JP3890622B2 - Method for manufacturing corrosion-resistant rolling member - Google Patents

Method for manufacturing corrosion-resistant rolling member Download PDF

Info

Publication number
JP3890622B2
JP3890622B2 JP09439596A JP9439596A JP3890622B2 JP 3890622 B2 JP3890622 B2 JP 3890622B2 JP 09439596 A JP09439596 A JP 09439596A JP 9439596 A JP9439596 A JP 9439596A JP 3890622 B2 JP3890622 B2 JP 3890622B2
Authority
JP
Japan
Prior art keywords
layer
corrosion
rolling
rolling member
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09439596A
Other languages
Japanese (ja)
Other versions
JPH09280252A (en
Inventor
大 金野
総一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP09439596A priority Critical patent/JP3890622B2/en
Publication of JPH09280252A publication Critical patent/JPH09280252A/en
Application granted granted Critical
Publication of JP3890622B2 publication Critical patent/JP3890622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車や半導体製造装置及びその周辺機器等に使用される各種の転がり軸受,直動案内軸受装置或いは直動駆動装置を構成する転動部材の製造方法に係り、特にそれらの転動部材の耐食性の改善に関する。
【0002】
【従来の技術】
従来の耐食性転がり軸受としては、例えば図5に示すような転がり軸受がある。このものは、内輪1,外輪2からなる軌道輪と転動体3及び保持器4等を主な転動部材として構成されており、それらの転動部材の材料にステンレス鋼またはセラミックスが用いられている。ステンレス鋼はSUS440C,SUS316L,SUS630,SUS304などが代表的なもので、軸受としての硬度を必要とする軌道輪(内輪1,外輪2)、転動体3には主としてSU440などの熱処理によって硬さを高めたものが使用されている。また、セラミックス材料としては、Si3 4 などが主として使われ、内輪1,外輪2及び転動体3がそれぞれセラミックスで構成されるとか、転動体3のみセラミックスで、内輪1,外輪2はいずれもステンレス鋼材で構成されたもの等がある。
【0003】
従来の耐食性直動案内軸受としては、例えば図6に示すようなリニアガイド装置がある。これは両側面に軸方向の転動体転動溝6を有して延長された案内レール7と、その案内レール7上に移動可能に組み付けると共に案内レールの転動体転動溝6に対向する図外の転動体転動溝を内側面に有するスライダ8と、相対する前記両転動体転動溝内に転動自在に挿入された多数の図示されない転動体を主な転動部材として構成されている。スライダ8の内部には転動体の循環経路が設けられており、スライダ8はその転動体の転動を介して案内レール7に案内されつつ移動する。この耐食性直動案内軸受の場合、転動部材のうちでも酸やアルカリ等の蒸気を含むような腐食環境に直接にさらされる案内レール7には特に耐食性が要求され、一般にステンレス鋼を使用したりクロムメッキなどを適用して対応している。
【0004】
従来の耐食性直動駆動装置としては、例えば図7に示すようなボールねじ装置がある。これは、外周面に螺旋状のボールねじ溝11を有するねじ軸12と、そのねじ軸のボールねじ溝11に対応するボールねじ溝13を内周面に有して前記ねじ軸12に螺合されるボールねじナット14と、相対する両ボールねじ溝11,13内を転動する多数のボール15を主な転動部材として構成されている。ボールねじナット14にはボール15の循環経路として循環駒16が設けられており、循環移動するボール15の転動を介して、ねじ軸12(又はボールねじナット14)の回転をボールねじナット14(又はねじ軸12)の直動運動に変換している。この耐食性直動駆動装置の場合も、ねじ軸12が酸やアルカリ等の蒸気を含むような腐食環境に直接にさらされるため、やはりステンレス鋼を使用したりクロムメッキなどを適用して対応している。
【0005】
【発明が解決しようとする課題】
しかしながら、近年、耐食転動部材が使用される環境は過酷になりつつある。例えば自動車に使用される転がり軸受の場合、寒冷地における不凍結剤の使用に伴い、各種の塩に起因する軸受腐食の問題が発生している。これに対応するべくステンレス鋼材やセラミックスを材料として使用すると、コスト上昇が負担しきれない。一方、クロム等の金属メッキでは、使用条件によっては剥離する可能性がある。
【0006】
また、半導体製造装置及びその周辺機器に使用される転がり軸受,直動案内軸受,直動駆動装置の場合は、アルカリ性溶液或いはフッ化水素酸に代表される強酸が半導体ウエハーの洗浄で使用される。そのため、アルカリ,酸溶液の飛散或いはそれらの蒸気中に暴露されることによる半導体製造工程への不純物の混入が重要な問題になっている。特に、半導体素子の集積度が高まるにつれて、装置内に使われている搬送系や駆動系の表面の腐食の問題が素子の歩留りを左右する因子になっている。しかるに、クロムメッキやセラミックスの場合、使用条件によって溶け出す場合があり、その時は腐食を防止することが難しい。
【0007】
そこで本発明は、このような従来の耐食転動部材における未解決の問題点に着目してなされたものであり、クロムメッキやセラミックスに代わる、安価でかつフッ化水素酸に対しても耐食性のある耐食転動部材の製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記の目的を達成する本発明の請求項1に係る耐食転動部材の製造方法は、熱処理後の素材の表面に2層からなる防錆処理被膜を形成して転がり軸受,直動案内軸受,直動駆動装置等の金属製転動部材を製造する方法であって、第1層である3価のクロム酸化物層を電解防錆処理により形成する工程と、前記第1層を被覆する第2層である膜厚2μm以上の樹脂層を、2フッ化物とポリエチレンとの共重合体を有機溶媒に分散させたものを塗布し150〜200℃に加熱することにより形成する工程と、を備えることを特徴とするものである。
同じく本発明の請求項2に係る耐食転動部材の製造方法は、前記金属製転動部材がリニアガイド装置の案内レールであることを特徴とするものである。
【0009】
本発明の耐食転動部材に形成する電解防錆処理被膜は、6価のクロムイオンを含む溶液中に被処理体である耐食転動部材を浸漬し、その耐食転動部材を陰極として白金またはカーボンを対極として酸化還元反応を利用した電解により3価のクロム酸化物層を被処理体表面に形成させたものである。クロムイオンの還元反応の過程で温度の制御が不可欠であり、クロム化合物中のクロム酸化数は成膜時の電解温度に依存する。電解温度が高くなると3価にならない。
【0010】
すなわち3価のクロム酸化物層を形成する当該電解温度は、好適には40℃以下が望ましく、更に好適には25℃以下が望ましい。80℃を超えると電解中にクロムイオンが還元されて酸化数0の金属クロムが析出してしまい耐食性が劣る。
【0011】
また、クロム酸化物層の膜厚は電解温度と電解時間とに依存する。当該膜厚は1μm以上が望ましく、好適には1〜7μmが望ましい。1μm未満では、クロム酸化物を形成していながらも酸に対して耐食性が劣り、逆に7μmを超えて膜厚を厚くすると、電解温度が高温となるため金属クロムが析出し易くなり、その結果耐食性が劣る。
【0012】
本発明の耐食転動部材に形成する防錆処理被膜は、電解防錆処理被膜である、前記3価のクロム酸化物層を第1層とし、その第1層を被覆する第2層として耐食性に優れた被膜層を施すこともできる。例えば、当該第2層の被膜層として好適にはポリエチレン樹脂層やアクリル樹脂層、更に好適にはフッ素樹脂層などがあり、それらは第1層のクロム酸化物のピンホールを埋めて素地の露出を防止する機能を果たす。第2層の被膜層の膜厚としては2μm以上あることが望ましい。2μm未満では、素地の露出防止機能が不十分である。
【0013】
上述のように、本発明によれば、転がり軸受,直動案内軸受,直動駆動装置等の金属製転動部材の表面に、電解温度を制御してとくに腐食性に優れたクロム酸化物層からなる防錆処理被膜を形成させることにより、強酸やアルカリ溶液またはガス雰囲気中で耐食性を有する転動部材が低コストで提供できる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。なお、従来と同一又は相当する部分には同一の符号を用いてある。
【0015】
A:第1の実施形態
図1に示すスラスト転がり軸受の軌道輪(内輪1及び外輪2のいずれか)を被試験体の転動部材として、その表面にクロム酸化物からなる電解防錆処理被膜を、次の条件で形成した。
【0016】
軸受材質;SUJ2,熱処理後の硬さHRC60
▲1▼先ず、NaOHの4%水溶液を用いて、60℃で2分間、供試体をアルカリ洗浄した。
【0017】
▲2▼その後水洗いした供試体を陽極として電解洗浄した。電解洗浄は、無水クロム(CrO3 )300g/l,酢酸5ml/lの濃度の6価クロムメッキ浴中で、供試体を陽極とし対極(陰極)をカーボンとして温度20℃,電流密度20A/dm2 で1分間、逆電解することにより行った。
【0018】
▲3▼次に、前記電解洗浄における6価クロムメッキ浴と同じ濃度の6価クロムメッキ浴中で、供試体を陰極とし対極(陽極)をカーボンとして温度20℃,電流密度80A/dm2 で10分間、電解メッキを施して供試体の金属表面に3価クロム(Cr2 3 )に富む黒色のクロム酸化物層を3μmの厚さに析出させた。
【0019】
▲4▼上記と同様の手順で、但し電解温度と時間とを制御して析出クロム酸化物層の厚さを変えたものを供試体として複数形成した。
以上用意した複数の供試体について、耐食試験を実施した。
【0020】
耐食試験は、次の通り行った。
200mlのプラスチックビーカー中に5Nの硝酸を50ml入れ、その液中に供試体を一定面積浸漬できるように設置し、温度50℃で30時間放置した。放置後、浸漬液を希塩酸溶液で100倍に希釈し、その浸漬液中に溶解している鉄分をICP(Inductively Coupled plasma)発光分析法で定量し、得られた溶出鉄分量をもって供試体(転動部材)の腐食量とした。
【0021】
結果を、腐食量と膜厚との関係図2に示す。
図2から、電解温度が低く、成膜速度が小さいため膜厚が1μm未満の領域では膜厚が1μmに近づくにつれて鉄分溶出量(腐食量)は急減することがわかる。電解温度を次第に高くして成膜速度を大きくしていくと膜厚が増大する。膜厚が1μmを超えると鉄分溶出量は安定して、7μmに達するまでの領域では略一定となる。この膜厚1〜7μmの範囲は酸化クロム層が形成される膜厚領域であって耐食性に有効な膜厚領域といえる。更に電解温度を上げ成膜速度を大きくすると、成膜されたマトリックス中に金属クロム(酸化数0)の含有量が増えるが、耐食性は劣化する。すなわち、電解温度を下げることにより、クロム酸化物(酸化数3のクロム化合物)をマトリックス中に形成させ、耐食性を向上させることが可能である。温度が低くなるに従い成膜の効率は低下するから、耐食性に有効で且つ実用的な成膜速度が得られる膜厚範囲としては1〜7μm程度が望ましい。
【0022】
B:第2の実施形態
図3は、直動案内軸受として代表的なリニアガイド装置において、転動部材の一つとして使用される案内レール7の断面図である。この案内レール7を被試験体の転動部材として、その表面にクロム酸化物からなる電解防錆処理被膜を、次の条件で形成した。
【0023】
上記第1の実施形態の▲1▼と同様に供試体をアルカリ洗浄した後、同▲2▼と同様の電解洗浄工程を経て、同▲3▼と同様の電解メッキを施し、供試体のレール表面7dに第1層として3価クロム(Cr2 3 )に富む黒色のクロム酸化物層7eを3μmの厚さに析出させた。なお、この厚さ3μmのクロム酸化物層7eには、クラックやピンホールが生じて供試体の金属表面(素地)7dがそこから露出する場合がある。
【0024】
次に、その第1層の上に、第2層として、共重合体のフッ素樹脂膜7fを形成して被覆した。当該フッ素樹脂膜7fは、次の化学式(1)で表される2フッ化物とポリエチレンとの共重合体である。
【0025】
【化1】

Figure 0003890622
【0026】
その共重合体を有機溶剤に分散させたものを、スプレー等で供試体の第1層7eに塗布して、温度150〜200℃で加熱し、前記クロム酸化物層7e(及びクラックやピンホール等から露出した金属素地)をフッ素樹脂膜7fで被覆した。そのフッ素樹脂膜7fの膜厚はスプレーの塗膜吹きつけ量で調整した。
【0027】
以上用意した複数の供試体について、耐食試験を実施した。
耐食試験は、次の通り行った。
200mlのプラスチックビーカー中に5Nの硝酸又は5Nの塩酸又は5Nの硫酸又は1Nのフッ化水素酸のいずれかを50ml入れ、その液中に供試体を一定面積浸漬できるように設置し、温度50℃で30時間放置した。放置後、浸漬液を希塩酸溶液で100倍に希釈し、その浸漬液中に溶解している鉄分をICP(Inductively Coupled plasma)発光分析法で定量し、得られた溶出鉄分量をもって供試体(転動部材)の腐食量とした。
【0028】
結果を、腐食量と膜厚との関係図4に示す。
図4の結果から、浸漬した各酸の種類によって異なるが、供試体に形成したクロム酸化物層7e(第1層)とフッ素樹脂膜7f(第2層)との合計膜厚が5μm以上(即ち、フッ素樹脂膜7fの単独膜厚が2μm以上)あれば、鉄分溶出量は10000ppm(1%)未満になり、耐食性に有効であることがわかる。フッ素樹脂膜7fの膜厚の上限は、製品の機能に影響が無いかぎり特に限定されないが、厚くなるほど成膜時間が長くなり生産性に影響する。
【0029】
なお、上記実施形態では第2層としてフッ素樹脂膜を形成した場合を述べたが、この樹脂の種類としては耐食性のあるものであれば、特にフッ素樹脂に限定されない。
【0030】
C:第3の実施形態
一般的に耐食性を有する材料とされるSUS316L,SUS630,窒化ケイ素,アルミナを用いてそれぞれ形成した比較供試体と、SUS440Cに上記第2実施形態の場合と同様にして厚さ3μmのクロム酸化物層(第1層)及び厚さ10μmのフッ素樹脂膜のコーティング層(第2層)を形成した本発明供試体とを用意して、フッ化水素酸に対する耐食性の比較試験を実施した。
【0031】
試験条件:
供試体形状;直径10mm×厚さ40mmの円盤
フッ化水素酸濃度;1N
浸漬時間;深さ20mmで24時間浸漬
浸漬温度;24℃
耐食性の評価は、浸漬前後の供試体の重量変化を測定した。
【0032】
結果を表1に示す。
【0033】
【表1】
Figure 0003890622
【0034】
溶出量%は、供試体の最初の重さに対する溶出量の重量%である。
表1の結果から、半導体素子製造の洗浄工程で常用されているフッ化水素酸に対しては、耐食性ステンレス材料やセラミックスからなる比較供試体よりも、本発明にかかる防錆処理被膜を形成した本発明供試体の方が腐食による重量変化が少なく、半導体素子製造装置内からの汚染物流出を防止するのに有効であることがわかる。
【0035】
【発明の効果】
以上説明したように、本発明に係る耐食転動部材の製造方法によれば、転がり軸受、直動案内軸受、直動駆動装置等の金属製転動部材の表面に、防錆処理被膜として少なくともクロム酸化物からなる電解防錆処理被膜を形成したため、従来のクロムメッキやセラミックスに代わりアルカリ溶液やフッ化水素酸等の強酸に対しても耐食性のある耐食転動部材を安価に提供できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の耐食転動部材の一実施形態の一部を切除して示す斜視図である。
【図2】図1に示した転動部材の防錆処理被膜の耐食性の説明図である。
【図3】本発明の耐食転動部材の他の実施形態を説明する断面図である。
【図4】図3に示した転動部材の防錆処理被膜の耐食性の説明図である。
【図5】従来の耐食性転がり軸受の一部を切除して示す斜視図である。
【図6】従来の耐食性直動案内軸受の斜視図である。
【図7】従来の耐食性直動駆動装置の一部を切除して示す斜視図である。
【符号の説明】
なし[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing rolling members constituting various rolling bearings, linear motion guide bearing devices, or linear motion drive devices used in automobiles, semiconductor manufacturing devices and peripheral devices thereof, and in particular, the rolling thereof. It relates to improvement of corrosion resistance of members.
[0002]
[Prior art]
As a conventional corrosion-resistant rolling bearing, for example, there is a rolling bearing as shown in FIG. This is composed of a raceway ring composed of an inner ring 1 and an outer ring 2, a rolling element 3, a cage 4 and the like as main rolling members, and stainless steel or ceramics is used as the material of these rolling members. Yes. SUS440C, SUS316L, SUS630, SUS304, etc. are typical stainless steels. The bearing rings (inner ring 1, outer ring 2) that require hardness as bearings, and the rolling element 3 is hardened mainly by heat treatment such as SU440. A higher one is used. As the ceramic material, Si 3 N 4 or the like is mainly used, and the inner ring 1, the outer ring 2 and the rolling element 3 are each made of ceramics, or only the rolling element 3 is made of ceramic, and the inner ring 1 and the outer ring 2 are both Some are made of stainless steel.
[0003]
As a conventional corrosion-resistant linear motion guide bearing, for example, there is a linear guide device as shown in FIG. This is a guide rail 7 extended with axial rolling element rolling grooves 6 on both side surfaces, and is movably assembled on the guide rail 7 and is opposed to the rolling element rolling grooves 6 of the guide rail. A slider 8 having an outer rolling element rolling groove on the inner surface, and a large number of rolling elements (not shown) that are freely inserted into the opposing rolling element rolling grooves are configured as main rolling members. Yes. A circulation path for the rolling elements is provided inside the slider 8, and the slider 8 moves while being guided by the guide rail 7 through the rolling of the rolling elements. In the case of this corrosion-resistant linear motion guide bearing, the guide rail 7 that is directly exposed to a corrosive environment containing steam such as acid or alkali among the rolling members is particularly required to have corrosion resistance. Generally, stainless steel is used. It corresponds by applying chrome plating.
[0004]
As a conventional corrosion-resistant linear motion drive device, for example, there is a ball screw device as shown in FIG. This is because a screw shaft 12 having a spiral ball screw groove 11 on the outer peripheral surface and a ball screw groove 13 corresponding to the ball screw groove 11 of the screw shaft on the inner peripheral surface are screwed onto the screw shaft 12. The ball screw nut 14 and a large number of balls 15 that roll in the opposing ball screw grooves 11 and 13 are configured as main rolling members. The ball screw nut 14 is provided with a circulation piece 16 as a circulation path of the ball 15, and the rotation of the screw shaft 12 (or the ball screw nut 14) is rotated by rolling of the circulating ball 15. (Or screw shaft 12) is converted into a linear motion. Also in the case of this corrosion-resistant linear motion drive device, since the screw shaft 12 is directly exposed to a corrosive environment containing steam such as acid or alkali, it is also necessary to use stainless steel or apply chrome plating. Yes.
[0005]
[Problems to be solved by the invention]
However, in recent years, the environment in which corrosion-resistant rolling members are used is becoming harsh. For example, in the case of rolling bearings used in automobiles, bearing corrosion problems due to various salts have occurred with the use of non-freezing agents in cold regions. If stainless steel or ceramics is used as a material to cope with this, the cost increase cannot be fully borne. On the other hand, with metal plating such as chromium, there is a possibility of peeling depending on the use conditions.
[0006]
In the case of rolling bearings, linear motion guide bearings, and linear motion drive devices used in semiconductor manufacturing equipment and peripheral equipment, alkaline solutions or strong acids typified by hydrofluoric acid are used for cleaning semiconductor wafers. . For this reason, scattering of alkali and acid solutions or contamination of impurities in the semiconductor manufacturing process due to exposure to vapor has become an important problem. In particular, as the degree of integration of semiconductor elements increases, the problem of corrosion on the surface of the transport system and drive system used in the apparatus becomes a factor that affects the yield of the elements. However, in the case of chrome plating or ceramics, it may melt depending on the use conditions, and at that time, it is difficult to prevent corrosion.
[0007]
Therefore, the present invention has been made paying attention to the unsolved problems in such conventional corrosion-resistant rolling members, and is an inexpensive alternative to chrome plating and ceramics and is resistant to hydrofluoric acid. It aims at providing the manufacturing method of a certain corrosion-resistant rolling member.
[0008]
[Means for Solving the Problems]
The method of manufacturing a corrosion-resistant rolling member according to claim 1 of the present invention that achieves the above object includes forming a rust-proof coating film consisting of two layers on the surface of the material after heat treatment, rolling bearings, linear motion guide bearings, A method of manufacturing a metal rolling member such as a linear drive device, the step of forming a trivalent chromium oxide layer as a first layer by electrolytic rust prevention treatment, and a step of covering the first layer Forming a resin layer having a thickness of 2 μm or more, which is a two-layer, by applying a dispersion of a copolymer of difluoride and polyethylene in an organic solvent and heating to 150 to 200 ° C. It is characterized by this.
Similarly, the manufacturing method of the corrosion-resistant rolling member according to claim 2 of the present invention is characterized in that the metal rolling member is a guide rail of a linear guide device.
[0009]
The electrolytic rust-preventing treatment film formed on the corrosion-resistant rolling member of the present invention is obtained by immersing the corrosion-resistant rolling member, which is an object to be treated, in a solution containing hexavalent chromium ions, and using the corrosion-resistant rolling member as a cathode, platinum or A trivalent chromium oxide layer is formed on the surface of an object by electrolysis using a redox reaction with carbon as a counter electrode. Control of temperature is indispensable during the reduction reaction of chromium ions, and the chromium oxidation number in the chromium compound depends on the electrolysis temperature at the time of film formation. It does not become trivalent when the electrolysis temperature increases.
[0010]
That is, the electrolysis temperature for forming the trivalent chromium oxide layer is preferably 40 ° C. or lower, more preferably 25 ° C. or lower. If the temperature exceeds 80 ° C., chromium ions are reduced during electrolysis and metal chromium having an oxidation number of 0 is deposited, resulting in poor corrosion resistance.
[0011]
The film thickness of the chromium oxide layer depends on the electrolysis temperature and electrolysis time. The film thickness is desirably 1 μm or more, preferably 1 to 7 μm. If the thickness is less than 1 μm, the corrosion resistance against acid is inferior while the chromium oxide is formed. Conversely, if the thickness exceeds 7 μm and the film thickness is increased, the electrolysis temperature becomes high, so that metallic chromium is likely to be deposited. Corrosion resistance is poor.
[0012]
The anticorrosion treatment film formed on the corrosion-resistant rolling member of the present invention is an electrolytic anticorrosion treatment film , and the trivalent chromium oxide layer is the first layer, and the second layer covering the first layer is corrosion resistance. An excellent coating layer can also be applied. For example, the coating layer of the second layer is preferably a polyethylene resin layer, an acrylic resin layer, and more preferably a fluororesin layer, which fills the first layer of chromium oxide pinholes and exposes the substrate. Fulfills the function of preventing. The film thickness of the second coating layer is desirably 2 μm or more. If it is less than 2 μm, the substrate exposure prevention function is insufficient.
[0013]
As described above, according to the present invention, a chromium oxide layer that is particularly corrosive by controlling the electrolysis temperature on the surface of a metal rolling member such as a rolling bearing, a linear guide bearing, or a linear drive device. By forming a rust-proof coating film comprising, a rolling member having corrosion resistance in a strong acid or alkaline solution or gas atmosphere can be provided at a low cost.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is used for the part which is the same as that of the past, or corresponds.
[0015]
A: First embodiment An electrolytic rust-proof coating film made of chromium oxide on the surface of the bearing of the thrust rolling bearing shown in FIG. 1 (either the inner ring 1 or the outer ring 2) as a rolling member. Was formed under the following conditions.
[0016]
Bearing material: SUJ2, Hardness after heat treatment HRC60
(1) First, using a 4% aqueous solution of NaOH, the specimen was alkali washed at 60 ° C. for 2 minutes.
[0017]
(2) The specimen washed with water was then subjected to electrolytic cleaning using the anode as an anode. Electrolytic cleaning is performed in a hexavalent chromium plating bath having a concentration of 300 g / l of anhydrous chromium (CrO 3 ) and 5 ml / l of acetic acid, using the specimen as an anode and the counter electrode (cathode) as carbon at a temperature of 20 ° C. and a current density of 20 A / dm. 2 by reverse electrolysis for 1 minute.
[0018]
(3) Next, in the hexavalent chrome plating bath having the same concentration as the hexavalent chrome plating bath in the electrolytic cleaning, the specimen is the cathode and the counter electrode (anode) is carbon at a temperature of 20 ° C. and a current density of 80 A / dm 2 . Electroplating was performed for 10 minutes to deposit a black chromium oxide layer rich in trivalent chromium (Cr 2 O 3 ) to a thickness of 3 μm on the metal surface of the specimen.
[0019]
(4) A plurality of specimens were formed in the same procedure as described above, except that the electrolysis temperature and time were controlled to change the thickness of the deposited chromium oxide layer.
A corrosion resistance test was performed on the plurality of specimens prepared above.
[0020]
The corrosion resistance test was performed as follows.
50 ml of 5N nitric acid was placed in a 200 ml plastic beaker, and the specimen was placed in the liquid so that it could be immersed in a certain area, and left at a temperature of 50 ° C. for 30 hours. After standing, the immersion liquid is diluted 100-fold with dilute hydrochloric acid solution, and the iron content dissolved in the immersion liquid is quantified by ICP (Inductively Coupled Plasma) emission spectrometry. The amount of corrosion of the moving member).
[0021]
The result is shown in FIG. 2 between the amount of corrosion and the film thickness.
From FIG. 2, it can be seen that the amount of iron elution (corrosion) rapidly decreases as the film thickness approaches 1 μm in the region where the film thickness is less than 1 μm because the electrolysis temperature is low and the film formation rate is low. As the electrolysis temperature is gradually increased and the film formation rate is increased, the film thickness increases. When the film thickness exceeds 1 μm, the iron elution amount becomes stable and becomes substantially constant in the region up to 7 μm. This film thickness range of 1 to 7 μm is a film thickness region in which a chromium oxide layer is formed, and can be said to be a film thickness region effective for corrosion resistance. When the electrolysis temperature is further increased and the film formation rate is increased, the content of metal chromium (oxidation number 0) in the formed matrix increases, but the corrosion resistance deteriorates. That is, by lowering the electrolysis temperature, chromium oxide (a chromium compound having an oxidation number of 3) can be formed in the matrix, and the corrosion resistance can be improved. Since the efficiency of film formation decreases as the temperature decreases, the film thickness range that is effective for corrosion resistance and provides a practical film formation rate is preferably about 1 to 7 μm.
[0022]
B: Second Embodiment FIG. 3 is a cross-sectional view of a guide rail 7 used as one of rolling members in a linear guide device typical as a linear guide bearing. Using this guide rail 7 as a rolling member of the device under test, an electrolytic rust-proof coating film made of chromium oxide was formed on the surface under the following conditions.
[0023]
After subjecting the specimen to alkaline washing in the same manner as in (1) of the first embodiment, the electrolytic cleaning process in the same manner as in (2) above is followed by the same electrolytic plating as in (3) above. A black chromium oxide layer 7e rich in trivalent chromium (Cr 2 O 3 ) was deposited as a first layer on the surface 7d to a thickness of 3 μm. In addition, in this chromium oxide layer 7e having a thickness of 3 μm, cracks and pinholes may be generated, and the metal surface (base) 7d of the specimen may be exposed therefrom.
[0024]
Next, a fluororesin film 7f of a copolymer was formed and covered as a second layer on the first layer. The fluororesin film 7f is a copolymer of difluoride and polyethylene represented by the following chemical formula (1).
[0025]
[Chemical 1]
Figure 0003890622
[0026]
A dispersion of the copolymer in an organic solvent is applied to the first layer 7e of the specimen by spraying or the like, heated at a temperature of 150 to 200 ° C., and the chromium oxide layer 7e (and cracks and pinholes). The metal substrate exposed from the like was covered with a fluororesin film 7f. The film thickness of the fluororesin film 7f was adjusted by the spray coating amount.
[0027]
A corrosion resistance test was performed on the plurality of specimens prepared above.
The corrosion resistance test was performed as follows.
Place 50 ml of either 5N nitric acid or 5N hydrochloric acid or 5N sulfuric acid or 1N hydrofluoric acid in a 200 ml plastic beaker, and place the specimen in a liquid so that it can be immersed in a certain area. And left for 30 hours. After standing, the immersion liquid is diluted 100-fold with dilute hydrochloric acid solution, and the iron content dissolved in the immersion liquid is quantified by ICP (Inductively Coupled Plasma) emission spectrometry. The amount of corrosion of the moving member).
[0028]
The results are shown in FIG. 4 showing the relationship between the amount of corrosion and the film thickness.
From the results shown in FIG. 4, the total film thickness of the chromium oxide layer 7e (first layer) and the fluororesin film 7f (second layer) formed on the specimen is 5 μm or more (depending on the type of each immersed acid) That is, if the single film thickness of the fluororesin film 7f is 2 μm or more), the elution amount of iron is less than 10,000 ppm (1%), which is effective for corrosion resistance. The upper limit of the film thickness of the fluororesin film 7f is not particularly limited as long as the function of the product is not affected. However, as the film thickness increases, the film formation time becomes longer and the productivity is affected.
[0029]
In addition, although the case where the fluororesin film | membrane was formed as a 2nd layer was described in the said embodiment, if the kind of this resin has corrosion resistance, it will not be specifically limited to a fluororesin.
[0030]
C: Third embodiment Comparative specimens formed using SUS316L, SUS630, silicon nitride, and alumina, which are generally considered to be corrosion resistant materials, and SUS440C in the same manner as in the second embodiment. Comparative test of corrosion resistance against hydrofluoric acid by preparing a specimen of the present invention in which a chromium oxide layer (first layer) having a thickness of 3 μm and a coating layer (second layer) of a fluororesin film having a thickness of 10 μm were prepared. Carried out.
[0031]
Test conditions:
Specimen shape: disc hydrofluoric acid concentration of 10 mm diameter x 40 mm thickness; 1N
Immersion time; 24 hours immersion temperature at a depth of 20 mm; 24 ° C.
The corrosion resistance was evaluated by measuring the weight change of the specimen before and after immersion.
[0032]
The results are shown in Table 1.
[0033]
[Table 1]
Figure 0003890622
[0034]
The dissolution amount% is the weight percent of the dissolution amount with respect to the initial weight of the specimen.
From the results shown in Table 1, the anticorrosive coating film according to the present invention was formed for hydrofluoric acid commonly used in the cleaning process of semiconductor element manufacturing, rather than a comparative specimen made of a corrosion-resistant stainless steel or ceramic. It can be seen that the specimen of the present invention has less weight change due to corrosion and is more effective in preventing the outflow of contaminants from the semiconductor device manufacturing apparatus.
[0035]
【The invention's effect】
As described above, according to the method for manufacturing a corrosion-resistant rolling member according to the present invention, at least a rust-proof coating film is provided on the surface of a metal rolling member such as a rolling bearing, a linear guide bearing, or a linear drive device. The effect of being able to provide a corrosion-resistant rolling member that is corrosion-resistant to strong acids such as alkaline solutions and hydrofluoric acid instead of conventional chromium plating and ceramics, because the electrolytic rust-proof coating made of chromium oxide is formed. Play.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a part of an embodiment of a corrosion-resistant rolling member of the present invention by cutting away.
FIG. 2 is an explanatory view of the corrosion resistance of the rust preventive film of the rolling member shown in FIG.
FIG. 3 is a cross-sectional view illustrating another embodiment of the corrosion-resistant rolling member of the present invention.
4 is an explanatory view of the corrosion resistance of a rust preventive film of the rolling member shown in FIG.
FIG. 5 is a perspective view showing a part of a conventional corrosion-resistant rolling bearing by cutting away.
FIG. 6 is a perspective view of a conventional corrosion-resistant linear motion guide bearing.
FIG. 7 is a perspective view showing a part of a conventional corrosion-resistant linear motion drive device.
[Explanation of symbols]
None

Claims (2)

熱処理後の素材の表面に2層からなる防錆処理被膜を形成して転がり軸受,直動案内軸受,直動駆動装置等の金属製転動部材を製造する方法であって、A method of manufacturing a metal rolling member such as a rolling bearing, a linear motion guide bearing, and a linear motion drive device by forming a two-layer rust preventive film on the surface of the heat-treated material,
第1層である3価のクロム酸化物層を電解防錆処理により形成する工程と、前記第1層を被覆する第2層である膜厚2μm以上の樹脂層を、2フッ化物とポリエチレンとの共重合体を有機溶媒に分散させたものを塗布し150〜200℃に加熱することにより形成する工程と、を備えることを特徴とする耐食転動部材の製造方法。A step of forming a trivalent chromium oxide layer as a first layer by electrolytic rust prevention treatment; a resin layer having a thickness of 2 μm or more as a second layer covering the first layer; a difluoride and polyethylene; And a step of forming the copolymer by applying a dispersion of the above copolymer in an organic solvent and heating to 150 to 200 ° C.
前記金属製転動部材がリニアガイド装置の案内レールであることを特徴とする請求項1に記載の耐食転動部材の製造方法。The method for manufacturing a corrosion-resistant rolling member according to claim 1, wherein the metal rolling member is a guide rail of a linear guide device.
JP09439596A 1996-04-16 1996-04-16 Method for manufacturing corrosion-resistant rolling member Expired - Fee Related JP3890622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09439596A JP3890622B2 (en) 1996-04-16 1996-04-16 Method for manufacturing corrosion-resistant rolling member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09439596A JP3890622B2 (en) 1996-04-16 1996-04-16 Method for manufacturing corrosion-resistant rolling member

Publications (2)

Publication Number Publication Date
JPH09280252A JPH09280252A (en) 1997-10-28
JP3890622B2 true JP3890622B2 (en) 2007-03-07

Family

ID=14109087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09439596A Expired - Fee Related JP3890622B2 (en) 1996-04-16 1996-04-16 Method for manufacturing corrosion-resistant rolling member

Country Status (1)

Country Link
JP (1) JP3890622B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011235A1 (en) * 1998-08-25 2000-03-02 Nsk Ltd. Surface treated rolling bearing and manufacturing method thereof
JP2007205576A (en) * 2007-04-16 2007-08-16 Shimano Inc Bearing of fishing reel
CN102138238B (en) * 2008-06-26 2014-04-16 新日铁住金株式会社 Stainless steel material for separator of solid polymer fuel cell and solid polymer fuel cell using the same
JP6074468B2 (en) * 2015-08-19 2017-02-01 グローブライド株式会社 Bearing with magnetic fluid seal

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424375B2 (en) * 1972-07-14 1979-08-21
JPS5436581B2 (en) * 1972-07-14 1979-11-09
JPH0637897B2 (en) * 1985-08-23 1994-05-18 光洋精工株式会社 Rolling bearing
JP2509910B2 (en) * 1986-04-16 1996-06-26 エヌティエヌ 株式会社 Rolling bearing
JPS6330623U (en) * 1986-08-13 1988-02-29
JPH04101838A (en) * 1990-08-22 1992-04-03 Nippon Carbide Ind Co Inc Novel container and material therefor
JPH04227455A (en) * 1990-10-05 1992-08-17 Nippon Carbide Ind Co Inc Novel surface material for refrigerator and the like, and refrigerator and the like using the same
JPH04229246A (en) * 1990-10-08 1992-08-18 Nippon Carbide Ind Co Inc Fresh fluorine containing resin film laminated metallic sheet
JPH05149328A (en) * 1991-11-28 1993-06-15 Koyo Seiko Co Ltd Radial roller bearing
JPH05318654A (en) * 1992-05-18 1993-12-03 Nippon Carbide Ind Co Inc Decorative metal product
JPH07301241A (en) * 1994-04-28 1995-11-14 Ntn Corp Anticorrosive bearing

Also Published As

Publication number Publication date
JPH09280252A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
EP2660364B1 (en) Eco-friendly high-speed pickling process for producing a low-chrome ferrite-based cold-rolled stainless steel sheet having superior surface quality
WO2003072984A1 (en) Rolling bearing
EP1288325B1 (en) Method for production of galvannealed sheet steel
JP3890622B2 (en) Method for manufacturing corrosion-resistant rolling member
KR101668542B1 (en) Metal material surface treatment method, and metal material
US6601993B2 (en) Rolling bearing device
JPH0347999A (en) Support metal having improved surface mor- phology
JPH07301241A (en) Anticorrosive bearing
KR940001041B1 (en) Shape detecting roll
US6846367B2 (en) Heat-treating method for improving wear-resistance and corrosion-resistance of chromium-plated steel substrate
US4563253A (en) Method of making corrosion inhibited metal
JP2008001930A (en) Metal surface treatment method
JPH0637897B2 (en) Rolling bearing
JP3818723B2 (en) Roughening method for stainless steel plate surface
JPS63169391A (en) Metal member for semiconductor producing device
US20020033379A1 (en) Method for hydrophilic treatment of metal surface
US4681814A (en) Corrosion inhibited metal
EP0732425B1 (en) Passivation treatment of tinplate
JP2002357227A (en) Rolling bearing
JP2008019491A (en) Stainless steel sheet having uniform film and its production method
JP3539749B2 (en) Rolling element
JP4175103B2 (en) Rolling bearing
JP3139841B2 (en) Stainless steel for ultrapure water contact equipment in semiconductor manufacturing equipment
JP3874617B2 (en) Manufacturing method of rolling bearing
SU1661227A1 (en) Method of heat treatment of steel parts

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees