JP3887866B2 - Cubicle type gas insulated switchgear - Google Patents

Cubicle type gas insulated switchgear Download PDF

Info

Publication number
JP3887866B2
JP3887866B2 JP04020297A JP4020297A JP3887866B2 JP 3887866 B2 JP3887866 B2 JP 3887866B2 JP 04020297 A JP04020297 A JP 04020297A JP 4020297 A JP4020297 A JP 4020297A JP 3887866 B2 JP3887866 B2 JP 3887866B2
Authority
JP
Japan
Prior art keywords
insulated switchgear
gas insulated
type gas
circuit breaker
cubicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04020297A
Other languages
Japanese (ja)
Other versions
JPH10243508A (en
Inventor
恵次 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP04020297A priority Critical patent/JP3887866B2/en
Publication of JPH10243508A publication Critical patent/JPH10243508A/en
Application granted granted Critical
Publication of JP3887866B2 publication Critical patent/JP3887866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はキュービクル形ガス絶縁開閉装置に関し、縮小化を図ったものである。
【0002】
【従来の技術】
66/77KVのガス絶縁開閉装置(以下、単にGISという)には、主として電力会社で用いる管路形GISと、主として民間で用いるキュービクル形GIS(以下、単にC−GISという)との2種類がある。そして、後者のC−GISには製品の形態によって列盤形とユニット(箱)形とがある。
【0003】
GISの種類としては、従来例1〜4に示すものがある。
【0004】
従来例1に係るニューパッケージ形のGISを図12に示す。図12(a),(b)は受電部、図12(c),(d)は変圧器一次部、図12(e),(f)はPCT部を示すものである。図12中、1は管路からなる管路部、2はGCB等を操作する操作部、3は表面パネルである。図中、BUSは母線、ESは接地開閉器、LAは避雷器、GCBはガス遮断器、EDSは接地開閉器付断路器、PCTは取引計器用変圧変流器、TRは変圧器である。
【0005】
次に、従来例2に係る列盤形のGISを図13(a),(b),(c)に示す。図13(a)に示すように、受電ユニット4,5とPCTユニット6とが配置され、図13(b)に示す受電ユニット4,5や図13(c)に示すPCTユニット6は、筺体7,8内に機器を収容して絶縁ガスを充填するとともに、仕切板9,10等を設けたものである。各ユニット間は電力ケーブルを介して接続されている。図中、DSは断路器、VCBは真空遮断器、BCTは貫通形変流器、VDは電圧検知器、CHDはケーブルヘッド、CTは変流器である。
【0006】
次に、従来例3に係る列盤形のGISを図14(a),(b)に示す。図14(a)は受電盤、図14(b)は変圧器一次盤である。図のように圧力容器である円弧状矩形容器11〜14内に機器が収容され、これらが化粧外壁15,16によって被われて二重構造になっている。
【0007】
最後に、従来例4に係る相分離形のGISを図15に示す。これは、遮断器の操作箱17を表面板とし、一相ずつの絶縁母線としたものである。
【0008】
【発明が解決しようとする課題】
ところが、従来例2に係るGISでは、各ユニット間を電力ケーブルで接続するため、電力ケーブルの端末処理が必要であり、コスト高になる。また、長期信頼性に劣る。従来例3に係るGISでは、圧力容器の外側を化粧外壁で被う二重構造であるため、コスト高になる。このほか、従来例2,3に係るGISに共通する事項として、いずれも絶縁スペーサの両面が水平面と平行に設定されているために絶縁スペーサの外面に異物が付着して絶縁破壊を生じ易く、従来例3では断路器の開閉に伴う金属性微粉の影響を受ける位置に絶縁スペーサが配置されているため信頼性向上のための対策に逆行している。更に、従来例2,3に係るGISについて、断路器,遮断器等の機器を一括して圧力容器に収容した技術力は優れているが、万が一地絡などの事故が生じると、収納した機器の全てが影響を受けることになり、復旧に長時間を要する。また、従来の小形のキュービクル形ガス絶縁開閉装置では不可能であったガス区分を容易に行うことができるようにした。
【0009】
そこで本発明は、斯かる課題を解決したキュービクル形ガス絶縁開閉装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、筺体の内部に絶縁スペーサを介して隔壁を貫通する主回路導体を設け、当該主回路導体に断路器を設けたキュービクル形ガス絶縁開閉装置において、
前記絶縁スペーサとして前記隔壁を気密に貫通する略有底筒形状の絶縁筒を設け、当該絶縁筒の底部を気密に貫通する固定側導体を設ける一方、絶縁筒の開口部側には可動側導体を設け、可動側導体に対して摺動自在な可動棒を固定側導体に接離自在に設けるとともに可動棒を駆動手段に連動連結して前記断路器を構成し、前記断路器に接続された遮断器の端子を前記可動側導体として前記遮断器と前記断路器を一体化して遮断器室に組み込み、この遮断器室に絶縁ガスを充填した。
【0011】
【発明の実施の形態】
以下、本発明を図面に示す実施例に基づいて詳細に説明する。
【0012】
(a)実施例1
本発明によるキュービクル形ガス絶縁開閉装置の実施例1を、図1,5,8〜11に示す。図1はキュービクル形ガス絶縁開閉装置の単線結線図であり、図5(a)はキュービクル形ガス絶縁開閉装置の正面図、図5(b)は右側面図である。図5に示すように、PCTユニット20を中心として左右に受電ユニット21と変圧器一次ユニット22とが配置され、右側には更に母線連絡ユニット23が設けられている。
【0013】
まず、受電ユニット21の構造を図8に示す。筺体19の内部が隔壁27,28,29,30によって仕切られ、母線室24,引込室25,遮断器室26が形成されるとともに、これらの3つの空間には絶縁ガスが充填されている。引込室25の左側には、キュービクル形ガス絶縁開閉装置として受電するためのケーブルヘッドCHDが設けられる一方、母線室24内には母線BUSが設けられ、両者間が真空遮断器VCB等を介して接続されている。
【0014】
ここで、真空遮断器VCBの下側に設けた断路器DSは、以下のように構成されている。絶縁スペーサを兼用する有底筒形状の絶縁筒33が隔壁30を気密に貫通した状態で設けられ、絶縁筒33の底部を気密に貫通する固定側導体34が設けられる。固定側導体34はケーブルヘッドCHDに接続される一方、可動側導体を兼用する真空遮断器VCBの可動側端子35に可動棒36が摺動自在に挿通され、可動棒36の左端が固定側導体34に接離自在に設けられている。真空遮断器VCBの上側にも同様にして絶縁筒37,固定側導体38,固定側端子39,可動棒40が設けられ、断路器DSを構成している。
【0015】
このほか、図8中の左方へ接地用ロッド41,42を突出させて固定側端子39,可動側端子35に当接させることにより接地を行うための接地開閉器ESが真空遮断器VCBの右側の上下に設けられている。
【0016】
真空遮断器VCBの右側には操作部43が設けられ、操作部43には真空遮断器VCBを駆動する駆動手段と、上下の断路器DSにおける可動棒40,36を駆動する駆動手段と、上下の接地開閉器ESにおける接地用ロッド41,42を駆動する駆動手段とが設けられる。
【0017】
筺体の前面には表面パネル32が設けられる一方、裏面には裏面パネル31が設けられ、隔壁28と裏面パネル31との間には取引計器用変圧変流器PCTを流れたあとに変圧器TRへ向かって流れる電流の流路を形成する負荷母線BUSが収容される。
【0018】
次に、変圧器一次ユニット22の構造を図9に基づいて説明する。受電ユニット21と同様にして水平方向へ長い隔壁27により筺体19の内部が上下に仕切られ、引込室25内の接地開閉器ESと避雷器LAとを取り除いたほかは、隔壁27より下方は受電ユニット21と同じ構成になっている。一方、隔壁27より上方では隔壁28が前面側に配置され、後面側の母線室24には母線BUSが配置されている。母線室24の上方には絶縁ガスを充填した接地用電圧変流器GPTが設けられ、母線室24内の固定側導体38に接続されている。なお、プラスチックフィルム絶縁の接地用電圧変流器GPTを用いる場合は、小形であるため筺体19内の隔壁27の上方に配置することができる。また、接地用電圧変流器GPTが不要な回路に適用する場合は、これを取り除いて筺体19の上には何も載らない状態にする。変圧器TRとの接続はケーブルヘッドCHDに接続したケーブルを介して行われるが、絶縁母線を介して直結する場合は隔壁29とケーブルヘッドCHDとを取り除き、裏面パネル31に絶縁母線用の管路を取り付ける。
【0019】
次に、PCTユニット20の構造を図10に基づいて説明する。図のように隔壁44,45によって筺体19の上部の左右に母線室46が形成され、母線BUSが収容されている。一方、隔壁44の下方には取引計器用変圧変流器PCTが収容されており、取引計器用変圧変流器PCTが断路器DS,接地開閉器ESを介して個別に左右の母線BUSに接続されている。断路器DSとしては前記と同様に絶縁スペーサを兼用する絶縁筒を用いたものが使用されている。接地開閉器ESとしては可動側導体18へ向かって上方から当接する接地用ロッド47を有するものが用いられる。そして、筺体19の上にはレバー48を介して断路器DSの可動棒40を水平方向へ移動させるとともに接地用ロッド47を上下動させる操作部49が設けられる。なお、断路器DS,接地開閉器ESを必要としない場合は、絶縁筒を従来の絶縁スペーサに変更すればよい。
【0020】
次に、母線連結ユニット23を図11に基づいて説明する。図11(a)のように隔壁51により筺体19が上下に仕切られ、更に隔壁50により上部の空間が左右に仕切られている。図11(a)における上部の左右の空間には、紙面と直角な方向へ向かって三相分の主回路導体52,53が夫々設けられ、主回路導体52,53の間には一対の断路器DSと単一の接地開閉器ESとが設けられている。図11(a)のように取付壁54に前記と同様にして絶縁スペーサを兼用する絶縁筒を有する一対の断路器DSが取り付けられ、固定側導体38は主回路導体53,52に個別に接続されている。一方、可動側導体18どうしは接続導体55を介して接続されている。上下のDSを操作する操作部56,57が設けられ、操作部56,57はレバー58,59を介して可動棒40に夫々連結されている。操作部56にのみ可動側導体18に接離する接地用ロッド60が連動連結され、接地開閉器ESを構成している。
【0021】
図11に示す母線連結ユニット23では、図1に示す変圧器一次ユニット22の内部に取り付ける接地用変圧変流器GPTや、電源側のGPT取付け要求位置である図1のQの位置に接続する接地用電圧変流器GPTを、図11に仮想線で示すように筺体19の下部に収容することが可能である。なお、図1の23で示す位置に断路器や接地開閉器を設けない構成のキュービクル形ガス絶縁開閉装置では母線連結ユニット23は使用しないことになる。
【0022】
最後に、図1のPCTバイパス回路61について説明する。このPCTバイパス回路61は、図11(a)において取付壁54に取り付けたのと同様の断路器DSと接地開閉器ESとを図8における隔壁28に取り付け、図8において隔壁28を挟む位置に配置された母線BUSどうしを断路器DSと接地開閉器ESとを介して接続したものであるが、図示省略する。
【0023】
次に、斯かるキュービクル形ガス絶縁開閉装置の作用を説明する。図8,図9の受電ユニット21,変圧器一次ユニット22においては、遮断器室26内の真空遮断器VCBと断路器DSと接地開閉器ESと操作部43とが一体に構成されてDS・ES付遮断器になっている。そのため、遮断器室26内へ予め絶縁ガスを充填することができることになり、キュービクル形ガス絶縁開閉装置に必要なガス区分が容易なことから、JEMA規格のC形(キュービクル形)やM形(メタルクラッド形)のガス絶縁開閉装置に対応できる。また、M形の従来のキュービクル形ガス絶縁開閉装置においては隔壁に絶縁スペーサを取り付ける一方、別個に取り付けた断路器と遮断器とを接続するが、本発明では絶縁スペーサと断路器とが一体化されることにより小形化されている。更に、絶縁スペーサを兼用する絶縁筒を貫通する固定側導体と真空遮断器の端子との間を接続・断路する可動棒を設けて断路器を構成するので、断路器を構成する部品を別個に設ける必要がなく、部品数の低減化と低コスト化と省スペース化につながる。
【0024】
このほか、図8,9に示すように、母線BUSは電源母線を表面パネル32側に、負荷母線を裏面パネル31側に、夫々鉛直方向へ並べて配置したので、電源側,負荷側間のスペースを有効利用できる。即ち、主回路導体の接続作業が容易になると同時に接地用変圧変流器GPT等の取り付けが可能になる。
【0025】
変圧器一次ユニット22においては、図9に示すように接地用変圧変流器GPTを筺体19の上に設けているため、別個にGPTユニットを設ける必要がない。更に、真空遮断器VCBの点検時は左下の断路器DSを開にして真空遮断器VCBと変圧器TRとを分離することができる。
【0026】
(b)実施例2,3,4
実施例2のキュービクル形ガス絶縁開閉装置の単線結線図を図2に示し、外観図を図6に示す。実施例3のキュービクル形ガス絶縁開閉装置の単線結線図を図3に示し、外観図を図7に示す。そして、実施例4のキュービクル形ガス絶縁開閉装置の単線結線図を図4に示す。ここで、受電ユニット21と変圧器一次ユニット22との位置を入れ替えてもよい。
【0027】
実施例2〜4は、実施例1における各ユニット内の機器をアレンジして接続することにより構成することができる。
【0028】
【発明の効果】
以上の説明からわかるように、絶縁スペーサと断路器とを一体化したため、部品数が低減してコストが低減化するとともにキュービクル形ガス絶縁開閉装置の縮小化が可能になる。
【0029】
また、遮断器の端子を可動側導体として用い、遮断器と断路器とを一体化して遮断器室に組み込んで絶縁ガスを充填したので、小形のキュービクル形ガス絶縁開閉装置では不可能であったガス区分が容易になり、C形キュービクルから隔壁を追加したM形キュービクルにすることができる。
【図面の簡単な説明】
【図1】本発明によるキュービクル形ガス絶縁開閉装置の実施例1を示す単線結線図。
【図2】本発明によるキュービクル形ガス絶縁開閉装置の実施例2を示す単線結線図。
【図3】本発明によるキュービクル形ガス絶縁開閉装置の実施例3を示す単線結線図。
【図4】本発明によるキュービクル形ガス絶縁開閉装置の実施例4を示す単線結線図。
【図5】本発明によるキュービクル形ガス絶縁開閉装置の実施例1に係り、(a)は正面図、(b)は右側面図。
【図6】本発明によるキュービクル形ガス絶縁開閉装置の実施例2に係り、(a)は正面図、(b)は右側面図。
【図7】本発明によるキュービクル形ガス絶縁開閉装置の実施例3に係り、(a)は正面図、(b)は右側面図。
【図8】本発明によるキュービクル形ガス絶縁開閉装置の実施例1に係り、受電ユニットの構成図。
【図9】本発明によるキュービクル形ガス絶縁開閉装置の実施例1に係り、変圧器一次ユニットの構成図。
【図10】本発明によるキュービクル形ガス絶縁開閉装置の実施例1に係り、PCTユニットの構成図。
【図11】本発明によるキュービクル形ガス絶縁開閉装置の実施例1における母線連絡ユニットに係り、(a)は左半分を示す正面図、(b)は(a)の左側面図。
【図12】従来例1によるGISに係り、(a)は受電部の側面図、(b)は受電部の正面図、(c)は変圧器一次部の側面図、(d)は変圧器一次部の正面図、(e)はPCT部の側面図、(f)はPCT部の正面図。
【図13】従来例2によるGISに係り、(a)は外観斜視図、(b)は受電ユニットの構成図、(c)はPCTユニットの構成図。
【図14】従来例3によるGISに係り、(a)は受電盤の構成図、(b)は変圧器一次盤の構成図。
【図15】従来例4によるGISの斜視図。
【符号の説明】
18…可動側導体
19…筺体
27,30,45…隔壁
33,37…絶縁筒
34,38…固定側導体
35…可動側端子
36,40…可動棒
39…固定側端子
43,49,56,57…操作部
54…取付壁
DS…断路器
VCB…真空遮断器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cubicle type gas insulated switchgear and is intended to be reduced in size.
[0002]
[Prior art]
There are two types of 66/77 KV gas insulated switchgear (hereinafter simply referred to as GIS): a pipe-type GIS mainly used by electric power companies and a cubicle-type GIS (hereinafter simply referred to as C-GIS) mainly used by the private sector. is there. The latter C-GIS has a row type and a unit (box) type depending on the form of the product.
[0003]
As types of GIS, there are those shown in Conventional Examples 1 to 4.
[0004]
A new package type GIS according to Conventional Example 1 is shown in FIG. 12A and 12B show the power receiving unit, FIGS. 12C and 12D show the primary part of the transformer, and FIGS. 12E and 12F show the PCT unit. In FIG. 12, 1 is a pipe line part made of a pipe line, 2 is an operation part for operating the GCB and the like, and 3 is a surface panel. In the figure, BUS is a bus, ES is a grounding switch, LA is a lightning arrester, GCB is a gas circuit breaker, EDS is a disconnector with a grounding switch, PCT is a current transformer for a trading instrument, and TR is a transformer.
[0005]
Next, a row-type GIS according to Conventional Example 2 is shown in FIGS. 13 (a), (b), and (c). As shown in FIG. 13A, the power receiving units 4 and 5 and the PCT unit 6 are arranged. The power receiving units 4 and 5 shown in FIG. 13B and the PCT unit 6 shown in FIG. 7 and 8 are housed with equipment and filled with an insulating gas, and partition plates 9 and 10 are provided. Each unit is connected via a power cable. In the figure, DS is a disconnector, VCB is a vacuum circuit breaker, BCT is a feedthrough current transformer, VD is a voltage detector, CHD is a cable head, and CT is a current transformer.
[0006]
Next, FIG. 14 (a) and 14 (b) show a row-type GIS according to Conventional Example 3. FIG. FIG. 14A shows a power receiving board, and FIG. 14B shows a transformer primary board. As shown in the figure, the devices are accommodated in arc-shaped rectangular containers 11 to 14 which are pressure containers, and these are covered by the decorative outer walls 15 and 16 to form a double structure.
[0007]
Finally, a phase-separated GIS according to Conventional Example 4 is shown in FIG. In this case, the operation box 17 of the circuit breaker is used as a surface plate, and an insulating bus bar is formed for each phase.
[0008]
[Problems to be solved by the invention]
However, in the GIS according to Conventional Example 2, each unit is connected by a power cable, so that terminal processing of the power cable is necessary and the cost increases. Moreover, it is inferior to long-term reliability. The GIS according to Conventional Example 3 has a double structure in which the outer side of the pressure vessel is covered with a decorative outer wall, which increases the cost. In addition, as a matter common to the GIS according to the conventional examples 2 and 3, since both surfaces of the insulating spacer are set parallel to the horizontal plane, foreign matter is likely to adhere to the outer surface of the insulating spacer and easily cause dielectric breakdown. In Conventional Example 3, since the insulating spacer is disposed at the position affected by the metallic fine powder accompanying the opening / closing of the disconnector, the countermeasure for improving the reliability is reversed. Furthermore, regarding the GIS according to the conventional examples 2 and 3, the technical capability of collectively storing devices such as disconnectors and circuit breakers in a pressure vessel is excellent, but if an accident such as a ground fault occurs, the stored devices Will all be affected and will take a long time to recover. In addition, it is possible to easily perform gas classification, which is impossible with a conventional small cubicle type gas insulated switchgear.
[0009]
Therefore, an object of the present invention is to provide a cubicle type gas insulated switchgear that solves such a problem.
[0010]
[Means for Solving the Problems]
The present invention provides a cubicle type gas insulated switchgear in which a main circuit conductor that penetrates a partition wall through an insulating spacer is provided inside a housing, and a disconnector is provided in the main circuit conductor.
As the insulating spacer, an insulating tube having a substantially bottomed cylindrical shape that airtightly penetrates the partition wall is provided, and a fixed-side conductor that airtightly penetrates the bottom of the insulating tube is provided, while a movable-side conductor is provided on the opening side of the insulating tube. A movable rod slidable with respect to the movable-side conductor is provided so as to be able to contact with and separate from the fixed-side conductor, and the movable rod is linked to driving means to constitute the disconnector, and is connected to the disconnector the terminals of the circuit breaker viewed write set in the circuit breaker and the circuit breaker chamber by integrating the disconnecting switch as the movable side conductor and filled with an insulating gas in the circuit breaker compartment.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
[0012]
(A) Example 1
A cubicle type gas insulated switchgear according to a first embodiment of the present invention is shown in FIGS. FIG. 1 is a single line connection diagram of a cubicle type gas insulated switchgear, FIG. 5 (a) is a front view of the cubicle type gas insulated switchgear, and FIG. 5 (b) is a right side view. As shown in FIG. 5, a power receiving unit 21 and a transformer primary unit 22 are arranged on the left and right with the PCT unit 20 as the center, and a bus bar connecting unit 23 is further provided on the right side.
[0013]
First, the structure of the power receiving unit 21 is shown in FIG. The interior of the housing 19 is partitioned by partition walls 27, 28, 29, and 30 to form a busbar chamber 24, a drawing chamber 25, and a circuit breaker chamber 26, and these three spaces are filled with an insulating gas. A cable head CHD for receiving power as a cubicle-type gas insulated switchgear is provided on the left side of the drawing chamber 25, while a bus BUS is provided in the bus chamber 24, and a vacuum bus breaker VCB or the like is provided between the two. It is connected.
[0014]
Here, the disconnector DS provided below the vacuum circuit breaker VCB is configured as follows. A bottomed cylindrical insulating cylinder 33 that also serves as an insulating spacer is provided in a state of airtightly penetrating the partition wall 30, and a fixed-side conductor 34 that airtightly penetrates the bottom of the insulating cylinder 33 is provided. The fixed side conductor 34 is connected to the cable head CHD, while the movable bar 36 is slidably inserted into the movable side terminal 35 of the vacuum circuit breaker VCB that also serves as the movable side conductor, and the left end of the movable bar 36 is the fixed side conductor. 34 is detachably provided. Similarly, an insulating cylinder 37, a fixed-side conductor 38, a fixed-side terminal 39, and a movable rod 40 are provided on the upper side of the vacuum circuit breaker VCB to constitute a disconnector DS.
[0015]
In addition, the grounding switch ES for grounding by projecting the grounding rods 41 and 42 to the left in FIG. 8 and bringing them into contact with the fixed side terminal 39 and the movable side terminal 35 is the vacuum circuit breaker VCB. It is provided above and below the right side.
[0016]
An operation unit 43 is provided on the right side of the vacuum circuit breaker VCB. The operation unit 43 includes a driving unit that drives the vacuum circuit breaker VCB, a driving unit that drives the movable rods 40 and 36 in the upper and lower disconnectors DS, Drive means for driving the grounding rods 41 and 42 in the grounding switch ES.
[0017]
A front panel 32 is provided on the front surface of the housing, and a back panel 31 is provided on the back surface. A transformer TR is passed between the partition wall 28 and the back panel 31 after flowing through a transformer current transformer PCT for transaction instruments. A load bus BUS that forms a flow path of a current that flows toward is accommodated.
[0018]
Next, the structure of the transformer primary unit 22 will be described with reference to FIG. Similar to the power receiving unit 21, the inside of the housing 19 is vertically divided by a partition wall 27 that is long in the horizontal direction, and the power receiving unit is below the partition wall 27 except that the grounding switch ES and the lightning arrester LA in the lead-in chamber 25 are removed. The configuration is the same as 21. On the other hand, a partition 28 is disposed on the front side above the partition 27, and a bus BUS is disposed in the bus chamber 24 on the rear side. Above the busbar chamber 24, a grounding voltage current transformer GPT filled with an insulating gas is provided and connected to the fixed conductor 38 in the busbar chamber 24. In addition, when using the grounding voltage current transformer GPT of a plastic film insulation, since it is small, it can be arranged above the partition wall 27 in the housing 19. Further, when the grounding voltage current transformer GPT is applied to an unnecessary circuit, this is removed so that nothing is placed on the housing 19. The connection with the transformer TR is made through a cable connected to the cable head CHD. However, when the connection is made directly through the insulated bus, the partition wall 29 and the cable head CHD are removed, and the conduit for the insulated bus is connected to the rear panel 31. Install.
[0019]
Next, the structure of the PCT unit 20 will be described with reference to FIG. As shown in the figure, bus bars 46 are formed on the left and right of the upper portion of the housing 19 by the partition walls 44 and 45, and the bus bar BUS is accommodated. On the other hand, a transformer for current transformer PCT for transaction instruments is accommodated below the partition wall 44, and the transformer for current transformer PCT for transaction instruments is individually connected to the left and right buses BUS via the disconnect switch DS and the ground switch ES. Has been. As the disconnector DS, a switch using an insulating cylinder that also serves as an insulating spacer is used. As the ground switch ES, one having a grounding rod 47 that comes into contact with the movable conductor 18 from above is used. An operation unit 49 is provided on the housing 19 for moving the movable rod 40 of the disconnector DS in the horizontal direction via the lever 48 and moving the grounding rod 47 up and down. In addition, what is necessary is just to change an insulation cylinder to the conventional insulation spacer, when the disconnecting switch DS and the earthing switch ES are not required.
[0020]
Next, the busbar connection unit 23 will be described with reference to FIG. As shown in FIG. 11A, the casing 19 is vertically partitioned by the partition 51, and the upper space is partitioned left and right by the partition 50. In the upper left and right spaces in FIG. 11A, three-phase main circuit conductors 52 and 53 are provided in a direction perpendicular to the paper surface, respectively, and a pair of disconnections are provided between the main circuit conductors 52 and 53. A device DS and a single ground switch ES are provided. As shown in FIG. 11A, a pair of disconnecting devices DS having an insulating cylinder also serving as an insulating spacer is attached to the mounting wall 54 in the same manner as described above, and the fixed-side conductor 38 is individually connected to the main circuit conductors 53 and 52. Has been. On the other hand, the movable side conductors 18 are connected to each other through a connection conductor 55. Operation units 56 and 57 for operating the upper and lower DSs are provided, and the operation units 56 and 57 are connected to the movable rod 40 via levers 58 and 59, respectively. A grounding rod 60 that contacts and separates from the movable conductor 18 only in conjunction with the operation unit 56 is linked and constitutes a grounding switch ES.
[0021]
In the bus bar connecting unit 23 shown in FIG. 11, it is connected to the grounding transformer current transformer GPT attached to the inside of the transformer primary unit 22 shown in FIG. 1 or the position Q in FIG. The grounding voltage current transformer GPT can be accommodated in the lower part of the housing 19 as indicated by a virtual line in FIG. Note that the bus-bar connecting unit 23 is not used in a cubicle type gas insulated switchgear in which a disconnector or a ground switch is not provided at a position indicated by 23 in FIG.
[0022]
Finally, the PCT bypass circuit 61 of FIG. 1 will be described. In this PCT bypass circuit 61, a disconnector DS and a grounding switch ES similar to those attached to the attachment wall 54 in FIG. 11A are attached to the partition wall 28 in FIG. 8, and at a position sandwiching the partition wall 28 in FIG. The arranged buses BUS are connected to each other through a disconnect switch DS and a ground switch ES, but are not shown.
[0023]
Next, the operation of the cubicle type gas insulated switchgear will be described. In the power receiving unit 21 and the transformer primary unit 22 shown in FIGS. 8 and 9, the vacuum circuit breaker VCB, the disconnect switch DS, the ground switch ES, and the operation unit 43 in the circuit breaker chamber 26 are integrally formed to form the DS · It is a breaker with ES. Therefore, the circuit breaker chamber 26 can be filled with an insulating gas in advance, and the gas classification required for the cubicle type gas insulated switchgear is easy, so that the JEMA standard C type (cubic type) and M type ( (Metal clad type) gas insulated switchgear. In addition, in the conventional cubicle type gas insulated switchgear, an insulating spacer is attached to the partition wall, while a separately attached disconnector and breaker are connected. In the present invention, the insulating spacer and disconnector are integrated. Has been miniaturized. Furthermore, the disconnector is configured by providing a movable rod that connects / disconnects between the fixed-side conductor that penetrates the insulating cylinder that also serves as an insulating spacer and the terminal of the vacuum circuit breaker. There is no need to provide this, leading to a reduction in the number of parts, cost reduction, and space saving.
[0024]
In addition, as shown in FIGS. 8 and 9, the bus BUS is arranged with the power bus on the front panel 32 side and the load bus on the back panel 31 side by side in the vertical direction. Can be used effectively. That is, the connection operation of the main circuit conductor is facilitated, and at the same time, the grounding current transformer GPT and the like can be attached.
[0025]
In the transformer primary unit 22, since the grounding transformer current transformer GPT is provided on the housing 19 as shown in FIG. 9, it is not necessary to provide a separate GPT unit. Further, when checking the vacuum circuit breaker VCB, the lower left disconnector DS can be opened to separate the vacuum circuit breaker VCB from the transformer TR.
[0026]
(B) Examples 2, 3, and 4
A single wire connection diagram of the cubicle type gas insulated switchgear according to the second embodiment is shown in FIG. 2, and an external view is shown in FIG. A single line connection diagram of the cubicle type gas insulated switchgear of Example 3 is shown in FIG. 3, and an external view is shown in FIG. And the single wire connection diagram of the cubicle type gas insulated switchgear of Example 4 is shown in FIG. Here, the positions of the power receiving unit 21 and the transformer primary unit 22 may be interchanged.
[0027]
The second to fourth embodiments can be configured by arranging and connecting the devices in each unit in the first embodiment.
[0028]
【The invention's effect】
As understood from the above description, for integrating the insulation spacer and disconnector allows reduction of the cubicle-type gas insulated switchgear as well as reduce the cost by reducing the number of parts.
[0029]
Further, the terminals of the breakers have use as a movable side conductor, so filled with insulating gas incorporated into the circuit breaker compartment by integrating the circuit breaker and the disconnector, not possible with small cubicle-type gas insulated switchgear This makes it easier to classify the gas, and the C-shaped cubicle can be changed to an M-shaped cubicle with a partition added.
[Brief description of the drawings]
FIG. 1 is a single-line diagram showing a first embodiment of a cubicle type gas insulated switchgear according to the present invention.
FIG. 2 is a single-line diagram showing a second embodiment of the cubicle-type gas insulated switchgear according to the present invention.
FIG. 3 is a single-line diagram showing a third embodiment of the cubicle-type gas insulated switchgear according to the present invention.
FIG. 4 is a single line connection diagram showing a fourth embodiment of a cubicle type gas insulated switchgear according to the present invention.
FIGS. 5A and 5B relate to the first embodiment of the cubicle type gas insulated switchgear according to the present invention, in which FIG. 5A is a front view and FIG. 5B is a right side view;
6A and 6B relate to a second embodiment of the cubicle-type gas insulated switchgear according to the present invention, in which FIG. 6A is a front view, and FIG. 6B is a right side view.
7A and 7B relate to a cubicle type gas insulated switchgear according to a third embodiment of the present invention, in which FIG. 7A is a front view, and FIG. 7B is a right side view.
FIG. 8 is a configuration diagram of a power receiving unit according to the first embodiment of the cubicle type gas insulated switchgear according to the present invention.
FIG. 9 is a configuration diagram of a transformer primary unit according to the first embodiment of the cubicle-type gas insulated switchgear according to the present invention.
FIG. 10 is a configuration diagram of a PCT unit according to the first embodiment of the cubicle-type gas insulated switchgear according to the present invention.
FIGS. 11A and 11B relate to the bus bar connection unit in the cubicle type gas insulated switchgear according to the first embodiment of the present invention, in which FIG. 11A is a front view showing the left half, and FIG. 11B is a left side view of FIG.
12A and 12B are related to GIS according to Conventional Example 1, FIG. 12A is a side view of a power receiving unit, FIG. 12B is a front view of the power receiving unit, FIG. 12C is a side view of a primary part of a transformer, and FIG. The front view of a primary part, (e) is a side view of a PCT part, (f) is a front view of a PCT part.
13A and 13B relate to a GIS according to Conventional Example 2, wherein FIG. 13A is an external perspective view, FIG. 13B is a configuration diagram of a power receiving unit, and FIG. 13C is a configuration diagram of a PCT unit.
14A and 14B are related to GIS according to Conventional Example 3, wherein FIG. 14A is a configuration diagram of a power receiving panel, and FIG. 14B is a configuration diagram of a transformer primary panel.
15 is a perspective view of a GIS according to Conventional Example 4. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 18 ... Movable side conductor 19 ... Housings 27, 30, 45 ... Bulkheads 33, 37 ... Insulating cylinders 34, 38 ... Fixed side conductor 35 ... Movable side terminals 36, 40 ... Movable rod 39 ... Fixed side terminals 43, 49, 56, 57 ... Operation part 54 ... Mounting wall DS ... Disconnector VCB ... Vacuum circuit breaker

Claims (1)

筺体の内部に絶縁スペーサを介して隔壁を貫通する主回路導体を設け、当該主回路導体に断路器を設けたキュービクル形ガス絶縁開閉装置において、
前記絶縁スペーサとして前記隔壁を気密に貫通する略有底筒形状の絶縁筒を設け、当該絶縁筒の底部を気密に貫通する固定側導体を設ける一方、絶縁筒の開口部側には可動側導体を設け、可動側導体に対して摺動自在な可動棒を固定側導体に接離自在に設けるとともに可動棒を駆動手段に連動連結して前記断路器を構成し、前記断路器に接続された遮断器の端子を前記可動側導体として前記遮断器と前記断路器を一体化して遮断器室に組み込み、この遮断器室に絶縁ガスを充填したことを特徴とするキュービクル形ガス絶縁開閉装置。
In the cubicle type gas insulated switchgear in which a main circuit conductor that penetrates the partition wall is provided inside the housing via an insulating spacer, and a disconnector is provided in the main circuit conductor.
As the insulating spacer, an insulating tube having a substantially bottomed cylindrical shape that airtightly penetrates the partition wall is provided, and a fixed-side conductor that airtightly penetrates the bottom of the insulating tube is provided. The movable bar is slidable with respect to the movable side conductor, and the movable bar is connected to and separated from the fixed side conductor, and the movable bar is linked to the driving means to constitute the disconnector, and is connected to the disconnector. the terminals of the circuit breaker are integrated the disconnecting switch and the circuit breaker as the movable side conductor viewed write set circuit breaker chamber, cubicle-type gas insulated switchgear, characterized in that filled with insulating gas into the circuit breaker compartment .
JP04020297A 1997-02-25 1997-02-25 Cubicle type gas insulated switchgear Expired - Fee Related JP3887866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04020297A JP3887866B2 (en) 1997-02-25 1997-02-25 Cubicle type gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04020297A JP3887866B2 (en) 1997-02-25 1997-02-25 Cubicle type gas insulated switchgear

Publications (2)

Publication Number Publication Date
JPH10243508A JPH10243508A (en) 1998-09-11
JP3887866B2 true JP3887866B2 (en) 2007-02-28

Family

ID=12574205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04020297A Expired - Fee Related JP3887866B2 (en) 1997-02-25 1997-02-25 Cubicle type gas insulated switchgear

Country Status (1)

Country Link
JP (1) JP3887866B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002335466A1 (en) * 2002-09-30 2004-04-23 Mitsubishi Denki Kabushiki Kaisha Gas insulated switch
JP4714527B2 (en) * 2005-08-17 2011-06-29 株式会社日本Aeパワーシステムズ High voltage high capacity circuit breaker
JP4624230B2 (en) * 2005-09-30 2011-02-02 三菱電機株式会社 Gas insulated switchgear
JP4738123B2 (en) * 2005-09-30 2011-08-03 三菱電機株式会社 Gas insulated switchgear

Also Published As

Publication number Publication date
JPH10243508A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
TW591834B (en) Insulating gas-filled switch gear
JP3887866B2 (en) Cubicle type gas insulated switchgear
KR100482903B1 (en) Gas-insulated switchgear comprising a three-phase bus bar
JPH11234824A (en) Gas-insulated switchgear
JPH1056709A (en) Cubicle gas insulation switchgear
JPS5915445B2 (en) gas insulated switchgear
TW437136B (en) Gas insulation switching device
JP2572415B2 (en) Gas insulated switchgear
JP3220978B2 (en) Gas insulated switchgear
JPH1189020A (en) Gas insulation switch device
JPH10201021A (en) Gas-insulated switchgear
JPH11127510A (en) Gas insulation switchgear
JP3106354B2 (en) Combined switchgear
JPH07123547A (en) Gas insulated switchgear
JP2000032620A (en) Gas-insulated switchgear
JPS5858809A (en) Gas insulated switching device
JP2004215392A (en) Gas insulated switchgear and bus-bar vessel
JP2000083307A (en) Gas-insulated switchgear
JPS60213207A (en) Gas insulated switching device
JPS61189110A (en) Gas insulated switchgear
JPS61112508A (en) Gas insulated switchgear
JPH10201022A (en) Gas-insulated switchgear
JPS605711A (en) Interrupter with grounding device
JPS62225115A (en) Gas insulated switchgear
JPH01214204A (en) Gas insulated switchgear

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees