JP3889872B2 - Manufacturing method of microporous membrane and microporous membrane by the manufacturing method - Google Patents

Manufacturing method of microporous membrane and microporous membrane by the manufacturing method Download PDF

Info

Publication number
JP3889872B2
JP3889872B2 JP35240597A JP35240597A JP3889872B2 JP 3889872 B2 JP3889872 B2 JP 3889872B2 JP 35240597 A JP35240597 A JP 35240597A JP 35240597 A JP35240597 A JP 35240597A JP 3889872 B2 JP3889872 B2 JP 3889872B2
Authority
JP
Japan
Prior art keywords
membrane
microfiltration membrane
surface layer
sheet
microporous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35240597A
Other languages
Japanese (ja)
Other versions
JPH11165050A (en
Inventor
芳彦 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Roshi Kaisha Ltd
Original Assignee
Toyo Roshi Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Roshi Kaisha Ltd filed Critical Toyo Roshi Kaisha Ltd
Priority to JP35240597A priority Critical patent/JP3889872B2/en
Publication of JPH11165050A publication Critical patent/JPH11165050A/en
Application granted granted Critical
Publication of JP3889872B2 publication Critical patent/JP3889872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0086Mechanical after-treatment

Description

【0001】
【発明の属する技術分野】
本発明は、電子工業分野における純水の濾過や食品、医薬品の清澄濾過及び除菌濾過などの広い範囲で利用される精密濾過膜に関する。
【0002】
【従来の技術】
一般に、相転換法にて得られる精密濾過膜、例えばセルロースアセテートやポリサルホンやポリエーテルサルホンを主成分とする精密濾過膜の表面は、膜内部より孔の大きさが小さく、且つ孔の数が少ない即ち開孔率の低い表面層を形成しているものが多い。
【0003】
この現象は、例えば湿式相転換法の場合、ガラス板等の支持体上に製膜原液を流延した後、水やアルコール等の凝固浴に浸漬し膜を形成させるが、この膜形成の際に、非ガラス面(二次側)では、直ちに溶剤等の拡散流出が起こり、核形成が始まるため、非溶剤(造孔剤)による孔の形成が行われにくくなる。この為、図2のように平滑な面に、小さく、且つ少ない数の孔が形成され易い。
【0004】
上記精密濾過膜の表面の孔の数を増加させる手段として、特開平4−4025号では表層を薄く削り取ることにより、表層よりもより開孔率の高い内層を露出させる技術が提案されている。
【0005】
また、特公昭55−6406号には精密濾過膜の内部に最大孔径層を有する微孔シートを厚さ方向に2分割されるようにへき開し、一次側の層を剥離することにより、微孔シートの厚さ方向の内部構造を二次側に行くに従い孔のサイズが小さくなる台形構造とする技術が提案されている。
【0006】
【発明が解決しようとする課題】
従来の相転換法にて得られる多くの精密濾過膜の表面は、膜内部より孔の大きさが小さく、且つ孔の数が少ない即ち開孔率の低い表面層を形成しているものが多い。よって、前記表面層による通液抵抗を減少させると共に、表面捕捉を少なくし内部捕捉を多くすることにより、濾過速度や濾過寿命を増加させることが望まれている。
【0007】
また、特開平4−4025号には表層を薄く削り取る方法が記載されているが、表面層だけでなく粒子等の内部捕捉を行う網目状多孔層をも削り取る可能性が高いことから、削り取る層の厚さをより薄くする制御方法が望まれている。
【0008】
また、特公昭55−6406号には、単に精密濾過膜の一方の表面に平板を貼り付けた後、平板より精密濾過膜を剥がすことにより、膜の内部の最大孔を形成している層にてへき開する方法が記載されているが、多くの精密濾過膜は強度が極めて弱いため、剥離の際に精密濾過膜を傷つける可能性が高い。よって、精密濾過膜を傷つけずに剥離する方法が望まれている。また、2分割することにより、2枚となった濾過膜の両方を製品とすることも可能である旨が記載されているが、均等に2分割するためには、基となる膜の中心層が最大孔を形成していなければならず、そうでない場合は一方の膜は廃棄することとなり、ひいては製造コストの増加となることから、生産性の改善が望まれていた。更に、膜の内部の最大孔を形成している層にてへき開するため、二次側表面は膜内部より孔の大きさが小さく、且つ孔の数が少ない開孔率の低い表面層を形成している。よって、二次側表面層が及ぼす通液抵抗を減少させ、濾過速度や濾過寿命を増加させることが望まれている。
【0009】
本発明は、上記課題を解決するため、精密濾過膜に損傷を与えずに、均一に二次側表面層を毟り取り、二次側表面の開孔率を高めた微多孔質膜を提供する。更には、精密濾過膜の一次側表面層をも毟り取り、両表面とも開孔率を高めた微多孔質膜を提供する。
【0010】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の本発明にあっては、平滑で隙間なく全面が密着する表面を有するシ−ト支持体を精密濾過膜の両表面に夫々接着剤や加熱により貼り付け、一度一方のシ−ト支持体を固定して、他方のシート支持体を前記精密濾過膜の表面層と共に毟り取って、その表面に再度別の前記シート支持体を接着剤や加熱により貼り付け、次いで再度貼り付けたシート支持体を固定して他方のシ−ト支持体を前記精密濾過膜の表面層と共に毟り取り、更に再度貼り付けたシ−ト支持体をその接着力を溶媒により無効として精密濾過膜からその表面相を変化させることなく剥離して成る微多孔質膜の製造方法である。
【0013】
また、請求項に記載の本発明にあっては、上記請求項1に記載の微多孔質膜の製造方法により製造された微多孔質膜であって、精密濾過膜の開孔率の低い二次側の表面層と、開孔率の比較的高い一次側の表面層を毟り取って成り、両表面層とも開孔率をより高めたことを特徴とする微多孔質膜である。
【0014】
【発明の実施の形態】
発明の実施の形態を、以下本発明の請求項1に記載の本発明における微多孔質膜を製造する工程から順に詳説する。
【0015】
ここで、第1の支持体としては、平滑で隙間なく全面が密着する表面を有する材質のものであれば特に限定されないが、後の作業工程を簡略化するため、プラスチックシート上に接着剤が塗布されているラミネートフィルムが好適に用いられる。このラミネートフィルムに用いるプラスチックシートの材質は、例えばポリスチレン、ポリエチレン、ポリプロピレン、ポリエステル等を使用できる。
【0016】
次いで、他方の表面に平滑で隙間なく全面が密着する表面を有し且つ可撓性のシートから成る第2の支持体を接着剤や加熱により貼り付ける。第2の支持体としては、平滑な表面で隙間なく全面が密着し且つ可撓性のシートであれば特に限定はないが、後の作業工程を簡略化するため、ラミネートフィルムが好適に用いることができる。また、ラミネートフィルム等に用いるプラスチックシートの材質としては、例えばポリスチレン、ポリエチレン、ポリプロピレン、ポリエステル等を使用できる。
【0017】
次いで、第2の可撓性支持体を引き剥がすことにより、第2の支持体と共に接着した表面層のみが毟り取られ、孔が無数に存在する開孔率の高い平面外観が網目状の微多孔質構造の表面を得ることができる。
【0020】
本発明の二次側表面層に加え開孔率の比較的高い一次側表面層をも毟り取り、両表面層とも開孔率をより高める態様においては、第2のシート支持体を一度第1のシ−ト支持体を固定して前記精密濾過膜の表面層とともに毟り取ってその表面に再度別の第2のシート支持体を接着剤や加熱により貼り付けておき、今度はその第2のシート支持体を固定して前記第1のシ−ト支持体を前記精密濾過膜の表面層と共に毟り取り、更に、前記第2のシ−ト支持体をその接着力を溶媒により無効として精密濾過膜からその表面相を変化させることなく剥離して得るものとする。
また、請求項に記載の本発明にあっては、上記請求項記載の微多孔質膜の製造方法により製造された微多孔質膜であって、精密濾過膜の開孔率の低い二次側の表面層と、開孔率の比較的高い一次側の表面層を毟り取って成り、両表面層とも開孔率をより高めたものである。
【0021】
以下に本発明の実施例を比較例と対比して、更に詳説する。
【0022】
【比較例1】
公知の湿式相分離法にてポリエーテルサルホンを主成分とする精密濾過膜を作製した。
作製した膜の二次側表面は、平滑な表面に小さく少ない数の孔が点在しており、二次側に行くに従い内部の層が小さくなる、厚さ88μm、Brevundimonasdiminutaの除去効率はLRV10.6以上の非対称精密濾過膜であった。図2にその二次側表面相の電子顕微鏡写真を示す。
【0023】
【比較例2】
比較例1にて作製した精密濾過膜を10cm角に切り、両面にポリエステル系の接着剤を塗布したポリエステル製のラミネートフィルムを電気アイロンを用いて貼り付けた。
次いで、二次側表面のラミネートフィルムを固定し、一次側表面のラミネートフィルムを引き剥がすことにより、精密濾過膜の一次側表面をラミネートフィルムと共に毟り取りした。更に、二次側表面がラミネートフィルムと接着状態にある精密濾過膜を水浴に浸漬し、十分に湿潤させた後、二次側のラミネートフィルムを剥離し、乾燥することにより微多孔質膜を得た。
【0024】
【実施例1】
比較例1にて作製した精密濾過膜を10cm角に切り、両面にポリエステル系の接着剤を塗布したポリエステル製のラミネートフィルムを電気アイロンを用いて貼り付けた。
次いで、一次側表面のラミネートフィルムを固定し、二次側表面のラミネートフィルムを引き剥がすことにより、精密濾過膜のニ次側表面をラミネートフィルムと共に毟り取りした。更に、一次側表面がラミネートフィルムと接着状態にある精密濾過膜を水浴に浸漬し、十分に湿潤させた後、一次側のラミネートフィルムを剥離し、乾燥することにより微多孔質膜を得た。図3に二次側表層を毟り取りした表面相、図4に一次側表層面相の各電子顕微鏡写真を示す。
【0025】
【実施例2】
実施例1により作成した微多孔質膜の両面にポリエステル系の接着剤を塗布したポリエステル製のラミネートフィルムを再度電気アイロンを用いて貼り付けた。
次いで、二次側表面のラミネートフィルムを固定し、一次側表面のラミネートフィルムを引き剥がし、一次側表面をラミネートフィルムと共に毟り取りした。図5に一次側表面層を毟り取りした表面相の電子顕微鏡写真を示す。そして更に、先に開孔率を高めた二次側表面がラミネートフィルムと接着状態にある精密濾過膜を水浴に浸漬し、十分に湿潤させた後、二次側のラミネートフィルムを剥離し、乾燥することにより両面とも開孔率の高い微多孔質膜を得た。
【0026】
【比較例1,2及び実施例1,2の性能評価結果】
φ47mmに打ち抜いたサンプルの膜の厚さ、Brevundimonas diminutaによる除菌性能結果、52cmHg減圧下における水の濾過速度及びφ25mmに打ち抜いたサンプルの濾過寿命の結果を表1に示す。
【0027】
【表1】

Figure 0003889872
【0028】
表1に示す如く、比較例2の一次側表面を毟り取りした精密濾過膜は、濾過寿命は延びるものの、濾過速度の向上は少ないものであったが、二次側表面の開孔率を高めた実施例1の精密濾過膜は、濾過速度と濾過寿命を共に向上させることができた。更に、精密濾過膜の一次側表面層をも毟り取りし、両表面とも開孔率を高めることにより、より濾過寿命を著しく向上させることができた(実施例2)。
【0029】
【発明の効果】
このように、本発明の微多孔質膜は、基となる精密濾過膜とほぼ等しい膜厚を維持しつつ、均一に二次側表面層もしくは両表面層を毟り取りし、前記表面を孔が無数に存在する開孔率の高い表層とすることにより、粒子等の捕捉効率を維持しつつ、濾過速度及び濾過寿命の向上を図ることができる。
そしてその微多孔質膜を得る製法においても、精密濾過膜自体を傷めることなく、効率よく且つ経済性を確保する。
【図面の簡単な説明】
【図1】 本発明の毟り取り行程を示す断面図。
【図2】 精密濾過膜の二次側表面相の倍率2,000倍の電子顕微鏡写真。
【図3】 二次側表面層を毟り取りした本発明の微多孔質膜表面相の倍率2,000倍の電子顕微鏡写真。
【図4】 精密濾過膜の一次側表面相の倍率2,000倍の電子顕微鏡写真。
【図5】 一次側表面層を毟り取りした本発明の微多孔質膜表面相の倍率2,000倍の電子顕微鏡写真。
【符号の説明】
1 第1のシート支持体
2 精密濾過膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microfiltration membrane used in a wide range such as filtration of pure water in the field of electronic industry, clarification filtration of foods and pharmaceuticals, and sterilization filtration.
[0002]
[Prior art]
In general, the surface of a microfiltration membrane obtained by a phase change method, such as a microfiltration membrane mainly composed of cellulose acetate, polysulfone, or polyethersulfone, has a smaller pore size than the inside of the membrane, and the number of pores. Many of them form a surface layer with a small number of pores, ie, a low porosity.
[0003]
For example, in the case of a wet phase conversion method, this phenomenon is caused by casting a film-forming stock solution on a support such as a glass plate and then immersing it in a coagulation bath such as water or alcohol to form a film. In addition, on the non-glass surface (secondary side), diffusion outflow of a solvent or the like immediately occurs, and nucleation starts, so that it is difficult to form a hole with a non-solvent (pore forming agent). For this reason, a small and small number of holes are easily formed on a smooth surface as shown in FIG.
[0004]
As a means for increasing the number of pores on the surface of the microfiltration membrane, Japanese Patent Laid-Open No. 4-4025 proposes a technique for exposing an inner layer having a higher porosity than the surface layer by scraping the surface layer thinly.
[0005]
In Japanese Patent Publication No. 55-6406, a microporous sheet having a maximum pore diameter layer inside a microfiltration membrane is cleaved so as to be divided into two in the thickness direction, and the primary layer is peeled off to form micropores. A technique has been proposed in which the internal structure in the thickness direction of the sheet has a trapezoidal structure in which the size of the hole decreases as going to the secondary side.
[0006]
[Problems to be solved by the invention]
The surface of many microfiltration membranes obtained by the conventional phase conversion method has a surface layer with a smaller pore size than the inside of the membrane and a small number of pores, that is, a low porosity. . Therefore, it is desired to increase the filtration rate and the filtration life by reducing the liquid flow resistance by the surface layer and decreasing the surface trapping and increasing the internal trapping.
[0007]
Japanese Patent Laid-Open No. 4-4025 describes a method for thinly removing the surface layer, but it is highly possible to scrape not only the surface layer but also the network-like porous layer that traps particles and the like internally. There is a demand for a control method for reducing the thickness of the film.
[0008]
In Japanese Patent Publication No. 55-6406, a flat plate is simply attached to one surface of a microfiltration membrane, and then the microfiltration membrane is peeled off from the flat plate to form a layer having the largest pores inside the membrane. Although a method of cleaving is described, since many microfiltration membranes have extremely low strength, there is a high possibility of damaging the microfiltration membrane during peeling. Therefore, a method of peeling without damaging the microfiltration membrane is desired. In addition, it is described that it is possible to make both of the two filtration membranes into products by dividing into two, but in order to equally divide into two, the central layer of the base membrane However, if one is not the case, one of the membranes must be discarded, which in turn increases the manufacturing cost. Therefore, improvement in productivity has been desired. Furthermore, since the cleaving is performed in the layer forming the largest pores inside the membrane, the surface on the secondary side has a smaller pore size than the inside of the membrane, and a surface layer with a low porosity is formed with a smaller number of pores is doing. Therefore, it is desired to decrease the liquid flow resistance exerted by the secondary side surface layer and increase the filtration rate and the filtration life.
[0009]
In order to solve the above-mentioned problems, the present invention provides a microporous membrane in which the secondary-side surface layer is evenly scraped and the secondary-side surface porosity is increased without damaging the microfiltration membrane. . Furthermore, the microfiltration membrane is provided with a microporous membrane having a high porosity on both surfaces by scraping the primary surface layer of the microfiltration membrane.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention according to claim 1, a sheet support having a smooth surface with close contact with the entire surface without gaps is applied to both surfaces of the microfiltration membrane by an adhesive or heating, respectively. Once attached, one sheet support is fixed, the other sheet support is scraped off together with the surface layer of the microfiltration membrane, and another sheet support is again attached to the surface by adhesive or heating. Adhering, then reattaching the sheet support, fixing the other sheet support together with the surface layer of the microfiltration membrane, and further reattaching the sheet support to the solvent Is a method for producing a microporous membrane that is made ineffective and peeled off from the microfiltration membrane without changing its surface phase .
[0013]
The present invention according to claim 2 is a microporous membrane produced by the method for producing a microporous membrane according to claim 1, wherein the microfiltration membrane has a low porosity. It is a microporous membrane characterized by scraping a secondary-side surface layer and a primary-side surface layer having a relatively high porosity, both of which have a higher porosity.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail in order from the process for manufacturing the microporous film in the present invention according to claim 1 of the present invention follows.
[0015]
Here, the first support is not particularly limited as long as it is made of a material that is smooth and has a surface that adheres to the entire surface without gaps, but in order to simplify the subsequent work process, an adhesive is placed on the plastic sheet. A laminated film that has been applied is preferably used. For example, polystyrene, polyethylene, polypropylene, polyester, or the like can be used as the material of the plastic sheet used for the laminate film.
[0016]
Next, a second support made of a flexible sheet having a surface that is smooth and has a tight contact surface with no gap on the other surface is attached by an adhesive or heating. The second support is not particularly limited as long as it is a smooth sheet with a smooth surface that adheres to the entire surface and is flexible, but a laminate film is preferably used in order to simplify the subsequent work process. Can do. Moreover, as a material of the plastic sheet used for the laminate film or the like, for example, polystyrene, polyethylene, polypropylene, polyester or the like can be used.
[0017]
Next, by peeling off the second flexible support, only the surface layer adhered together with the second support is scraped off, and a planar appearance with a high open area ratio in which a large number of holes are present has a mesh-like fineness. A surface with a porous structure can be obtained.
[0020]
In an embodiment in which the primary surface layer having a relatively high porosity is scraped off in addition to the secondary surface layer of the present invention, and both the surface layers further increase the porosity, the second sheet support is temporarily attached to the first sheet support. of sheet - securing the door support paste them by the front surface layer with Mushiri taken adhesive or heat the second sheet support again another on the surface of the microfiltration membrane, now the second the sheet support to fix the first of - up the door support Mushiri along with the table surface layer of the microfiltration membrane, further, the second sheet - the door support its adhesive strength as invalid by the solvent It shall be obtained by peeling from the microfiltration membrane without changing its surface phase.
Further, in the present invention as set forth in claim 2, a microporous membrane produced by the production method of the microporous membrane according to the first aspect, low porosity microfiltration membrane two The surface layer on the secondary side and the surface layer on the primary side having a relatively high porosity are scraped off, and both surface layers have a higher porosity.
[0021]
Examples of the present invention will be described in further detail in comparison with comparative examples.
[0022]
[Comparative Example 1]
A microfiltration membrane mainly composed of polyethersulfone was prepared by a known wet phase separation method.
The secondary surface of the prepared film is dotted with a small number of small holes on a smooth surface, and the inner layer becomes smaller toward the secondary side. The thickness is 88 μm, and the removal efficiency of Brevundimonas diminuta is LRV10. It was an asymmetric microfiltration membrane of .6 or more. FIG. 2 shows an electron micrograph of the secondary surface phase.
[0023]
[Comparative Example 2]
The microfiltration membrane produced in Comparative Example 1 was cut into 10 cm square, and a polyester laminate film coated with a polyester adhesive on both sides was attached using an electric iron.
Subsequently, the laminate film on the secondary side surface was fixed, and the laminate film on the primary side surface was peeled off, whereby the primary side surface of the microfiltration membrane was scraped off together with the laminate film. Furthermore, after immersing a microfiltration membrane whose secondary side surface is in an adhesive state with the laminate film in a water bath and thoroughly moistening, the secondary side laminate film is peeled off and dried to obtain a microporous membrane. It was.
[0024]
[Example 1]
The microfiltration membrane produced in Comparative Example 1 was cut into 10 cm square, and a polyester laminate film coated with a polyester adhesive on both sides was attached using an electric iron.
Subsequently, the laminate film on the primary side surface was fixed, and the laminate film on the secondary side surface was peeled off, whereby the secondary side surface of the microfiltration membrane was scraped off together with the laminate film. Further, a microfiltration membrane having a primary surface bonded to the laminate film was immersed in a water bath and sufficiently wetted, and then the primary laminate film was peeled off and dried to obtain a microporous membrane. FIG. 3 shows a surface phase obtained by scraping the secondary surface layer, and FIG. 4 shows electron micrographs of the primary surface layer phase.
[0025]
[Example 2]
A polyester laminate film in which a polyester-based adhesive was applied to both sides of the microporous membrane prepared in Example 1 was attached again using an electric iron.
Next, the laminate film on the secondary side surface was fixed, the laminate film on the primary side surface was peeled off, and the primary side surface was scraped off together with the laminate film. FIG. 5 shows an electron micrograph of the surface phase obtained by scraping the primary surface layer. And further, after dipping the microfiltration membrane whose secondary side surface, whose porosity has already been increased, in the bonded state with the laminate film in a water bath and sufficiently moistening, peel off the secondary side laminate film and dry it. As a result, a microporous membrane having a high open area ratio on both surfaces was obtained.
[0026]
[Performance evaluation results of Comparative Examples 1 and 2 and Examples 1 and 2]
Table 1 shows the film thickness of the sample punched to φ47 mm, the results of sterilization performance by Brevundimonas diminuta, the filtration rate of water under reduced pressure of 52 cmHg, and the filtration life of the sample punched to φ25 mm.
[0027]
[Table 1]
Figure 0003889872
[0028]
As shown in Table 1, although the microfiltration membrane in which the primary side surface of Comparative Example 2 was scraped off, the filtration life was extended, but the improvement in the filtration rate was small, but the porosity on the secondary side surface was increased. The microfiltration membrane of Example 1 was able to improve both the filtration rate and the filtration life. Further, the filtration life could be remarkably improved by scraping off the primary surface layer of the microfiltration membrane and increasing the porosity on both surfaces (Example 2).
[0029]
【The invention's effect】
As described above, the microporous membrane of the present invention uniformly scrapes the secondary surface layer or both surface layers while maintaining a film thickness substantially equal to the base microfiltration membrane, and the surface has pores. By using a surface layer with an infinite number of open pores, it is possible to improve the filtration rate and the filtration life while maintaining the capturing efficiency of particles and the like.
Even in the production method for obtaining the microporous membrane, the microfiltration membrane itself is not damaged, and the efficiency is economically ensured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a winding process of the present invention.
FIG. 2 is an electron micrograph at a magnification of 2,000 times of a secondary surface phase of a microfiltration membrane.
FIG. 3 is an electron micrograph at a magnification of 2,000 times of the surface phase of the microporous membrane of the present invention in which the secondary surface layer is scraped off.
FIG. 4 is an electron micrograph at a magnification of 2,000 times of a primary surface phase of a microfiltration membrane.
FIG. 5 is an electron micrograph at a magnification of 2,000 times of the surface phase of the microporous membrane of the present invention in which the primary surface layer is scraped off.
[Explanation of symbols]
1 First sheet support 2 Microfiltration membrane

Claims (2)

平滑で隙間なく全面が密着する表面を有するシ−ト支持体を精密濾過膜の両表面に夫々接着剤や加熱により貼り付け、一度一方のシ−ト支持体を固定して、他方のシート支持体を前記精密濾過膜の表面層と共に毟り取って、その表面に再度別の前記シート支持体を接着剤や加熱により貼り付け、次いで再度貼り付けたシート支持体を固定して他方のシ−ト支持体を前記精密濾過膜の表面層と共に毟り取り、更に再度貼り付けたシ−ト支持体をその接着力を溶媒により無効として精密濾過膜からその表面相を変化させることなく剥離して成る微多孔質膜の製造方法。A sheet support having a smooth and tightly-fitting surface is adhered to both surfaces of the microfiltration membrane by adhesive or heating, and one sheet support is fixed once and the other sheet is supported. The body is scraped off together with the surface layer of the microfiltration membrane, and another sheet support is attached to the surface again by an adhesive or heat, and then the sheet support is again attached and the other sheet is fixed. The support is scraped off together with the surface layer of the microfiltration membrane, and the sheet substrate that has been re-applied is peeled off from the microfiltration membrane without changing its surface phase with the adhesive force being invalidated by a solvent. A method for producing a porous membrane. 請求項1記載の微多孔質膜の製造方法により製造された微多孔質膜であって、精密濾過膜の開孔率の低い二次側の表面層と、開孔率の比較的高い一次側の表面層を毟り取って成り、両表面層とも開孔率をより高めたことを特徴とする微多孔質膜。A microporous membrane produced by the method for producing a microporous membrane according to claim 1, wherein the microfiltration membrane has a secondary surface layer having a low porosity and a primary side having a relatively high porosity. A microporous membrane obtained by scraping the surface layer, and having a higher porosity in both surface layers.
JP35240597A 1997-12-05 1997-12-05 Manufacturing method of microporous membrane and microporous membrane by the manufacturing method Expired - Lifetime JP3889872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35240597A JP3889872B2 (en) 1997-12-05 1997-12-05 Manufacturing method of microporous membrane and microporous membrane by the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35240597A JP3889872B2 (en) 1997-12-05 1997-12-05 Manufacturing method of microporous membrane and microporous membrane by the manufacturing method

Publications (2)

Publication Number Publication Date
JPH11165050A JPH11165050A (en) 1999-06-22
JP3889872B2 true JP3889872B2 (en) 2007-03-07

Family

ID=18423852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35240597A Expired - Lifetime JP3889872B2 (en) 1997-12-05 1997-12-05 Manufacturing method of microporous membrane and microporous membrane by the manufacturing method

Country Status (1)

Country Link
JP (1) JP3889872B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497977B1 (en) * 1999-11-30 2002-12-24 Ballard Power Systems Inc. Method of making stripped porous polymer films
US10294267B2 (en) * 2013-12-04 2019-05-21 Pall Corporation Membrane with surface channels

Also Published As

Publication number Publication date
JPH11165050A (en) 1999-06-22

Similar Documents

Publication Publication Date Title
US5096637A (en) Membrane, process and system for isolating virus from solution
JP7348196B2 (en) Pleated self-supporting porous block copolymer material and method for producing the same
TWI576148B (en) Membrane with plurality of charges
JP3424953B2 (en) Method for producing a porous polymer product from a non-porous polymer composition and the product
EP2604329B1 (en) Membrane with localized asymmetries
JPS6227006A (en) Microporous membrane
JPH07507237A (en) supported microporous membrane
JPS61268314A (en) Filter and its preparation
US5186833A (en) Composite metal-ceramic membranes and their fabrication
WO2006119251A3 (en) Ultrathin porous nanoscale membranes, methods of making, and uses thereof
JP2015165009A (en) Porous polymeric membrane with high void volume
JP2003093853A (en) Structuralized membrane
JP2961629B2 (en) Manufacturing method of microfiltration membrane
JPH07192962A (en) Production of ceramic green sheet with supporting film
US7033641B2 (en) Gas separating unit and method for manufacturing the same
JP3889872B2 (en) Manufacturing method of microporous membrane and microporous membrane by the manufacturing method
RU97103554A (en) METHOD OF OBTAINING COMPOSITE POLYMER PERFORATING MEMBRANES
JP2001276558A (en) Hydrogen gas separation unit and method of manufacturing it
JP2000042385A (en) Production of sheet type separation membrane
JP3680195B2 (en) Method for producing porous membrane
JP5966173B2 (en) Membrane with surface channel
WO1999022843A1 (en) Laminated metallized membrane filter
JP2006081969A (en) Combined separation membrane and its producing method
WO2022195967A1 (en) Separation membrane and method for manufacturing separation membrane
JP2005291527A (en) Method of manufacturing heat exchange base board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151208

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term