JP3890714B2 - Non-contact power feeding device - Google Patents

Non-contact power feeding device Download PDF

Info

Publication number
JP3890714B2
JP3890714B2 JP32925997A JP32925997A JP3890714B2 JP 3890714 B2 JP3890714 B2 JP 3890714B2 JP 32925997 A JP32925997 A JP 32925997A JP 32925997 A JP32925997 A JP 32925997A JP 3890714 B2 JP3890714 B2 JP 3890714B2
Authority
JP
Japan
Prior art keywords
pickup coil
circuit
power feeding
feeding device
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32925997A
Other languages
Japanese (ja)
Other versions
JPH11164498A (en
Inventor
光義 黒田
敦 奥野
Original Assignee
神鋼電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼電機株式会社 filed Critical 神鋼電機株式会社
Priority to JP32925997A priority Critical patent/JP3890714B2/en
Publication of JPH11164498A publication Critical patent/JPH11164498A/en
Application granted granted Critical
Publication of JP3890714B2 publication Critical patent/JP3890714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

【0001】
【発明の属する技術分野】
本発明は、電動式の移動体に非接触で電力を供給する非接触給電装置に関する。
【0002】
【従来の技術】
図5は従来の非接触給電装置の構成を示すブロック図である。この装置は、一次給電線1に高周波電流を流すと、発生する磁界により、一次給電線1に磁気的に結合されたピックアップコイル2に電圧が誘起され、一次給電線1からピックアップコイル2に非接触で電力を伝送する構成となっている。ピックアップコイル2とコンデンサ3は共振回路を構成しており、無効電力を少なくし、電力伝送効率を増大させている。ピックアップコイル2の出力は、整流回路4で整流され、定電圧回路5で安定化され、インバータ6へ供給される。インバータ6は定電圧回路5の出力を交流に変換し、リニアモータ7へ出力する。
【0003】
【発明が解決しようとする課題】
ところで、非接触給電装置において何らかの原因で負荷が解放状態になると、ピックアップコイル2に過電流を生じ、共振用コンデンサ3に過大電圧が印可される。あるいはこの他に、リニアモータ7に短絡などの異常が起こると、インバータ6の出力電圧の低下をきたし、インバータ6では一定電力を供給するために電圧が低下すれば電流が増大し、その結果として整流部4、定電圧回路5、インバータ6に過大電流が流れ、この状態で回路を解放するとピックアップコイル2にも過大電流が生じる。
このように、過負荷状態に過電流が流れたり、素子の故障などの異常が発生すると、各電源回路部品が発熱する。そして、発熱を放置すると、これらの部品が過熱状態となって壊れたり、燃えたりする危険性がある。また、他の装置や機器の故障によっても、非接触給電装置からの電力供給を止める必要が生じてくる。
【0004】
この問題に対して、ピックアップコイル2の二次側回路は共振回路なので、この二次側回路を短絡すれば、共振状態から脱し、あたかもCT(変流器)のような状態となる。よって、ピックアップコイル2に流れる過電流による過熱を防ぐことができる。また、定電圧回路5の入力電圧がほとんど0Vとなるため、定電圧回路5の制御素子の発熱を防ぐことができる。すなわち、非接触給電装置に何らかの異常が生じたときには、ピックアップコイル2や制御素子の発熱を感知し、二次側を短絡すればよい。あるいは、ピックアップコイル2からの入力を共振コンデンサ3よりも前で遮断してやればよい。
【0005】
しかしながら、非接触給電装置を電源としており、全ての回路部分がピックアップコイル2からの電力で動作している。よって、ピックアップコイル2を短絡すると、定電圧回路5の電圧が殆ど0Vとなるため、制御系の電源も0Vとなり制御回路は機能しなくなる。よって、ピックアップコイル2をリレー、スイッチング素子(FET、トランジスタ)などの電気的手段で短絡すれば、制御回路の電源がなくなるため、リレー、スイッチング素子は再び短絡状態から解放状態となり電源が投入され、一向に過熱状態から抜けられなくなる。また、他の故障した装置や機器に再び電力を供給してしまうため、二次故障などが生じる可能性もある。
さらに、サイリスタなど自己保持ができる素子を用いた場合、復帰のための電気信号を送ることができないため、二度と復帰できなくなる。復帰させるためには非接触給電装置を搭載したモータユニットを取り出し、外部より電気信号を与えてやる必要がある。そのため、復帰までの間、他の正常な搬送車までも、搬送路が一本であれば進むことができずに搬送が全て止まってしまうという問題があった。
【0006】
本発明はこのような点を考慮してなされたもので、ピックアップコイルや素子の熱を感知し、電気信号以外の手段でピックアップコイルの二次側を短絡、もしくは二次側入力部を遮断し、温度が下がれば自動的に元の状態に復帰するようにしたもので、制御用電源喪失に伴う不具合事項を解消し、ピックアップコイルや素子の過熱を防ぐことができる非接触給電装置の提供を目的とする。
【0007】
【課題を解決するための手段】
発明は、高周波電流を供給される一次側電線と、前記一次側電線と共振状態で電磁結合により電力を取り出す二次側ピックアップコイルと、共振用コンデンサとを備え、前記二次側ピックアップコイル出力を整流し、安定化電源回路を介し、直流電源として出力する非接触給電装置において、前記共振用コンデンサと並列に、前記ピックアップコイルの両端間に、前記ピックアップコイルまたは電源回路部品の温度が一定値以上になった時オンとなって前記ピックアップコイルが共振状態から脱するように該ピックアップコイルの両端間を短絡してオン期間中は電流が流れつづけるサーモスタットを挿入したことを特徴とする非接触給電装置である
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の一実施形態について説明する。図1は本発明の一実施形態による非接触給電装置の構成を示すブロック図、図2は同非接触給電装置が装備されたリニアモータ式搬送装置の構成を示す概略断面図である。
まず、図2において、21は天井フレームであり、この天井フレーム21に、垂直下方に伸びる支持フレーム22,22が取り付けられ、これらの支持フレーム22,22の下端部に長板状の軌道板23が取り付けられている。そして、この軌道板23の上面にガイドフレーム24が取り付けられている。このガイドフレーム24は、内部に配置されたリニアモータ式搬送装置を移動自在に支持するもので、中央部に長板状の永久磁石26が取り付けられた底板部24aと、この底板部24aの両端に連接された垂直脚部24b,24bと、この垂直脚部24b,24bに連接された略コ字状のガイド部24c,24cとから構成されている。
【0009】
また、ガイドフレーム24の内部に設けられたリニアモータ式搬送装置において、27は水平フレームであり、この水平フレーム27の下面の左右方向中央部にリニアモータコイル28が永久磁石26に対向して取り付けられ、このリニアモータコイル28を挟んで、水平フレーム27の下面に自在車輪29,29が取り付けられている。また、水平フレーム27の上面中央部には、内部に非接触給電の電源その他が収納されたブロック30が取り付けられ、このブロック30の側面に分岐メカ31,31が取り付けられ、この分岐メカ31,31の先端部にガイドローラ32,32が取り付けられている。また、水平フレーム27の上面の両サイドにもガイドローラ33,33が取り付けられている。
【0010】
上述した分岐メカ31,31の上面にはE字型の磁性体コア34,34が取り付けられている。図3はこの磁性体コア34の拡大図であり、この磁性体コア34の上下に一次給電線1,1が配置されている。この一次給電線1,1は、支持部材35,35の一端部に取り付けられ、支持部材35,35の他端部がガイドフレーム24のガイド部24cに取り付けられている。また、前記ブロック30の上部には、取付部材38が取り付けられ、この取付部材38に、被搬送部材が収納される収納ボックス39が取り付けられている。
【0011】
次に、図1において、1は一次給電線(図2、図3参照)、2はピックアップコイル(図3)、3は共振用コンデンサ、4は整流回路、5は定電圧回路、6はインバータ、7は図2に示すコイル28と永久磁石26から構成されるリニアモータであり、これらの構成は図5に示すものと同一である。
この図において図5と異なる点はサーモスタット11であり、このサーモスタット11はピックアップコイル2の極く近傍に配置され、そのNO(ノーマルオープン)接点が共振用コンデンサ3に並列に接続されている。
【0012】
次に、上述した非接触給電装置の動作を説明する。まず、装置各部が正常に動作している場合は、図5に示す装置と全く同じ動作となる。次に、整流回路4、定電圧回路5、インバータ6、リニアモータ7のいずれかで異常が発生し、これにより、ピックアップコイル2に過電流が流れると、同コイル2の温度が上昇する。ピックアップコイル2の温度が上昇し、一定温度に達すると、サーモスタット11のNO接点がオンとなり、これにより、ピックアップコイル2の両端間が短絡され、整流回路4以降の回路への電源供給が停止される。ここで、係員によって異常箇所の修理が行われる。次に、時間が経過してピックアップコイル2の温度が低下すると、サーモスタット11のNO接点がオフとなり、電源の自動復帰が行われる。
【0013】
このように、上記の実施形態によれば、サーモスタット11を用いているので、異常時に電源なしでピックアップコイル2の両端を短絡することができ、しかも、温度低下によって自動復帰することができる。
なお、上記実施形態によれば、サーモスタット11の接点をピックアップコイル2の両端間に挿入しているが、これに代えて、整流回路4の出力端間に挿入してもよい(図1の破線参照)。
【0014】
図4は本発明の他の実施形態による非接触給電装置の構成を示す図である。この実施形態によれば、サーモスタット11のNC(ノーマルクロース)接点をピックアップコイル2に直列に挿入している。これにより、ピックアップコイル2の温度が上昇し、一定温度に達すると、サーモスタット11のNC接点がオフとなり、これにより、ピックアップコイル2の回路が遮断され、整流回路4以降の回路への電源供給が停止される。そして、温度が低下すると、自動復帰する。
なお、上述した図1,図4の実施形態においては、サーモスタット11をピックアップコイル2の極く近傍に配置し、ピックアップコイル2の温度上昇に基づいて回路動作の異常を検出しているが、これに代えて、整流回路4の整流素子(ダイオード等)、定電圧回路5内の制御素子(トランジスタ等)等の異常時に発熱する素子の温度に基づいて異常検出を行ってもよい。
【0015】
【発明の効果】
以上説明したように、本発明によれば、温度検出、回路短絡にサーモスタットを用いているので、電気信号なしで回路を短絡し、さらに温度が下がれば自動復帰することが可能であるという効果が得られる。
【図面の簡単な説明】
【図1】 本発明の一実施形態による非接触給電装置の構成を示すブロック図である。
【図2】 図1の非接触給電装置が装備されたリニアモータ式搬送装置の構成を示す概略断面図である。
【図3】 図2の磁性体コア34の拡大図である。
【図4】 本発明の他の実施形態による非接触給電装置の構成を示す図である。
【図5】 従来のリニアモータ式搬送車に搭載された非接触給電装置の構成を示すブロック図である。
【符号の説明】
1.一次給電線
2.ピックアップコイル
3.共振用コンデンサ
4.整流回路
5.定電圧回路
6.インバータ
7.リニアモータ
11.サーモスタット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-contact power supply apparatus that supplies electric power to an electric moving body in a non-contact manner.
[0002]
[Prior art]
FIG. 5 is a block diagram showing a configuration of a conventional non-contact power feeding apparatus. In this apparatus, when a high-frequency current is passed through the primary power supply line 1, a voltage is induced in the pickup coil 2 magnetically coupled to the primary power supply line 1 due to the generated magnetic field, and the non-current from the primary power supply line 1 to the pickup coil 2. It is configured to transmit power by contact. The pickup coil 2 and the capacitor 3 constitute a resonance circuit, reducing reactive power and increasing power transmission efficiency. The output of the pickup coil 2 is rectified by the rectifier circuit 4, stabilized by the constant voltage circuit 5, and supplied to the inverter 6. The inverter 6 converts the output of the constant voltage circuit 5 into alternating current and outputs it to the linear motor 7.
[0003]
[Problems to be solved by the invention]
By the way, when the load is released for some reason in the non-contact power feeding device, an overcurrent is generated in the pickup coil 2 and an excessive voltage is applied to the resonance capacitor 3. Alternatively, if an abnormality such as a short circuit occurs in the linear motor 7, the output voltage of the inverter 6 is lowered. In the inverter 6, if the voltage is lowered to supply a constant power, the current increases, and as a result An excessive current flows through the rectifying unit 4, the constant voltage circuit 5, and the inverter 6. When the circuit is released in this state, an excessive current is also generated in the pickup coil 2.
As described above, when an overcurrent flows in an overload state or an abnormality such as an element failure occurs, each power supply circuit component generates heat. If the heat is left unattended, there is a risk that these parts will be overheated and broken or burnt. In addition, it is necessary to stop the power supply from the non-contact power supply device even when other devices or devices fail.
[0004]
To solve this problem, the secondary side circuit of the pickup coil 2 is a resonance circuit. Therefore, if this secondary side circuit is short-circuited, it is released from the resonance state, as if it is a CT (current transformer). Therefore, overheating due to overcurrent flowing through the pickup coil 2 can be prevented. Moreover, since the input voltage of the constant voltage circuit 5 is almost 0 V, heat generation of the control element of the constant voltage circuit 5 can be prevented. That is, when any abnormality occurs in the non-contact power feeding device, the heat generation of the pickup coil 2 or the control element is detected and the secondary side may be short-circuited. Alternatively, the input from the pickup coil 2 may be blocked before the resonance capacitor 3.
[0005]
However, the non-contact power feeding device is used as a power source, and all circuit portions are operated with the power from the pickup coil 2. Therefore, when the pickup coil 2 is short-circuited, the voltage of the constant voltage circuit 5 becomes almost 0V, so that the power supply of the control system becomes 0V and the control circuit does not function. Therefore, if the pickup coil 2 is short-circuited by an electrical means such as a relay or a switching element (FET, transistor), the power source of the control circuit disappears. Therefore, the relay and the switching element are released from the short-circuit state again, and the power is turned on. It becomes impossible to escape from the overheated condition. Further, since power is supplied again to other failed devices and devices, there is a possibility that a secondary failure may occur.
Further, when a self-holding element such as a thyristor is used, an electric signal for returning cannot be sent, so that it cannot be returned again. In order to recover, it is necessary to take out the motor unit equipped with the non-contact power feeding device and give an electric signal from the outside. For this reason, there is a problem in that until the carriage returns to the other normal carriages, if there is only one carriage path, the carriage cannot proceed and all conveyance stops.
[0006]
The present invention has been made in consideration of such points, and senses the heat of the pickup coil and elements, shorts the secondary side of the pickup coil by means other than electrical signals, or shuts off the secondary side input unit. This is a device that automatically returns to its original state when the temperature drops, and provides a contactless power supply device that eliminates problems associated with loss of control power and prevents overheating of the pickup coil and elements. Objective.
[0007]
[Means for Solving the Problems]
The present invention includes a primary side electric wire to which a high frequency current is supplied, a secondary side pickup coil that extracts power by electromagnetic coupling in a resonance state with the primary side electric wire, and a resonance capacitor, and outputs the secondary side pickup coil In a non-contact power feeding device that outputs a direct current power supply via a stabilized power supply circuit, the temperature of the pickup coil or power supply circuit component is constant between both ends of the pickup coil in parallel with the resonance capacitor. A non-contact power feeding characterized in that a thermostat is inserted in which the both ends of the pickup coil are short-circuited so that the pickup coil is brought out of the resonance state when it becomes above and the current continues to flow during the ON period. Device .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a non-contact power feeding device according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view showing a configuration of a linear motor type transport device equipped with the non-contact power feeding device.
First, in FIG. 2, reference numeral 21 denotes a ceiling frame, and support frames 22, 22 extending vertically downward are attached to the ceiling frame 21, and a long plate-shaped track plate 23 is attached to the lower ends of these support frames 22, 22. Is attached. A guide frame 24 is attached to the upper surface of the track plate 23. The guide frame 24 supports a linear motor type conveying device disposed therein in a movable manner. The guide frame 24 has a bottom plate portion 24a having a long plate-like permanent magnet 26 attached to a central portion thereof, and both ends of the bottom plate portion 24a. Vertical leg portions 24b, 24b connected to each other, and substantially U-shaped guide portions 24c, 24c connected to the vertical leg portions 24b, 24b.
[0009]
Further, in the linear motor type conveying device provided in the guide frame 24, reference numeral 27 denotes a horizontal frame, and a linear motor coil 28 is attached to the center of the horizontal surface of the lower surface of the horizontal frame 27 so as to face the permanent magnet 26. The free wheels 29 and 29 are attached to the lower surface of the horizontal frame 27 with the linear motor coil 28 interposed therebetween. Further, a block 30 in which a non-contact power supply and the like are housed is attached to the center of the upper surface of the horizontal frame 27, and branch mechanisms 31, 31 are attached to the side surfaces of the block 30. Guide rollers 32 and 32 are attached to the tip of 31. Guide rollers 33 are also attached to both sides of the upper surface of the horizontal frame 27.
[0010]
E-shaped magnetic cores 34 and 34 are attached to the upper surfaces of the branch mechanisms 31 and 31 described above. FIG. 3 is an enlarged view of the magnetic core 34, and the primary power supply lines 1 and 1 are arranged above and below the magnetic core 34. The primary power supply lines 1 and 1 are attached to one end portions of the support members 35 and 35, and the other end portions of the support members 35 and 35 are attached to the guide portion 24 c of the guide frame 24. An attachment member 38 is attached to the upper portion of the block 30, and a storage box 39 in which a member to be conveyed is stored is attached to the attachment member 38.
[0011]
Next, in FIG. 1, 1 is a primary power supply line (see FIGS. 2 and 3), 2 is a pickup coil (FIG. 3), 3 is a resonance capacitor, 4 is a rectifier circuit, 5 is a constant voltage circuit, and 6 is an inverter. , 7 is a linear motor composed of the coil 28 and the permanent magnet 26 shown in FIG. 2, and these structures are the same as those shown in FIG.
In this figure, the difference from FIG. 5 is a thermostat 11, which is arranged in the immediate vicinity of the pickup coil 2, and its NO (normally open) contact is connected in parallel to the resonance capacitor 3.
[0012]
Next, the operation of the above-described contactless power supply device will be described. First, when each part of the apparatus is operating normally, the operation is exactly the same as that of the apparatus shown in FIG. Next, when an abnormality occurs in any of the rectifier circuit 4, the constant voltage circuit 5, the inverter 6, and the linear motor 7, and an overcurrent flows through the pickup coil 2, the temperature of the coil 2 rises. When the temperature of the pickup coil 2 rises and reaches a certain temperature, the NO contact of the thermostat 11 is turned on, whereby both ends of the pickup coil 2 are short-circuited, and power supply to the circuits after the rectifier circuit 4 is stopped. The Here, repair of the abnormal part is performed by the staff. Next, when time elapses and the temperature of the pickup coil 2 decreases, the NO contact of the thermostat 11 is turned off, and the power supply is automatically restored.
[0013]
As described above, according to the above embodiment, since the thermostat 11 is used, both ends of the pickup coil 2 can be short-circuited without a power source in the event of an abnormality, and can be automatically restored due to a temperature drop.
In addition, according to the said embodiment, although the contact of the thermostat 11 is inserted between the both ends of the pick-up coil 2, it may replace with this and may be inserted between the output terminals of the rectifier circuit 4 (dashed line of FIG. 1). reference).
[0014]
FIG. 4 is a diagram illustrating a configuration of a contactless power feeding device according to another embodiment of the present invention. According to this embodiment, the NC (normal close) contact of the thermostat 11 is inserted in series with the pickup coil 2. As a result, when the temperature of the pickup coil 2 rises and reaches a certain temperature, the NC contact of the thermostat 11 is turned off, whereby the circuit of the pickup coil 2 is cut off, and power is supplied to the circuits after the rectifier circuit 4. Stopped. And when temperature falls, it will reset automatically.
1 and 4 described above, the thermostat 11 is arranged very close to the pickup coil 2 to detect an abnormal circuit operation based on the temperature rise of the pickup coil 2. Instead of this, abnormality detection may be performed based on the temperature of elements that generate heat when abnormality occurs, such as a rectifying element (diode or the like) in the rectifier circuit 4 and a control element (transistor or the like) in the constant voltage circuit 5.
[0015]
【The invention's effect】
As described above, according to the present invention, since the thermostat is used for temperature detection and circuit short-circuiting, the circuit can be short-circuited without an electric signal, and if the temperature is further lowered, automatic recovery can be achieved. can get.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a non-contact power feeding device according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing a configuration of a linear motor type conveyance device equipped with the non-contact power feeding device of FIG.
FIG. 3 is an enlarged view of the magnetic core 34 of FIG.
FIG. 4 is a diagram illustrating a configuration of a contactless power feeding device according to another embodiment of the present invention.
FIG. 5 is a block diagram showing a configuration of a non-contact power feeding device mounted on a conventional linear motor type transport vehicle.
[Explanation of symbols]
1. Primary feeder line2. 2. Pickup coil 3. Resonance capacitor 4. Rectifier circuit 5. Constant voltage circuit Inverter 7. Linear motor 11. thermostat

Claims (1)

高周波電流を供給される一次側電線と、前記一次側電線と共振状態で電磁結合により電力を取り出す二次側ピックアップコイルと、共振用コンデンサとを備え、前記二次側ピックアップコイル出力を整流し、安定化電源回路を介し、直流電源として出力する非接触給電装置において、
前記共振用コンデンサと並列に、前記ピックアップコイルの両端間に、前記ピックアップコイルまたは電源回路部品の温度が一定値以上になった時オンとなって前記ピックアップコイルが共振状態から脱するように該ピックアップコイルの両端間を短絡してオン期間中は電流が流れつづけるサーモスタットを挿入したことを特徴とする非接触給電装置。
A primary side electric wire to which a high frequency current is supplied; a secondary side pickup coil that extracts power by electromagnetic coupling in a resonance state with the primary side electric wire; and a resonance capacitor, and rectifies the secondary side pickup coil output; In a non-contact power feeding device that outputs as a DC power source via a stabilized power circuit,
In parallel with the resonance capacitor, the pickup is turned on when the temperature of the pickup coil or power supply circuit component exceeds a certain value between both ends of the pickup coil so that the pickup coil is released from the resonance state. A non-contact power feeding apparatus comprising a thermostat in which a current is kept flowing during an ON period by short-circuiting both ends of a coil.
JP32925997A 1997-11-28 1997-11-28 Non-contact power feeding device Expired - Fee Related JP3890714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32925997A JP3890714B2 (en) 1997-11-28 1997-11-28 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32925997A JP3890714B2 (en) 1997-11-28 1997-11-28 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JPH11164498A JPH11164498A (en) 1999-06-18
JP3890714B2 true JP3890714B2 (en) 2007-03-07

Family

ID=18219452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32925997A Expired - Fee Related JP3890714B2 (en) 1997-11-28 1997-11-28 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP3890714B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3505618B2 (en) 2000-09-04 2004-03-08 株式会社椿本チエイン Power supply device, transport vehicle and transport system
JP4508266B2 (en) 2008-05-12 2010-07-21 セイコーエプソン株式会社 Coil unit and electronic device using the same

Also Published As

Publication number Publication date
JPH11164498A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
JP3505618B2 (en) Power supply device, transport vehicle and transport system
JPH11164497A (en) Non-contact feeder system
JP5473998B2 (en) Non-contact power supply equipment
US4763013A (en) Backup protection switch to prevent reverse power flow in a UPS
JP5124206B2 (en) Elevator brake equipment
CN100590445C (en) Devices and methods for detecting operational failures of relays
US5243291A (en) Electromagnetic contactor deposition detecting apparatus which detects load current and switch current
JP2012044762A (en) Non-contact power feeder with overvoltage protection
KR20080034783A (en) Non-contact feeding equipment
CN105190452A (en) Reliable voltage connection of a drive inverter
US5519598A (en) Load driving circuit
KR102005945B1 (en) Uninterruptible wireless power transfer system having multi fail-over function
JP3890714B2 (en) Non-contact power feeding device
JP3730253B2 (en) Load drive circuit
KR100463333B1 (en) Protective Device of Non-Contact Feeder System
KR101017407B1 (en) Wireless power transfer system having failover function
CN103376689B (en) Power control and image forming apparatus
JPH0543800U (en) Inverter device
JP2006180691A (en) Power feeding apparatus and carrier system
JP2002002417A (en) Electric circuit for transmitting status information on certain member of railway rolling stock in particular and electric system incorporated with such circuit
US3088053A (en) Relay control circuit
JP4161507B2 (en) Contactless power supply
US20220073284A1 (en) Article Transport Facility
JP2002223521A (en) Unmanned truck system
JP3062707B2 (en) Load drive circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees