ接続した電極タブを、前記ラミネートフィルムの接合部分から外方に引き出している。
【0005】
このとき、正極板および負極板をそれぞれの電極タブに接続するには、正,負各電極板から引き出した金属箔の電極リードを電極タブに直接溶接し、それぞれの電極タブには、バスバーや接続線などの導電体を接続して電気を取り出す必要がある。
【0006】
【発明が解決しようとする課題】
ところで、前記電池を振動発生条件下で用いる場合、例えば、電気自動車やハイブリッドカーに電池を搭載する場合には、車体振動が電気取出し用の導電体を介して電極タブに直接伝達される。
【0007】
電極タブに伝達された振動は、金属箔で形成した電極リードに入力されるため、電極リードの折損など、電池内部で機械的な破損を招く可能性がある。
【0008】
そこで、本発明は、電極タブを介して外部から入力される振動を抑制することで、電池内部の機械的な破損を防止することを目的とする。
【0009】
【課題を解決するための手段】
本発明の積層型電池の電極タブ取出し部構造は、正極板と負極板との間にセパレータを介在させて積層した発電要素の両面を金属層と樹脂層とを備えたラミネートフィルムで挟んで覆い、そのラミネートフィルムの周縁部を熱溶着により接合して前記発電要素を密封するとともに、前記正極板および負極板にそれぞれ電極リードを介して電気的に接続した正極タブおよび負極タブを、前記ラミネートフィルムの接合部分から外方に引き出し、これら正極タブおよび負極タブの先端部から電気を取り出す積層型電池の電極タブ取出し部構造において、前記正極タブおよび前記負極タブの前記先端部から前記電極リードへの接続部に至る間に振動吸収部を設け、前記振動吸収部は、前記ラミネートフィルムの周縁部に位置して、ラミネートフィルムとともに正極タブおよび負極タブを、前記正極板および負極板の積層方向のうち少なくとも一方に向かって突出させた凸部を備えている構成としてある。
【0010】
【発明の効果】
本発明の積層型電池の電極タブ取出し部構造によれば、先端部から正極タブおよび負極タブに伝達された振動は、電極リードへの接続部に至る間に設けた振動吸収部となる凸部によって吸収するため、金属箔などの強度の低い材料で形成した電極リードに振動が入力されるのを防止もしくは効果的に抑制でき、電極リードの折損など電池内部での機械的な破損を防止することができる。
【0011】
【発明の実施の形態】
以下、本発明を図面に基づき説明する。
【0012】
図1〜図6は、本発明に係わる積層型電池の電極タブ取出し部構造の第1実施形態を示している。図1は電池の平面図、図2は図1中A−A線に沿った要部断面図、図3は図1中B−B線に沿った拡大断面図、図4は図1中C部の拡大断面図、図5は図3中D部の拡大断面図、図6は電極タブに設けた振動吸収部の機能を示す要部拡大断面図である。
【0013】
この第1実施形態の電極タブ取出し部構造が適用される積層型電池10は、図1に示すように発電要素としての扁平形状の積層電極11を、ラミネートフィルム12,13の中央部に配置し、これらラミネートフィルム12,13によって積層電極11の両面(図中、表裏方向)を挟むようにして覆ってある。
【0014】
そして、図2に示すようにラミネートフィルム12,13の周縁部を熱溶着により接合(接合部分16)することにより、これらラミネートフィルム12,13間に前記積層電極11とともに電解液を密封する。なお、ラミネートフィルム12,13は実際は薄肉に形成されるが、図中では誇張して厚肉表示するものとする。
【0015】
前記積層電極11は、図3に示すように複数枚の正極板11A,11A…および負極板11B,11B…を、それぞれセパレータ11C,11C…を介在しつつ順次積層して構成している。各正極板11A,11A…は金属箔で形成した正極リード11D,11D…を介して正極タブ14に接続するとともに、各負極板11B,11B…は同様に金属箔で形成した負極リード11E,11E…を介して負極タブ15に接続する。これら正極タブ14および負極タブ15を、前記ラミネートフィルム12,13の接合部分16から外方に引き出している。
【0016】
そして、前記接合部分16から外方に引き出した正極タブ14および負極タブ15の先端部には、導電体としてのバスバー(または接続線)17,18を、ろう付けや溶接などにより接続してあり、このバスバー17,18を介して積層型電池10から電気を取り出している。なお、本実施形態では、後述するように前記積層型電池10を二次電池として構成してあるので、充電時には前記バスバー17,18から電気が取り入れられる。
【0017】
また、前記ラミネートフィルム12,13は、図4に示すように外側から内側(接合部分16)に向かって樹脂層としてのナイロン層α、接着剤層β、金属層としてのアルミ箔層γ、樹脂層としてのPE(ポリエチレン)またははPP(ポリプロピレン)層δで構成される。
【0018】
このようにして構成される電池10としては、例えばリチウムイオン二次電池があり、この場合、正極板11A,11A,……を形成している正極の正極活物質として、リチウムニッケル複合酸化物、具体的には一般式LiNi1-xMxO2(但し、0.01≦x≦0.5であり、MはFe,Co,Mn,Cu,Zn,Al,Sn,B,Ga,Cr,V,Ti,Mg,Ca,Srの少なくとも一つである。)で表せる化合物を含有する。
【0019】
また、正極はリチウムニッケル複合酸化物以外の正極活物質を含有することも可能である。リチウムニッケル複合酸化物以外の正極活物質としては、例えば一般式LiyMn2-zM'zO4(但し、0.9≦y≦1.2、0.01≦z≦0.5であり、M'はFe,Co,Ni,Cu,Zn,Al,Sn,B,Ga,Cr,V,Ti,Mg,Ca,Srの少なくとも一つである。)で表される化合物であるリチウムマンガン複合酸化物が挙げられる。また、一般式LiCo1-xMxO2(但し、0.01≦x≦0.5であり、MはFe,Ni,Mn,Cu,Zn,Al,Sn,B,Ga,Cr,V,Ti,Mg,Ca,Srの少なくとも一つである。)で表せる化合物であるリチウムコバルト複合酸化物を含有してもよい。
【0020】
リチウムニッケル複合酸化物、リチウムマンガン複合酸化物およびリチウムコバルト複合酸化物は、例えばリチウム、ニッケル、マンガン、コバルトなどの炭酸塩を組成に応じて混合し、酸素存在雰囲気中において600℃〜1000℃の温度範囲で焼成することにより得られる。なお、出発原料は炭酸塩に限定されず、水酸化物、酸化物、硝酸塩、有機酸塩等からも同様に合成可能である。
【0021】
なお、リチウムニッケル複合酸化物やリチウムマンガン複合酸化物などの正極活物質の平均粒径は、30μm以下であることが好ましい。
【0022】
また、負極板11B,11B,……を形成している負極活物質としては、比表面積が0.05m2/g以上、2m2/g以下の範囲であるものを使用する。この範囲とすることにより、負極表面上におけるSEI(Solid Electrolyte Interface:固体電解質界面)の形成を充分に抑制することができる。
【0023】
負極活物質の比表面積が0.05m2/g未満である場合、リチウムの出入り可能な場所が小さすぎるため、充電時において負極活物質中にドープされたリチウムが放電時において負極活物質中から充分に脱ドープされず、充放電効率が低下する。一方、負極活物質の比表面積が2m2/gを越える場合、負極表面上におけるSEI形成を制御することができない。
【0024】
負極活物質としては、対リチウム電位が2.0V以下の範囲でリチウムをドープ・脱ドープすることが可能な材料であれば何れも使用可能であり、具体的には難黒鉛化性炭素材料、人造黒鉛、天然黒鉛、熱分解黒鉛類、ピッチコークスやニードルコークスや石油コークスなどのコークス類、グラファイト、ガラス状炭素類、フェノール樹脂やフラン樹脂などを適当な温度で焼成して炭化した有機高分子化合物焼成体、炭素繊維、活性炭、カーボンブラックなどの炭素質材料を使用することが可能である。
【0025】
また、リチウムと合金を形成可能な金属、およびその合金も使用可能であり、具体的には、酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化スズ等の比較的低電位でリチウムをドープ・脱ドープする酸化物やその窒化物、3B族典型元素の他、SiやSnなどの元素、または例えばMxSi、MxSn(但し、式中MはSi又はSnを除く1つ以上の金属元素を表す。)で表されるSiやSnの合金などを使用することができる。これらの中でも、特にSiまたはSi合金を使用することが好ましい。
【0026】
さらに、電解液としては、電解質塩を非水溶媒に溶解して調製される液状のものの他、電解質塩を非水溶媒に溶解した溶液を高分子マトリクス中に保持させたポリマーゲル電解質であってもよい。
【0027】
非水電解質としてはポリマーゲル電解質を用いる場合、使用する高分子材料として、ポリフッ化ビニリデン、ポリアクリロニトリルなどが挙げられる。
【0028】
非水溶媒としては、この種の非水電解質二次電池においてこれまで使用されている非水溶媒であれば何でも使用可能であり、例えばプロピレンカーボネート、エチレンカーボネート、1,2-ジメトキシエタン、ジエチルカーボネート、ジメチルカーボネート、γ-ブチロラクトン、テトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリルなどが挙げられる。なお、これらの非水溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
【0029】
特に、非水溶媒は不飽和カーボネートを含有することが好ましく、具体的には、ビニレンカーボネート、エチレンエチリデンカーボネート、エチレンイソプロプロピリデンカーボネート、プロピリデンカーボネートなどを含有することが好ましい。また、これらの中でも、ビニレンカーボネートを含有することが最も好ましい。非水溶媒として不飽和カーボネートを含有することにより、負極活物質に生成するSEIの性状(保護膜の機能)に起因する効果が得られ、耐過放電特性がより向上すると考えられる。
【0030】
また、この不飽和カーボネートは電解質中に0.05重量%以上、5重量%以下の割合で含有されることが好ましく、特に0.5重量%以上、3重量%以下の割合で含有されることが最も好ましい。不飽和カーボネートの含有量を上記範囲とすることで、初期放電容量が高く、エネルギ密度の高い非水二次電池となる。
【0031】
電解質塩としては、イオン伝導性を示すリチウム塩であれば特に限定されることはなく、例えばLiClO4、LiAsF6、LiPF6、LiBF4、LiB(C6H5)4、LiCl、LiBr、CH3SO3Li、CF3SO3Liなどが使用可能である。これらの電解質塩は、1種類を単独で用いてもよく、2種類以上を混合して用いることも可能である。
【0032】
ここで本実施形態では、前記正極タブ14および前記負極タブ15の前記バスバー17,18への接続部P1,P2から、前記電極リード11D,11Eへの接続部Q1,Q2に至る間に、振動吸収部としての凸部20を、図中で上方へ向けて突出して形成してある。
【0033】
この凸部20は、前記ラミネートフィルム12,13の周縁部を熱溶着した接合部分16の内側に位置して、このラミネートフィルム12,13とともに正極タブ14および負極タブ15を、図3中で上方に向かってアーチ状に突設した形状となっている。
【0034】
つまり、前記凸部20に対応する位置のラミネートフィルム12,13は、図3に示すように正極タブ14および負極タブ15の上下両面に密着した状態で、前記凸部20の形状に沿って屈曲している。
【0035】
また、前記接合部分16には、図1,図3に示すように、正極タブ14および負極タブ15の表裏両面を覆い、これら正極タブ14および負極タブ15と接合部分16との間のシール性を確保する樹脂シート19を設けてある。
【0036】
樹脂シート19は、PE(ポリエチレン)やPP(ポリプロピレン)などの樹脂材料によって帯状に形成し、前記接合部分16を熱溶着する前に、この樹脂シート19を正極タブ14および負極タブ15にあらかじめ巻き付けておく。
【0037】
そして、樹脂シート19を巻き付けた後に接合部分16を熱溶着することにより、ラミネートフィルム12,13と、正極タブ14および負極タブ15の周縁部との密着性、ひいてはシール性を確保できる。本実施形態では、この樹脂シート19を、前記凸部20よりも電池外側(バスバー17,18側)に配置してある。
【0038】
また、図3,図5に示すように、前記凸部20は、その電池内方側基部Fを上方にほぼ直角に立ち上げることにより、前記電極リード11D,11Eの先端を突き当てる規制面30としてある。
【0039】
上記した本実施形態の積層型電池10の電極タブ取出し部構造では、積層型電池10を電気自動車やハイブリッドカーに搭載して車体が振動した場合に、その振動がバスバー17,18から正極タブ14および負極タブ15に伝達される。
【0040】
このとき、正極タブ14および負極タブ15には、前記バスバー17,18の接続部P1,P2から電極リード11D,11Eの接続部Q1,Q2に至る間に凸部20を形成してあるため、前記振動をこの凸部20によって効果的に吸収することができる。
【0041】
このため、前記正極タブ14および前記負極タブ15からの振動が金属箔などの強度の低い材料で形成した電極リード11D,11Eに入力されるのを防止もしくは効果的に抑制でき、ひいては、この電極リード11D,11Eが折損するなどの電池内部での機械的破損を防止することができる。これにより、電池性能の低下を防止して本来の電圧を維持することができる。
【0042】
ところで、本実施形態では、振動吸収部としての凸部20は、ラミネートフィルム12,13の周縁部を熱溶着した接合部分16の内側に位置して、ラミネートフィルム12,13とともに正極タブ14および負極タブ15を上方に向かって突設している。この場合図6に示すように、凸部20と下方のラミネートフィルム13との間を、積層電池10内で発生したガスを滞留させるガス溜部Sとして用いることができる。
【0043】
すなわち、ラミネートフィルム12,13内に積層電極11とともに密封した電解液は、これが分解することによりガスが発生し、また、内部に浸入した水分によって化学変化を起こしてガスが発生する。このようにして発生したガスは、ラミネートフィルム12,13間が密閉構造であるため逃げ場がなくなる。
【0044】
このため、前記積層電極11および電解液の収納空間に、上記発生したガスを収容する余剰空間を設けて、減圧条件下でラミネートフィルム12,13を密封する必要がある。ところがこの場合、余剰空間を設けることで、密封時にラミネートフィルム12,13に皺が発生しやく、この皺によって密封性が損なわれたり、ラミネートフィルム12,13のアルミ箔層γ(図4参照)が折損するなどの不具合が発生する可能性がある。
【0045】
これに対して本実施形態では、電池内部でガスが発生した場合、このガス圧により、正極タブ14および負極タブ15に密着した下部のラミネートフィルム13が剥がれ、ガスが凸部20における各タブ14,15とラミネートフィルム13との間に進入し、前記図6に示したガス溜部Sが形成される。
【0046】
したがって、本実施形態ではラミネートフィルム12,13相互間における積層電極11および電解液の収納空間に、ガス収容のための余剰空間を設ける必要がなく、ひいてはラミネートフィルム12,13の皺の発生を防止して、この皺に起因した不具合をなくすことができる。
【0047】
また、図3に示すように、正極タブ14および負極タブ15における接合部分16のシール性を確保する樹脂シート19を、前記凸部20よりも電池外側に配置したので、この樹脂シート19が障害となることなく内部で発生したガスを前記ガス溜部Sに案内できるとともに、このガス溜部Sの容積をより大きく取ることが可能となり、積層型電池10の長期信頼性を維持することができる。
【0048】
さらに、正極タブ14および負極タブ15に形成した前記凸部20の電池内方側基部Fを、電極リード11D,11Eの先端を突き当てる規制面30としたので、電極リード11D,11Eを正極タブ14および負極タブ15に溶接固定する際に、前記規制面30に電極リード11D,11Eの先端を単に突き当てることで、電極リード11D,11Eの正極タブ14および負極タブ15に対する位置決めを簡単に行うことができる。これにより、電池形状の均一化を図ることができる。
【0049】
図7および図8は、正極タブ14および負極タブ15に設けた振動吸収部の他の実施形態をそれぞれ示し、前記実施形態と同一構成部分に同一符号を付して重複する説明を省略する。
【0050】
すなわち、図7に示す振動吸収部は、電池内方側に設けた上方に突出する凸部20aと、同外方側に設けた下方に突出する凸部21とを連続形成することにより構成している。これら上方凸部20aと下方凸部21によって振動吸収を複数箇所で行うことが可能となり、振動吸収機能を高めることができる。
【0051】
もちろん、この場合にあっても、凸部20aの下方部分に、電池内部で発生したガスを導入するガス溜部Sが形成され、さらに凸部21の上方部分にもガス溜部Sが形成されるので、ガスの滞留容積を増大することができる。
【0052】
一方、図8に示す振動吸収部は、いずれも上方に突出する凸部20bおよび凸部20cを連続形成することにより構成している。この場合にあっても振動吸収を複数箇所で行うことが可能となって振動吸収機能を高めることができるとともに、2つの凸部20b,20cの下方部分にそれぞれガス溜め空間Sを形成することができ、ガスの滞留容積を増大することができる。
【0053】
また、前記各実施形態に示した凸部20,20a,20b,20cはアーチ状に形成した場合を開示したが、その形状は振動を吸収し、かつ、ガスの滞留を可能とする形状であればよく、例えば山形状、矩形などの多角形状もしくはΩ字状など各種形状を採用することができる。尚、本実施形態においては、振動を吸収して、かつガスの滞留を可能とする為に凸部20を形成したが、振動の吸収のみを目的とする場合には、参考例としてバスバー接続部P1,P2から電極リード11D,11Eの間に導電性部材(例えばCu,Ni,Fe等)から成るスプリング等の、別体の振動吸収部材を介在させても良い。
【0054】
ところで、本発明の積層型電池の電極タブ取出し部構造は、前記各実施形態に例を取って説明したが、もちろん、これら実施形態に限ることなく本発明の要旨を逸脱しない範囲で各種実施形態を採用することができる。例えば、積層型電池10としてはリチウムイオン二次電池に限ることなく、同様の構成となる他の電池にあっても本発明を適用することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における電池の平面図である。
【図2】図1中A−A線に沿った要部断面図である。
【図3】図1中B−B線に沿った拡大断面図である。
【図4】図1中C部の拡大断面図である。
【図5】図3中D部の拡大断面図である。
【図6】本発明の一実施形態における電極タブに設けた振動吸収部の機能を示す要部拡大断面図である。
【図7】本発明の他の実施形態における振動吸収部の一変形例を示す要部断面図である。
【図8】本発明の他の実施形態における振動吸収部の他の変形例を示す要部断面図である。
【符号の説明】
10 積層型電池
11 積層電極(発電要素)
11A 正極板
11B 負極板
11C セパレータ
11D,11E 電極リード
12,13 ラミネートフィルム
14 正極タブ
15 負極タブ
16 接合部分
17,18 バスバー(導電体)
19 樹脂シート
20,20a,20b,20c 凸部(振動吸収部)
30 規制面
F 凸部の電池内方側基部
S ガス溜部
[0001]
BACKGROUND OF THE INVENTION
The present invention uses a laminate film for the exterior of a power generation element of a battery, and joins the peripheral portion thereof by thermal welding, and the tabs connected to the positive and negative plates of the power generation element are outward from the joint portion of the laminate film. The present invention relates to an electrode tab extraction portion structure of a stacked battery that is drawn out.
[0002]
[Prior art]
In recent years, air pollution caused by exhaust gas from automobiles has become a global problem, and electric cars powered by electricity and hybrid cars that run in combination with an engine and a motor are attracting attention and will be installed in these. The development of high-power batteries with high energy density and high power density occupies an important industrial position.
[0003]
Examples of such a high-power battery include a lithium ion battery. In this case, a cylindrical battery wound with a separator interposed between a positive electrode plate and a negative electrode plate, a flat positive electrode plate and a negative electrode plate, There is a laminated battery in which the separator is laminated with a separator interposed.
[0004]
In the latter stacked type battery, both sides of a flat power generation element are sandwiched between a pair of laminate films, and the periphery is joined by thermal welding to seal the electrolyte together with the power generation element. In such a laminated battery, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-77044, electrode tabs respectively connected to the positive electrode plate and the negative electrode plate are drawn out from the bonded portion of the laminate film. .
[0005]
At this time, in order to connect the positive electrode plate and the negative electrode plate to the respective electrode tabs, the metal foil electrode leads drawn out from the positive and negative electrode plates are directly welded to the electrode tabs. It is necessary to take out electricity by connecting a conductor such as a connection line.
[0006]
[Problems to be solved by the invention]
By the way, when the battery is used under vibration generation conditions, for example, when the battery is mounted on an electric vehicle or a hybrid car, the vehicle body vibration is directly transmitted to the electrode tab via the electric extraction conductor.
[0007]
Since the vibration transmitted to the electrode tab is input to the electrode lead formed of metal foil, there is a possibility that mechanical damage such as breakage of the electrode lead is caused inside the battery.
[0008]
Therefore, an object of the present invention is to prevent mechanical damage inside the battery by suppressing vibrations input from the outside through the electrode tab.
[0009]
[Means for Solving the Problems]
The electrode tab lead-out structure of the laminated battery according to the present invention covers both sides of a power generating element laminated with a separator interposed between a positive electrode plate and a negative electrode plate with a laminate film having a metal layer and a resin layer. The laminate film is joined to the periphery by heat welding to seal the power generating element, and the positive electrode tab and the negative electrode tab electrically connected to the positive electrode plate and the negative electrode plate through electrode leads, respectively, from junction drawer outward, in the electrode tab extraction part structure of the stacked type battery to take out electricity from the distal end portion of the positive electrode tab and negative electrode tab, wherein from the tip of the positive electrode tab and the negative electrode tab to the electrode lead the vibration absorbing portion while reaching the connecting portion is provided, the vibration absorbing portion is located at the periphery of the laminate film, lamination Phil With a positive electrode tab and negative electrode tab, it is constituted that has the positive electrode plate and a convex portion which projects toward at least one of the laminating direction of the negative electrode plate.
[0010]
【The invention's effect】
According to the electrode tab take-out portion structure of the multilayer battery of the present invention, the vibration transmitted from the tip portion to the positive electrode tab and the negative electrode tab becomes a vibration absorbing portion provided between the connection portion to the electrode lead. Therefore, vibrations can be prevented or effectively suppressed from being input to electrode leads made of low-strength materials such as metal foil, and mechanical damage such as broken electrode leads can be prevented. be able to.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings.
[0012]
1-6 has shown 1st Embodiment of the electrode tab extraction part structure of the laminated battery concerning this invention. 1 is a plan view of the battery, FIG. 2 is a cross-sectional view of the main part along the line AA in FIG. 1, FIG. 3 is an enlarged cross-sectional view along the line BB in FIG. 5 is an enlarged cross-sectional view of a portion D in FIG. 3, and FIG. 6 is an enlarged cross-sectional view of a main portion showing the function of a vibration absorbing portion provided on the electrode tab.
[0013]
In the laminated battery 10 to which the electrode tab lead-out structure of the first embodiment is applied, a flat laminated electrode 11 as a power generation element is arranged at the center of the laminated films 12 and 13 as shown in FIG. These laminated films 12 and 13 are covered so that both surfaces (front and back directions in the figure) of the laminated electrode 11 are sandwiched.
[0014]
Then, as shown in FIG. 2, the peripheral portions of the laminate films 12 and 13 are joined by thermal welding (joined portion 16), thereby sealing the electrolyte solution together with the laminated electrode 11 between the laminate films 12 and 13. Although the laminate films 12 and 13 are actually formed thin, they are exaggerated in the figure and displayed thick.
[0015]
As shown in FIG. 3, the laminated electrode 11 is formed by sequentially laminating a plurality of positive plates 11A, 11A... And negative plates 11B, 11B. Each of the positive plates 11A, 11A... Is connected to the positive electrode tab 14 via positive leads 11D, 11D... Formed of metal foil, and each of the negative plates 11B, 11B. Are connected to the negative electrode tab 15 via. The positive electrode tab 14 and the negative electrode tab 15 are drawn outward from the joint portion 16 of the laminate films 12 and 13.
[0016]
Then, bus bars (or connection wires) 17 and 18 as conductors are connected to the tip portions of the positive electrode tab 14 and the negative electrode tab 15 drawn out from the joint portion 16 by brazing or welding. Electricity is taken out from the laminated battery 10 through the bus bars 17 and 18. In the present embodiment, as will be described later, since the stacked battery 10 is configured as a secondary battery, electricity is taken in from the bus bars 17 and 18 during charging.
[0017]
Further, as shown in FIG. 4, the laminate films 12 and 13 are formed of a nylon layer α as a resin layer, an adhesive layer β, an aluminum foil layer γ as a metal layer, a resin from the outside toward the inside (joint portion 16). The layer is composed of PE (polyethylene) or PP (polypropylene) layer δ.
[0018]
As the battery 10 thus configured, for example, there is a lithium ion secondary battery. In this case, as the positive electrode active material of the positive electrode forming the positive electrode plates 11A, 11A,. Specifically, the general formula LiNi 1-x MxO 2 (where 0.01 ≦ x ≦ 0.5, M is Fe, Co, Mn, Cu, Zn, Al, Sn, B, Ga, Cr, V, Ti, Mg And at least one of Ca and Sr.).
[0019]
The positive electrode can also contain a positive electrode active material other than the lithium nickel composite oxide. As the positive electrode active material other than the lithium nickel composite oxide, for example, a general formula LiyMn 2-z M′zO 4 (where 0.9 ≦ y ≦ 1.2, 0.01 ≦ z ≦ 0.5, and M ′ is Fe, Co, Ni, And at least one of Cu, Zn, Al, Sn, B, Ga, Cr, V, Ti, Mg, Ca, and Sr.). In addition, the general formula LiCo 1-x MxO 2 (where 0.01 ≦ x ≦ 0.5, M is Fe, Ni, Mn, Cu, Zn, Al, Sn, B, Ga, Cr, V, Ti, Mg, Ca , And at least one of Sr.) may be included.
[0020]
Lithium nickel composite oxide, lithium manganese composite oxide and lithium cobalt composite oxide are mixed with carbonates such as lithium, nickel, manganese, cobalt, etc., depending on the composition. It is obtained by firing in the temperature range. The starting material is not limited to carbonates, and can be synthesized in the same manner from hydroxides, oxides, nitrates, organic acid salts, and the like.
[0021]
The average particle size of the positive electrode active material such as lithium nickel composite oxide or lithium manganese composite oxide is preferably 30 μm or less.
[0022]
As the negative electrode active material forming the negative electrode plate 11B, 11B, a ... a specific surface area to use a 0.05 m 2 / g or more, a range of 2m 2 / g. By setting it as this range, formation of SEI (Solid Electrolyte Interface) on the negative electrode surface can be sufficiently suppressed.
[0023]
When the specific surface area of the negative electrode active material is less than 0.05 m 2 / g, the place where lithium can enter and exit is too small, so that the lithium doped in the negative electrode active material during charging is sufficient from the negative electrode active material during discharge. Therefore, the charge and discharge efficiency is reduced. On the other hand, when the specific surface area of the negative electrode active material exceeds 2 m 2 / g, SEI formation on the negative electrode surface cannot be controlled.
[0024]
Any material can be used as the negative electrode active material as long as the material can be doped / undoped with lithium in a range where the potential with respect to lithium is 2.0 V or less. Specifically, a non-graphitizable carbon material, an artificial material can be used. Graphite, natural graphite, pyrolytic graphite, coke such as pitch coke, needle coke and petroleum coke, graphite, glassy carbon, phenolic resin, furan resin, etc. It is possible to use carbonaceous materials such as fired bodies, carbon fibers, activated carbon, and carbon black.
[0025]
Metals capable of forming alloys with lithium and alloys thereof can also be used. Specifically, iron is doped with lithium at a relatively low potential such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, and tin oxide. In addition to oxides to be dedoped, nitrides thereof, group 3B typical elements, elements such as Si and Sn, or, for example, MxSi, MxSn (where M represents one or more metal elements excluding Si or Sn. Si and Sn alloys represented by () can be used. Among these, it is particularly preferable to use Si or Si alloy.
[0026]
Further, as the electrolytic solution, in addition to a liquid one prepared by dissolving an electrolyte salt in a non-aqueous solvent, a polymer gel electrolyte in which a solution obtained by dissolving an electrolyte salt in a non-aqueous solvent is held in a polymer matrix. Also good.
[0027]
When a polymer gel electrolyte is used as the non-aqueous electrolyte, examples of the polymer material to be used include polyvinylidene fluoride and polyacrylonitrile.
[0028]
As the non-aqueous solvent, any non-aqueous solvent used so far in this type of non-aqueous electrolyte secondary battery can be used, for example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, diethyl carbonate. Dimethyl carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile and the like. In addition, these non-aqueous solvents may be used individually by 1 type, and may mix and use 2 or more types.
[0029]
In particular, the non-aqueous solvent preferably contains an unsaturated carbonate, and specifically, preferably contains vinylene carbonate, ethylene ethylidene carbonate, ethylene isopropylidene carbonate, propylidene carbonate, and the like. Among these, it is most preferable to contain vinylene carbonate. By containing unsaturated carbonate as the non-aqueous solvent, it is considered that the effect due to the properties of SEI (function of the protective film) produced in the negative electrode active material is obtained, and the overdischarge resistance is further improved.
[0030]
The unsaturated carbonate is preferably contained in the electrolyte in a proportion of 0.05% by weight or more and 5% by weight or less, and particularly preferably 0.5% by weight or more and 3% by weight or less. By setting the unsaturated carbonate content in the above range, a non-aqueous secondary battery having a high initial discharge capacity and a high energy density is obtained.
[0031]
The electrolyte salt is not particularly limited as long as it is a lithium salt exhibiting ionic conductivity.For example, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, etc. can be used. These electrolyte salts may be used alone or in combination of two or more.
[0032]
Here, in the present embodiment, vibrations occur between the connecting portions P1, P2 of the positive electrode tab 14 and the negative electrode tab 15 to the bus bars 17, 18 to the connecting portions Q1, Q2 to the electrode leads 11D, 11E. A convex portion 20 as an absorbing portion is formed so as to protrude upward in the drawing.
[0033]
The convex portion 20 is located inside the joint portion 16 where the peripheral portions of the laminate films 12 and 13 are heat-welded, and the positive and negative tabs 14 and 15 together with the laminate films 12 and 13 are arranged upward in FIG. It has a shape that protrudes in an arch shape toward.
[0034]
That is, the laminate films 12 and 13 at the positions corresponding to the protrusions 20 are bent along the shape of the protrusions 20 in close contact with the upper and lower surfaces of the positive electrode tab 14 and the negative electrode tab 15 as shown in FIG. is doing.
[0035]
As shown in FIGS. 1 and 3, the joint portion 16 covers both the front and back surfaces of the positive electrode tab 14 and the negative electrode tab 15, and sealability between the positive electrode tab 14 and the negative electrode tab 15 and the joint portion 16 is covered. A resin sheet 19 is provided for ensuring the above.
[0036]
The resin sheet 19 is formed in a band shape with a resin material such as PE (polyethylene) or PP (polypropylene), and the resin sheet 19 is wound around the positive electrode tab 14 and the negative electrode tab 15 in advance before the joining portion 16 is thermally welded. Keep it.
[0037]
Then, after the resin sheet 19 is wound, the bonding portion 16 is heat-welded, so that the adhesion between the laminate films 12 and 13 and the peripheral portions of the positive electrode tab 14 and the negative electrode tab 15 can be secured. In the present embodiment, the resin sheet 19 is disposed on the battery outer side (bus bar 17, 18 side) than the convex portion 20.
[0038]
As shown in FIGS. 3 and 5, the convex portion 20 has a regulation surface 30 that abuts the tips of the electrode leads 11 </ b> D and 11 </ b> E by raising the battery inner side base F upward at a substantially right angle. It is as.
[0039]
In the electrode tab lead-out structure of the laminated battery 10 of this embodiment described above, when the laminated battery 10 is mounted on an electric vehicle or a hybrid car and the vehicle body vibrates, the vibration is transmitted from the bus bars 17 and 18 to the positive electrode tab 14. And transmitted to the negative electrode tab 15.
[0040]
At this time, since the positive electrode tab 14 and the negative electrode tab 15 are formed with convex portions 20 between the connection portions P1 and P2 of the bus bars 17 and 18 and the connection portions Q1 and Q2 of the electrode leads 11D and 11E, The vibration can be effectively absorbed by the convex portion 20.
[0041]
For this reason, it is possible to prevent or effectively suppress vibrations from the positive electrode tab 14 and the negative electrode tab 15 from being input to the electrode leads 11D and 11E formed of a material having a low strength such as a metal foil. Mechanical damage inside the battery such as breakage of the leads 11D and 11E can be prevented. Thereby, the fall of battery performance can be prevented and an original voltage can be maintained.
[0042]
By the way, in this embodiment, the convex part 20 as a vibration absorption part is located inside the junction part 16 which heat-welded the peripheral part of the laminate films 12 and 13, and the positive electrode tab 14 and negative electrode with the laminate films 12 and 13 The tab 15 protrudes upward. In this case, as shown in FIG. 6, the space between the convex portion 20 and the lower laminate film 13 can be used as a gas reservoir S that retains the gas generated in the laminated battery 10.
[0043]
That is, the electrolytic solution sealed together with the laminated electrode 11 in the laminate films 12 and 13 generates gas when it is decomposed, and generates a gas due to a chemical change caused by moisture entering the inside. Since the gas generated in this way has a sealed structure between the laminate films 12 and 13, there is no escape.
[0044]
For this reason, it is necessary to provide an extra space for accommodating the generated gas in the storage space for the laminated electrode 11 and the electrolytic solution, and to seal the laminate films 12 and 13 under reduced pressure conditions. However, in this case, by providing an excess space, wrinkles are easily generated in the laminated films 12 and 13 during sealing, and the sealing performance is impaired by the wrinkles, or the aluminum foil layer γ of the laminated films 12 and 13 (see FIG. 4). May break down.
[0045]
On the other hand, in this embodiment, when gas is generated inside the battery, the lower laminate film 13 that is in close contact with the positive electrode tab 14 and the negative electrode tab 15 is peeled off by this gas pressure, and the gas is supplied to each tab 14 in the convex portion 20. , 15 and the laminate film 13, and the gas reservoir S shown in FIG. 6 is formed.
[0046]
Therefore, in the present embodiment, it is not necessary to provide a surplus space for gas storage in the storage space for the laminated electrode 11 and the electrolyte solution between the laminate films 12 and 13, thereby preventing wrinkles of the laminate films 12 and 13. Thus, it is possible to eliminate problems caused by this defect.
[0047]
Further, as shown in FIG. 3, since the resin sheet 19 that secures the sealing performance of the joint portion 16 in the positive electrode tab 14 and the negative electrode tab 15 is disposed outside the battery from the convex portion 20, the resin sheet 19 is an obstacle. Thus, the gas generated inside can be guided to the gas reservoir S, and the volume of the gas reservoir S can be increased, and the long-term reliability of the stacked battery 10 can be maintained. .
[0048]
Further, since the battery inner side base F of the convex portion 20 formed on the positive electrode tab 14 and the negative electrode tab 15 is a regulation surface 30 that abuts the tips of the electrode leads 11D and 11E, the electrode leads 11D and 11E are used as the positive electrode tab. When the electrodes 14 and the negative electrode tab 15 are fixed to the negative electrode tab 15 by welding, the ends of the electrode leads 11D and 11E are simply abutted against the restriction surface 30 to easily position the electrode leads 11D and 11E with respect to the positive electrode tab 14 and the negative electrode tab 15. be able to. Thereby, the battery shape can be made uniform.
[0049]
FIGS. 7 and 8 show other embodiments of the vibration absorbing portion provided in the positive electrode tab 14 and the negative electrode tab 15, respectively, and the same components as those in the above embodiment are denoted by the same reference numerals and redundant description is omitted.
[0050]
That is, the vibration absorbing portion shown in FIG. 7 is configured by continuously forming a convex portion 20a projecting upward provided on the battery inner side and a convex portion 21 projecting downward provided on the outer side. ing. These upper convex portion 20a and lower convex portion 21 can absorb vibration at a plurality of locations, and can enhance the vibration absorbing function.
[0051]
Of course, even in this case, the gas reservoir S for introducing the gas generated inside the battery is formed in the lower portion of the convex portion 20a, and the gas reservoir S is also formed in the upper portion of the convex portion 21. Therefore, the gas retention volume can be increased.
[0052]
On the other hand, the vibration absorbing portion shown in FIG. 8 is configured by continuously forming convex portions 20b and convex portions 20c that protrude upward. Even in this case, vibration absorption can be performed at a plurality of locations, so that the vibration absorption function can be enhanced, and gas reservoir spaces S can be formed in the lower portions of the two convex portions 20b and 20c, respectively. And the gas retention volume can be increased.
[0053]
Moreover, although the convex part 20,20a, 20b, 20c shown to each said embodiment disclosed the case where it formed in the arch shape, the shape should absorb a vibration and the residence of gas is possible. For example, various shapes such as a mountain shape, a polygonal shape such as a rectangle, or an Ω-shape can be adopted. In the present embodiment, when absorbs vibrations, and has formed the convex portion 20 in order to allow the retention of gas, for the purpose only absorption of vibrations, the bus bar connecting portion as a reference example A separate vibration absorbing member such as a spring made of a conductive member (eg, Cu, Ni, Fe, etc.) may be interposed between P1 and P2 and electrode leads 11D, 11E.
[0054]
By the way, although the electrode tab extraction part structure of the multilayer battery according to the present invention has been described by taking the above embodiments as examples, it goes without saying that the present invention is not limited to these embodiments, and various embodiments can be made without departing from the gist of the present invention. Can be adopted. For example, the stacked battery 10 is not limited to a lithium ion secondary battery, and the present invention can be applied to other batteries having the same configuration.
[Brief description of the drawings]
FIG. 1 is a plan view of a battery according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a principal part taken along line AA in FIG.
FIG. 3 is an enlarged cross-sectional view along the line BB in FIG. 1;
FIG. 4 is an enlarged cross-sectional view of a portion C in FIG.
5 is an enlarged cross-sectional view of a portion D in FIG.
FIG. 6 is an enlarged cross-sectional view of a main part showing the function of a vibration absorbing part provided in the electrode tab in one embodiment of the present invention.
FIG. 7 is a cross-sectional view of a main part showing a modification of a vibration absorbing unit in another embodiment of the present invention.
FIG. 8 is a cross-sectional view of a main part showing another modification of the vibration absorbing unit in another embodiment of the present invention.
[Explanation of symbols]
10 Stacked Battery 11 Stacked Electrode (Power Generation Element)
11A Positive electrode plate 11B Negative electrode plate 11C Separator 11D, 11E Electrode lead 12, 13 Laminate film 14 Positive electrode tab 15 Negative electrode tab 16 Joint part 17, 18 Bus bar (conductor)
19 Resin sheet 20, 20a, 20b, 20c Convex part (vibration absorbing part)
30 Regulating surface F Convex portion inside the battery base S Gas reservoir

Claims (3)

正極板と負極板との間にセパレータを介在させて積層した発電要素の両面を金属層と樹脂層とを備えたラミネートフィルムで挟んで覆い、そのラミネートフィルムの周縁部を熱溶着により接合して前記発電要素を密封するとともに、前記正極板および負極板にそれぞれ電極リードを介して電気的に接続した正極タブおよび負極タブを、前記ラミネートフィルムの接合部分から外方に引き出し、これら正極タブおよび負極タブの先端部から電気を取り出す積層型電池の電極タブ取出し部構造において、前記正極タブおよび前記負極タブの前記先端部から前記電極リードへの接続部に至る間に振動吸収部を設け、前記振動吸収部は、前記ラミネートフィルムの周縁部に位置して、ラミネートフィルムとともに正極タブおよび負極タブを、前記正極板および負極板の積層方向のうち少なくとも一方に向かって突出させた凸部を備えていることを特徴とする積層型電池の電極タブ取出し部構造。Covering both sides of the power generation element laminated with a separator interposed between the positive electrode plate and the negative electrode plate with a laminate film having a metal layer and a resin layer, and bonding the peripheral edge of the laminate film by heat welding The power generation element is sealed, and a positive electrode tab and a negative electrode tab electrically connected to the positive electrode plate and the negative electrode plate via electrode leads, respectively, are drawn out from the bonded portion of the laminate film, and the positive electrode tab and the negative electrode In the electrode tab lead-out structure of the stacked battery that takes out electricity from the tip of the tab, a vibration absorbing portion is provided between the tip of the positive electrode tab and the negative electrode tab and the connection portion to the electrode lead, and the vibration The absorbent portion is located at the peripheral edge of the laminate film, and the positive electrode tab and the negative electrode tab are disposed together with the laminate film, the positive electrode And the negative electrode plate laminate type battery electrode tabs extraction unit structure characterized by comprising a projecting portion which projects toward at least one of lamination directions. 前記ラミネートフィルムの接合部分に位置して、この接合部分と正極タブおよび負極タブとの間のシール性を確保する樹脂シートを、前記凸部よりも電池外側に配置したことを特徴とする請求項記載の積層型電池の電極タブ取出し部構造。The resin sheet that secures sealing properties between the joint portion and the positive electrode tab and the negative electrode tab, which is located at the joint portion of the laminate film, is disposed outside the battery from the convex portion. 2. An electrode tab take-out structure of a laminated battery according to 1 . 前記凸部は、その電池内方側基部を、前記電極リードの先端を突き当てる規制面としたことを特徴とする請求項1または2記載の積層型電池の電極タブ取出し部構造。 3. The electrode tab take-out structure of a stacked battery according to claim 1, wherein the convex portion has a base portion on the inner side of the battery as a regulating surface that abuts the tip of the electrode lead.
JP2002190549A 2002-06-28 2002-06-28 Structure of electrode tab lead-out part of stacked battery Expired - Fee Related JP3891054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190549A JP3891054B2 (en) 2002-06-28 2002-06-28 Structure of electrode tab lead-out part of stacked battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190549A JP3891054B2 (en) 2002-06-28 2002-06-28 Structure of electrode tab lead-out part of stacked battery

Publications (2)

Publication Number Publication Date
JP2004039274A JP2004039274A (en) 2004-02-05
JP3891054B2 true JP3891054B2 (en) 2007-03-07

Family

ID=31700446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190549A Expired - Fee Related JP3891054B2 (en) 2002-06-28 2002-06-28 Structure of electrode tab lead-out part of stacked battery

Country Status (1)

Country Link
JP (1) JP3891054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170101650A (en) * 2016-02-29 2017-09-06 주식회사 엘지화학 Pouch case and pouch type secondary natter using the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760394B2 (en) * 2006-01-19 2011-08-31 日本電気株式会社 Film outer battery
JP2008016202A (en) * 2006-07-03 2008-01-24 Hitachi Maxell Ltd Battery module of laminate-armored flat battery
KR100937899B1 (en) 2006-10-30 2010-01-21 주식회사 엘지화학 Battery Module of Improved Safety against External Impact
CN201466126U (en) * 2009-04-30 2010-05-12 比亚迪股份有限公司 Single cell and power cell pack comprising same
WO2011040297A1 (en) * 2009-10-02 2011-04-07 株式会社 村田製作所 Electric storage device assembly structure and electric storage device unit structure
KR101302358B1 (en) 2011-01-31 2013-09-06 주식회사 엘지화학 Battery Cell of Improved Connection Reliability and Battery Module Employed with the Same
WO2013018551A1 (en) * 2011-08-04 2013-02-07 株式会社村田製作所 Battery
KR101522450B1 (en) * 2012-08-27 2015-05-21 주식회사 엘지화학 Electrode Lead of Improved Welding Strength and Secondary Battery Comprising the Same
DE102013015520A1 (en) 2013-09-19 2015-03-19 Daimler Ag Energy supply device for a motor vehicle and motor vehicle
WO2016004079A1 (en) 2014-06-30 2016-01-07 Black & Decker Inc. Battery pack for a cordless power tools
KR102280687B1 (en) 2014-09-25 2021-07-22 삼성전자주식회사 Flexible electrochemical device including electrode assembly
KR101809208B1 (en) 2015-06-16 2017-12-14 주식회사 엘지화학 Secondary battery and method for fabricating the same
KR102496477B1 (en) * 2015-11-04 2023-02-06 삼성전자주식회사 Flexible electrochemical device pack
JP7225653B2 (en) * 2018-10-04 2023-02-21 大日本印刷株式会社 electrode tab
CN113708020B (en) * 2021-08-24 2023-05-05 湖北亿纬动力有限公司 Vibration reduction method for tab welding and clamping tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170101650A (en) * 2016-02-29 2017-09-06 주식회사 엘지화학 Pouch case and pouch type secondary natter using the same
KR102137706B1 (en) * 2016-02-29 2020-07-24 주식회사 엘지화학 Pouch case and pouch type secondary natter using the same

Also Published As

Publication number Publication date
JP2004039274A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP4211322B2 (en) Multilayer battery, battery pack, battery module and electric vehicle
JP4483162B2 (en) Multilayer battery, battery pack, battery module and electric vehicle
JP3649213B2 (en) Module battery
JP3624903B2 (en) Module battery
JP4158440B2 (en) Secondary battery and assembled battery using the same
JP3891054B2 (en) Structure of electrode tab lead-out part of stacked battery
JP3767531B2 (en) Battery assembly
JP4114415B2 (en) Electrode laminated battery cooling device
JP2007018917A (en) Stacked battery, and battery pack
JP3767526B2 (en) Battery assembly
JP3852376B2 (en) Battery outer case
JP2004087337A (en) Battery laminated aggregate and battery used for it
JP2004031272A (en) Electrode stack type battery
JP4466088B2 (en) Assembled battery
JP6531491B2 (en) Secondary battery
JP2004055153A (en) Layer-built battery
JP3818232B2 (en) Multilayer battery case
JP2004039651A (en) Battery
JP4075534B2 (en) Laminated secondary battery, assembled battery module, assembled battery and electric vehicle equipped with this battery
JP2004055154A (en) Sealing structure and method for layer-built battery
JP7011045B2 (en) Rechargeable batteries, battery modules, vehicles and projectiles
JP2005197015A (en) Battery pack
JP2004039485A (en) Module battery
JP6727853B2 (en) Secondary battery, battery module and vehicle
JP5458464B2 (en) Flat battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees