JP3887777B2 - Governor-free control method and control apparatus for gas turbine power generation equipment - Google Patents

Governor-free control method and control apparatus for gas turbine power generation equipment Download PDF

Info

Publication number
JP3887777B2
JP3887777B2 JP2002245804A JP2002245804A JP3887777B2 JP 3887777 B2 JP3887777 B2 JP 3887777B2 JP 2002245804 A JP2002245804 A JP 2002245804A JP 2002245804 A JP2002245804 A JP 2002245804A JP 3887777 B2 JP3887777 B2 JP 3887777B2
Authority
JP
Japan
Prior art keywords
power generation
gas turbine
signal
governor
turbine power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002245804A
Other languages
Japanese (ja)
Other versions
JP2003239763A (en
Inventor
尚之 永渕
信一 永井
竹原  勲
應之 谷中
武司 石田
雅彦 木村
浩史 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2002245804A priority Critical patent/JP3887777B2/en
Publication of JP2003239763A publication Critical patent/JP2003239763A/en
Application granted granted Critical
Publication of JP3887777B2 publication Critical patent/JP3887777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、系統連系運転を前提とする多軸型コンバインド・ガスタービン発電設備のガバナフリー制御方法およびガバナフリー制御装置に係り、特に、系統周波数の変動を補償するように、かつ発電設備の運転状態を安定に保ちながら、燃料量指令信号を調整する制御方法及び装置に関する。
【0002】
【従来の技術】
従来、火力発電設備での系統連系運転は、以下の様に実施されている。微粉炭焚汽力発電では、ボイラの持つ熱容量が大きいため、系統周波数変動に応じて蒸気タービン供給蒸気量を調整することによりガバナフリー運転を実施しているが、ガスタービン発電設備のボイラに相当する燃焼器では、燃焼反応によって得られる高温・高圧の燃焼ガスを短時間で膨張させることにより動力回収する機械のため、投入燃料量制御により、系統周波数調整を実施している。
【0003】
更に、微粉炭焚及びガスタービン発電設備では、タービン回転軸と発電機とが連結されているため、系統周波数の変動に応じて発電設備の負荷も変動することになる。例えば、系統周波数か低下した場合には回転数も降下することになり、規定の回転数を維持するために、ガスタービン発電設備では、供給燃料量を増加する必要がある。逆に、系統周波数が高くなった場合には、回転数は上昇し、供給燃料量を減少する必要がある。系統周波数の変動周期が数分程度と大きい場合には、周波数制御運転(AFC : Automatic Frequency Contro1)を実施するが、ガバナフリー運転時には周期が数Hzとなるため、発電設備の制御操作端自体の遅れや燃焼反応の遅れ等により、瞬時に負荷追従できない。特に、多軸型コンバインド発電設備の場合には、対象とする複数台のガスタービン夫々に発電機が連結されている場合が多く、系統周波数変動が、直接ガスタービン回転速度に影響を及ほすこととなる。
【0004】
従来のガバナ制御の方法について説明する。発電設備での実際の出力を示す実MW信号(MW)と、中央給電指令所からの出力指令値のMWD(Mega Watt Demand)信号(MW)との偏差を第1の減算器により計算し、得られた偏差を入力とするアナログメモリーにより、負荷偏差を0とするように負荷の増/減指令を出力する。このアナログメモリーには、予め該当する発電設備が、安定して負荷追従できる変化率が設定されている。このアナログメモリーの出力は、第1のゲイン設定器により、負荷偏差信号(MW)からガスタービンの回転数速度信号(%SPD)に変換された後、第2の減算器へ伝達される。実際の回転数信号(rpm)は、第2のゲイン設定器によって速度信号(%SPD)に変換され、第1の定数設定器に設定された定格回転速度(100%)との偏差を第3の減算器で計算後、前記第2の減算器7へ伝達される。該第2の減算器の出力は、発電設備の調定率を設定した第3のゲイン設定器により速度信号(%SPD)から燃料量指令信号(FFD)へと変換された後、第1の加算器で、第2の定数設定器に設定された無負荷定格速度時の燃料指令信号が加算される。前記第1の加算器の出力信号は、低値選択器に入力される。この低値選択器へは、前記加算器9からのガバナ制御信号に数%〜10%負荷相当分加算されたロードリミッタ制御信号22と、ガスタービン設備の排気温度によって調整された排気温度制御信号とが入力されており、3つの信号の最低値が選択されて、ガバナ制御指令信号24としてガスタービン燃料関係弁を制御する。ここで、ロードリミッタ制御信号は、例えば前記実MW信号または回転数信号が急変し、燃料指令値が急増するような場合に、前述の数%〜10%負荷相当分の加算信号によって燃料の過投入を抑えこむことを目的とするものである。また排気温度制御信号は、ガスタービンの燃焼器で異常燃焼が発生した場合に生じる排気温度の急上昇に対応して、予め設定された排気温度値を越える場合に、燃料の過投入を抑えこむことを目的とするものである。
【0005】
一方、最近のガスタービン燃焼器は、予混合燃焼を用いた低N0x燃焼器を搭載している。予混合燃焼は、燃焼によって生じる熱N0x低減を図るため、燃料と燃焼用空気の質量比率で定義される燃空比を、2〜3%程度で運用するよう設計されている。そのため、安定燃焼範囲が通常の拡散燃焼よりも狭く、上記ガバナフリー運転を、低N0x燃焼器を搭載したガスタービン発電設備で実施する場合は、燃焼用空気量と燃料との動的なバランス、すなわち、燃料量あるいは燃焼用空気量を変化させる過程での燃空比の変動を、許容範囲内に収める必要がある。上記従来の制御方法では、燃料量あるいは燃焼用空気量を変化させる過程での燃空比を前記許容範囲に納めるシステムになっていなかった。
【0006】
【発明が解決しようとする課題】
本発明は、系統連系運転する多軸型コンバインド・ガスタービン発電設備、特に予混合燃焼する低N0x燃焼器を搭載したガスタービン発電機において、前記系統周波数の変動を補償するように前記ガスタービンヘの燃料供給量を調整する際に、前記ガスタービンの安定運転条件、特に低N0x燃焼器の燃空比が許容値を満足するように制御することを目的とする。
【0007】
【課題を解決するための手段】
先に述べたように、系統周波数が変動した際に、その変動に応じて燃料量を変化させると、系統周波数の変動が急激な場合、燃焼用空気の供給量の変化が、燃料量の変化に追随できない場合がある。これは燃料量調整弁の動作とそれに伴なう燃料供給量の変化の速度よりも、燃焼用空気の供給量の調整手段の動作とそれに伴なう燃焼用空気の供給量の変化の速度が遅いためである。
【0008】
発明者等は、前記目的を達成するために、種々検討の結果、系統周波数が変動したときの燃料供給量の変化とそれに伴なう燃焼用空気の供給量の変化の時間差に起因する燃空比の変動を避けるため、系統周波数が入力されたとき、前記燃料供給量の調整のための入力となる系統周波数の変動への感度を低下させて、前記時間差を抑制することに想到した。
【0009】
すなわち、上記目的を達成する本発明の手段は、ガスタービン発電設備の発電量指令信号と前記発電設備の実発電量信号との偏差を0とするように燃料量指令信号を調整するとともに、系統周波数信号を入力として前記発電量指令信号を調整するガスタービン発電設備のガバナフリー制御方法において、系統周波数の変動への感度を低下させるよう前記入力される系統周波数信号の変化率を制限し、該変化率が制限された信号により前記発電量指令信号を調整することを特徴とする。
【0010】
前記手段において、入力される系統周波数信号に含まれる、所望の周期以下の周期の小さい変動を除去する系統周波数変動抑制フィルタ手段を設けるようにしてもよい。
【0011】
また、前記入力された系統周波数信号は、むだ時間を設定した一次遅れ要素を通過したのち、前記発電量指令信号の調整に用いるようにするのが望ましい。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1に、本発明を多軸型コンバインド・ガスタービン発電設備のガバナ制御へ適用した場合のガバナ制御の制御系統図を示す。図1中の破線で囲まれた部分が、本発明に係る部分であり、破線枠外の部分は、従来のガバナ制御系を示す。
【0013】
図示の制御装置は、発電設備の実発電量を示す実MW信号1が一方の入力側に入力される第1の減算器4と、第1の減算器4の出力側に接続されたアナログメモリー5と、アナログメモリー5の出力が入力される第1のゲイン設定器6と、第1のゲイン設定器6の出力を一方の入力とする第2の減算器7と、第2の減算器7の出力を入力とする第3のゲイン設定器8と、第3のゲイン設定器8の出力を入力とする加算器9と、加算器9に接続された定数設定器10と、加算器9の出力側に接続された低値選択器11と、MWD(Mega Watt Demand)信号2が入力される加算器12と、入力側を加算器12の出力側に、出力側を前記第1の減算器4の他方の入力側に接続された変化率設定器13と、系統周波数信号3が入力される系統周波数変動抑制フィルタ手段16と、前記系統周波数変動抑制フィルタ手段(以下、変動抑制フィルタ手段という)16の出力側に接続された不感帯設定器17と、不感帯設定器17の出力側に接続された変化率設定器18と、入力側を変化率設定器18の出力側に、出力側を前記加算器12に接続された一次遅れ要素15と、前記変化率設定器13及び変化率設定器18に接続された抑制レート設定器14と、回転数信号25が入力される第2のゲイン設定器19と、前記第2のゲイン設定器19の出力側に一方の入力側を接続され、出力側を前記第2の減算器7の他方の入力側に接続された第3の減算器20と、第3の減算器20の他方の入力側に接続された定数設定器21と、を含んで構成されている。
【0014】
前記低値選択器11には、前記加算器9の出力のほかに、前記加算器9からのガバナ制御信号に数%〜10%負荷相当分加算されたロードリミッタ制御信号22と、ガスタービン設備の排気温度によって調整された排気温度制御信号23とが入力されるようになっている。
【0015】
加算器12、変化率設定器13、抑制レート設定器14、一次遅れ要素15、系統周波数変動抑制フィルタ手段16、不感帯設定器17、及び変化率設定器18を含んで図1の破線枠で示す速度調整抑制バイアス手段が構成されている。
【0016】
次に上記構成の制御装置の動作を説明する。まず、発電設備での実際の出力を示す実MW信号1(MW)を、中央給電指令所からの出力指令値のMWD信号2(MW)を系統周波数信号3を用いて補正した信号(この補正の内容については後述する)から差し引いた偏差を第1の減算器4により計算し、アナログメモリー5により負荷偏差を0とするように負荷の増/減指令を出力する。該アナログメモリー5には、予め該当する発電設備が、安定して負荷追従できる変化率が設定されている。該アナログメモリー5出力は、第1のゲイン設定器6により、負荷偏差信号(MW)からガスタービンの回転数速度信号(%SPD)に変換された後、第2の減算器7へ伝達される。
【0017】
実際の回転数信号25(rpm)は、第2のゲイン設定器19によって速度信号(%SPD)に変換され、定数設定器21に設定された定格回転速度(100%)との偏差を第3の減算器20で計算後、前記第2の減算器7へ伝達される。減算器7は前記第1のゲイン設定器6の出力から第3の減算器20の出力を減算し、得られた偏差を第3のゲイン設定器8に出力する。第3のゲイン設定器8には、発電設備の調定率が設定されており、入力された偏差(速度信号(%SPD))を燃料量指令信号(FFD)へと変換後、加算器9へ出力する。加算器9は、入力された燃料量指令信号(FFD)に、定数設定器10に設定された無負荷定格速度時の燃料指令信号を加算後、低値選択器11に伝達する。
【0018】
低値選択器11へは、先に述べたように、前記加算器9からのガバナ制御信号に数%〜10%負荷相当分加算されたロードリミッタ制御信号22と、ガスタービン設備の排気温度によって調整された排気温度制御信号23とが入力されており、3つの信号の最低値を選択し、ガバナ制御指令信号24としてガスタービン燃料関係弁を制御する。ここで、ロードリミッタ制御信号22は、例えば前記実MW信号1または回転数信号25が急変し、燃料指令値が急増するような場合に、前述の数%〜10%負荷相当分の加算信号によって燃料の過投入を抑えこむことを目的とするものである。また排気温度制御信号は、ガスタービンの燃焼器で異常燃焼が発生した場合に生じる排気温度の急上昇に対応して、予め設定された排気温度値を越える場合に、燃料の過投入を抑えこむことを目的とするものである。
【0019】
次に、中央給電指令所からの出力指令値のMWD信号2(MW)を系統周波数信号3を用いて補正する手順を説明する。この補正は、図1の破線枠内の構成、すなわち、速度調整抑制バイアス手段により実施される。
【0020】
前記系統周波数信号3は、変動抑制フィルタ手段16により、微小(例えば士0.01〜0.03Hz程度)な周波数変動成分を除去した後、不感帯設定器17へ伝達される。この不感帯設定器17には、対象とするガスタービン発電設備の制御操作端、例えば燃料量調整弁、燃焼用空気量調整装置等の微小動作による磨耗、あるいはスプリングの劣化等を抑え、該操作端の余寿命消費量を低減するに適した数値が設定される。前記不感帯設定器17の出力信号は、変化率設定器18を介し、一次遅れ要素15へ伝達され、一次遅れ要素15を通過して遅延された後、加算器12により、前記MWD信号2にバイアス信号として加算される。
【0021】
前記一次遅れ要素15には、前記第1の減算器4で演算される出力偏差信号の増/減分により調整される前記ガスタービン発電設備への供給燃料指令信号が、該設備の安定運転条件を守りながら負荷追従できるに適した時定数が設定されている。前記加算器12の出力信号は、変化率設定器13を介し、前記第1の減算器4へと伝達される。前記2つの変化率設定器13及び18には、対象とするガスタービン発電設備の運転状態量が、安定許容範囲となるに適した変化率値が、抑制レート設定器14より人力、設定される。
【0022】
図1中の変動抑制フィルタ手段16の内容を、図2を用いて以下説明する。前記系統周波数信号3は、ゲイン設定器26により回転速度信号(%SPD)へと変換され、一次遅れ要素27、スイッチ32及び減算器28へ伝達される。前記回転速度信号即ち周波数信号は、前記一次遅れ要素27に予め設定された時定数により、微小時間変動成分を小さく、かつ緩やかな変動ヘと変換した後、前記スイッチ32及び減算器28に伝達される。減算器28は、前記一次遅れ要素27の出力信号からゲイン設定器26の出力信号を減算し、算出結果を、絶対値演算器29を介し、比較器30に出力する。比較器30は、絶対値演算器29からの入力が、予め設定された周波数変動の許容設定値以下の場合は信号0を、逆の場合は1を出力する。この出力は、むだ時間設定器31を介し、前記スイッチ32に切替信号として入力される。
【0023】
スイッチ32では、前記むだ時間設定器31からの信号が“0”の場合は、前記一次遅れ要素27からの入力信号を、“1”の場合には、前記ゲイン設定器26の信号を、速度指令信号33(%SPD)として出力する。この速度指令信号33(%SPD)が前記不感帯設定器17へ入力される。
【0024】
以上の方法により、以下の効果が得られる。
【0025】
図1の破線枠内の構成の機能を、速度調整抑制バイアス機能と呼ぶ。図3に系統周波数上昇時の速度調整抑制バイアス機能の効果を、図4に系統周波数降下時の速度調整抑制バイアス機能の効果を、夫々上から系統周波数変動・燃料量指令値及び予混合燃空比について示す。
【0026】
周波数上昇時には、図3のような効果が得られる。系統周波数が上昇すると、前記ガバナ制御系でガスタービンヘの燃料量指令値は減少信号となるが、この減少信号は、変化率設定器13に予め設定された変化率で動作する。この動作により、燃料量指令値の変化が目標負荷に対して遅延され、燃焼用空気の供給量の変化との時間差が短縮される。その結果、予混合燃空比は、図3の下段に示された低N0x燃焼器の安定運転範囲内で推移することができる。
【0027】
周波数降下時には、図4のような効果が得られる。系統周波数が降下すると、前記ガバナ制御系でガスタービンヘの燃料量指令値は増加信号となるが、この増加信号は、変化率設定器13に予め設定された変化率で動作する。この動作により、燃料量指令値の変化が目標負荷に対して遅延され、燃焼用空気の供給量の変化との時間差が短縮される。その結果、予混合燃空比は、図4の下段に示された低N0x燃焼器の安定運転範囲内で推移することができる。
【0028】
以上の動作の過程では、図3、図4の中段に示されるように、目標負荷に対し、若干の偏差分が発生することになるが、例えば、対象とする多軸型コンバインド発電設備の場合には、複数台のガスタービンに負荷偏差を配分することで、発電設備全体での負荷偏差を抑えることができる。
【0029】
次に、図5を用いて変動抑制フィルタ手段の効果を説明する。通常、系統周波数信号3の入力値には、図5の上側の図に示すように、系統周波数の大きなうねり成分に微少変動成分が加味されている。この微小変動成分を含む信号をそのまま用いて、速度調整バイアス信号とした場合には、微少成分による発電設備、特にガスタービンの燃料量調制弁の開度信号、および燃焼用空気量調整手段等の制御操作端動作信号にも、微少動作成分が加味されるため、燃料量調制弁や燃焼用空気量調整手段等の可動部分が微少量ながら頻繁に動作し、その余寿命消費率が大きくなる。そこで、前記変動抑制フィルタ手段により、図5の下側の図に示す波形になるように、入力される系統周波数変動信号をフイルタリングする。このフイルタリングにより、上記制御操作端動作信号が微小動作を指示するのが抑制され、可動部分の余寿命消費率を小さくすることができる。
【0030】
本実施の形態によれば、中央給電指令所からの出力指令値のMWD信号2(MW)を系統周波数信号3を用いて補正するとともに、補正に用いる系統周波数の変化率を抑制するので、燃料量の変化と燃焼用空気量の変化の時間差が低減され、前記MWD信号2及び系統周波数の変動に応じて燃料量を変化させている過程においても、燃空比を低NOx燃焼器の安定運転範囲に維持することが可能になる。また、前記補正に使用する系統周波数信号の微少変動成分が除去されるので、ガスタービンの燃料量調整弁、燃焼用空気量調整手段の可動部分の微動が低減され、それら機器の寿命が延長される効果がある。
【0031】
上記実施の形態で、例えばプラントの負荷変化運転中に、前記速度調整抑制バイアスが動作した際に、図1中の前記不感帯設定器17の動作により、負荷が不連続に変動する場合には、前記不感帯設定器17の設定値を、連続的に対象プラントに予め指示される速度調定率を超えない値の傾き値(バイアス変化率)に設定する。不感帯設定器17の設定値を、上述のような値に設定しておくことで、負荷が不連続的に変動するのを防ぐことができ、スムーズな負荷追従性を実現する効果がある。
【0032】
【発明の効果】
本発明によれば、上述のように、周波数変動に対応した燃料量制御において、低N0x燃焼器の動的な燃空比が許容値を満足するように、速度調整の感度を落とした制御が行われるから、系統事故等による周波数変動時に、発電設備の運転性能を損なわないよう追従することが可能になり、系統安定化に寄与する。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る制御装置を示すブロック図である。
【図2】図1に示す変動抑制フィルタ手段16の内容を示すブロック図である。
【図3】図1に示す実施の形態における系統周波数上昇時の速度調整抑制バイアス手段の効果を示す概念図である。
【図4】図1に示す実施の形態における系統周波数低下時の速度調整抑制バイアス手段の効果を示す概念図である。
【図5】図1に示す実施の形態における変動抑制フィルタ手段の効果を示す概念図である。
【符号の説明】
1 実MW信号(MW)
2 MWD信号(MW)
3 系統周波数信号
4 第1の減算器
5 アナログメモリー
6 第1のゲイン設定器
7 第2の減算器
8 第3のゲイン設定器
9 加算器
10 定数設定器、
11 低値選択器
12 加算器
13 変化率設定器
14 抑制レート設定器
15 一次遅れ要素
16 変動抑制フィルタ手段
17 不感帯設定器
18 変化率設定器
19 第2のゲイン設定器
20 第3の減算器
21 定数設定器
22 ロードリミッタ制御信号
23 排気温度制御信号
24 ガバナ制御指令信号
25 回転数信号(rpm)
26 ゲイン設定器
27 一次遅れ要素
28 減算器
29 絶対値演算器
30 比較器
31 むだ時間設定器
32 スイッチ
33 速度指令信号(%SPD)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a governor-free control method and a governor-free control apparatus for a multi-shaft combined gas turbine power generation facility that is premised on grid-connected operation, and more particularly to compensate for system frequency fluctuations and The present invention relates to a control method and apparatus for adjusting a fuel amount command signal while keeping an operation state stable.
[0002]
[Prior art]
Conventionally, grid interconnection operation in a thermal power generation facility is performed as follows. In pulverized coal-fired power generation, since the boiler has a large heat capacity, governor-free operation is performed by adjusting the steam turbine supply steam amount according to system frequency fluctuations, which is equivalent to the boiler of gas turbine power generation equipment Since the combustor is a machine that recovers power by expanding high-temperature and high-pressure combustion gas obtained by the combustion reaction in a short time, the system frequency is adjusted by controlling the amount of fuel input.
[0003]
Furthermore, in the pulverized coal slag and gas turbine power generation equipment, since the turbine rotating shaft and the generator are connected, the load on the power generation equipment also varies according to the variation in the system frequency. For example, when the system frequency decreases, the rotational speed also decreases. In order to maintain the specified rotational speed, it is necessary to increase the amount of supplied fuel in the gas turbine power generation facility. Conversely, when the system frequency increases, the rotational speed increases and the amount of supplied fuel needs to be reduced. When the fluctuation frequency of the system frequency is as large as several minutes, frequency control operation (AFC: Automatic Frequency Contro1) is performed. During governor-free operation, the frequency is several Hz. The load cannot be tracked instantaneously due to delay or combustion reaction delay. In particular, in the case of a multi-shaft combined power generation facility, a generator is often connected to each of a plurality of target gas turbines, and system frequency fluctuations directly affect the gas turbine rotation speed. It becomes.
[0004]
A conventional governor control method will be described. The deviation between the actual MW signal (MW) indicating the actual output at the power generation facility and the output command value MWD (Mega Watt Demand) signal (MW) from the central power supply command station is calculated by the first subtractor. A load increase / decrease command is output so that the load deviation is zero by an analog memory having the obtained deviation as an input. In this analog memory, a change rate at which the corresponding power generation facility can stably follow the load is set in advance. The output of the analog memory is converted from the load deviation signal (MW) to the rotational speed signal (% SPD) of the gas turbine by the first gain setting device and then transmitted to the second subtracter. The actual rotation speed signal (rpm) is converted into a speed signal (% SPD) by the second gain setting device, and the deviation from the rated rotation speed (100%) set in the first constant setting device is set to the third. After being calculated by the subtractor, it is transmitted to the second subtractor 7. The output of the second subtractor is converted from the speed signal (% SPD) to the fuel amount command signal (FFD) by the third gain setting device that sets the settling rate of the power generation equipment, and then the first addition The fuel command signal at the no-load rated speed set in the second constant setter is added. The output signal of the first adder is input to the low value selector. To this low value selector, a load limiter control signal 22 obtained by adding the equivalent of several percent to 10% load to the governor control signal from the adder 9, and an exhaust temperature control signal adjusted by the exhaust temperature of the gas turbine equipment. Are selected, and the lowest value of the three signals is selected to control the gas turbine fuel related valve as the governor control command signal 24. Here, for example, when the actual MW signal or the rotation speed signal suddenly changes and the fuel command value suddenly increases, the load limiter control signal is generated by the above-mentioned addition signal corresponding to several to 10% load. The purpose is to suppress the input. Also, the exhaust temperature control signal suppresses excessive fuel injection when the exhaust temperature exceeds a preset exhaust temperature value in response to a sudden increase in exhaust temperature that occurs when abnormal combustion occurs in the combustor of the gas turbine. It is intended.
[0005]
On the other hand, recent gas turbine combustors are equipped with low N0x combustors using premixed combustion. Premixed combustion is designed to operate a fuel-air ratio defined by a mass ratio of fuel and combustion air at about 2 to 3% in order to reduce heat N0x generated by combustion. Therefore, when the stable combustion range is narrower than that of normal diffusion combustion and the governor-free operation is performed in a gas turbine power generation facility equipped with a low N0x combustor, a dynamic balance between the combustion air amount and the fuel, That is, it is necessary to keep the fluctuation of the fuel-air ratio in the process of changing the fuel amount or the combustion air amount within an allowable range. In the conventional control method described above, the system has not been made to keep the fuel-air ratio in the process of changing the fuel amount or the combustion air amount within the allowable range.
[0006]
[Problems to be solved by the invention]
The present invention relates to a multi-shaft combined gas turbine power generation facility that operates in a grid-connected manner, particularly a gas turbine generator equipped with a low N0x combustor that performs premixed combustion, so as to compensate for fluctuations in the system frequency. An object of the present invention is to control the fuel supply amount so that the stable operation condition of the gas turbine, in particular, the fuel-air ratio of the low N0x combustor satisfies an allowable value.
[0007]
[Means for Solving the Problems]
As mentioned earlier, when the system frequency fluctuates and the fuel amount is changed according to the fluctuation, if the system frequency fluctuates rapidly, the change in the supply amount of combustion air will cause the change in the fuel amount. May not be able to follow. This is because the speed of the operation of adjusting the supply amount of combustion air and the speed of change of the supply amount of combustion air accompanying the operation of the fuel amount adjustment valve are faster than the speed of change of the fuel supply amount accompanying the operation of the fuel amount adjustment valve. Because it is slow.
[0008]
In order to achieve the above object, the inventors have conducted various studies, and as a result, the fuel and air caused by the time difference between the change in the fuel supply amount when the system frequency fluctuates and the change in the supply amount of combustion air associated therewith. In order to avoid the fluctuation of the ratio, when the system frequency is inputted, it has been conceived to reduce the sensitivity to the fluctuation of the system frequency serving as an input for adjusting the fuel supply amount, thereby suppressing the time difference.
[0009]
That is, the means of the present invention for achieving the above object adjusts the fuel amount command signal so that the deviation between the power generation amount command signal of the gas turbine power generation facility and the actual power generation amount signal of the power generation facility is zero, In a governor-free control method for a gas turbine power generation facility that adjusts the power generation amount command signal using a frequency signal as an input, the rate of change of the input system frequency signal is limited so as to reduce sensitivity to fluctuations in the system frequency, The power generation amount command signal is adjusted by a signal whose rate of change is limited.
[0010]
In the means, system frequency fluctuation suppression filter means for removing small fluctuations having a period equal to or less than a desired period included in the input system frequency signal may be provided.
[0011]
Further, it is desirable that the inputted system frequency signal is used for adjusting the power generation amount command signal after passing through a first-order lag element in which a dead time is set.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 shows a control system diagram of governor control when the present invention is applied to governor control of a multi-shaft combined gas turbine power generation facility. A portion surrounded by a broken line in FIG. 1 is a portion according to the present invention, and a portion outside the broken line frame indicates a conventional governor control system.
[0013]
The illustrated control device includes a first subtractor 4 to which an actual MW signal 1 indicating the actual power generation amount of the power generation facility is input to one input side, and an analog memory connected to the output side of the first subtractor 4. 5, a first gain setter 6 to which the output of the analog memory 5 is input, a second subtractor 7 having the output of the first gain setter 6 as one input, and a second subtractor 7 A third gain setting unit 8 that receives the output of the third gain setting unit 8, an adder 9 that receives the output of the third gain setting unit 8, a constant setting unit 10 connected to the adder 9, A low value selector 11 connected to the output side, an adder 12 to which an MWD (Mega Watt Demand) signal 2 is input, an input side to the output side of the adder 12, and an output side to the first subtractor 4, the rate of change setting unit 13 connected to the other input side, and the system frequency fluctuation suppression filter to which the system frequency signal 3 is input. A dead band setting device 17 connected to the output side of the filter means 16, the system frequency fluctuation suppression filter means (hereinafter referred to as fluctuation suppression filter means) 16, and a change rate setting device connected to the output side of the dead band setting device 17. 18, a first-order lag element 15 whose input side is connected to the output side of the change rate setting device 18 and whose output side is connected to the adder 12, and the suppression connected to the change rate setting device 13 and the change rate setting device 18 One input side is connected to the output side of the rate setting unit 14, the second gain setting unit 19 to which the rotation speed signal 25 is inputted, and the second gain setting unit 19, and the output side is connected to the second side. A third subtracter 20 connected to the other input side of the subtractor 7 and a constant setting unit 21 connected to the other input side of the third subtracter 20 are configured.
[0014]
In addition to the output of the adder 9, the low value selector 11 includes a load limiter control signal 22 obtained by adding the equivalent of several percent to 10% load to the governor control signal from the adder 9, and gas turbine equipment The exhaust gas temperature control signal 23 adjusted by the exhaust gas temperature is input.
[0015]
1 includes an adder 12, a change rate setting device 13, a suppression rate setting device 14, a first-order lag element 15, a system frequency fluctuation suppression filter means 16, a dead zone setting device 17, and a change rate setting device 18. A speed adjustment suppression bias unit is configured.
[0016]
Next, the operation of the control device having the above configuration will be described. First, the actual MW signal 1 (MW) indicating the actual output at the power generation facility is corrected using the system frequency signal 3 for the MWD signal 2 (MW) of the output command value from the central power supply command station (this correction) The first subtracter 4 calculates the deviation subtracted from the contents of (1), which will be described later), and outputs a load increase / decrease command so that the analog memory 5 sets the load deviation to zero. The analog memory 5 is preset with a rate of change that allows the corresponding power generation equipment to follow the load stably. The analog memory 5 output is converted from a load deviation signal (MW) to a gas turbine rotational speed signal (% SPD) by a first gain setting device 6 and then transmitted to a second subtractor 7. .
[0017]
The actual rotational speed signal 25 (rpm) is converted into a speed signal (% SPD) by the second gain setting device 19, and the deviation from the rated rotational speed (100%) set in the constant setting device 21 is changed to the third. Is then transmitted to the second subtracter 7. The subtracter 7 subtracts the output of the third subtracter 20 from the output of the first gain setting device 6 and outputs the obtained deviation to the third gain setting device 8. The third gain setting unit 8 is set with the power generation equipment settling rate. After the input deviation (speed signal (% SPD)) is converted into the fuel amount command signal (FFD), it is sent to the adder 9. Output. The adder 9 adds the fuel command signal at the no-load rated speed set in the constant setter 10 to the input fuel amount command signal (FFD), and then transmits the fuel command signal to the low value selector 11.
[0018]
As described above, the low value selector 11 is supplied with the load limiter control signal 22 obtained by adding several percent to 10% of the load corresponding to the governor control signal from the adder 9 and the exhaust temperature of the gas turbine equipment. The adjusted exhaust gas temperature control signal 23 is inputted, the lowest value of the three signals is selected, and the gas turbine fuel related valve is controlled as the governor control command signal 24. Here, for example, when the actual MW signal 1 or the rotation speed signal 25 changes suddenly and the fuel command value increases rapidly, the load limiter control signal 22 is based on the addition signal corresponding to the aforementioned several percent to ten percent load. The purpose is to suppress excessive injection of fuel. The exhaust temperature control signal suppresses excessive fuel injection when the exhaust gas temperature exceeds a preset exhaust temperature value in response to a sudden rise in exhaust temperature that occurs when abnormal combustion occurs in the combustor of the gas turbine. It is intended.
[0019]
Next, a procedure for correcting the MWD signal 2 (MW) of the output command value from the central power supply command station using the system frequency signal 3 will be described. This correction is performed by the configuration within the broken line frame in FIG. 1, that is, the speed adjustment suppression bias means.
[0020]
The system frequency signal 3 is transmitted to the dead band setter 17 after removing minute (for example, about 0.01 to 0.03 Hz) frequency fluctuation components by the fluctuation suppression filter means 16. The dead zone setting device 17 suppresses wear due to minute operation of a target gas turbine power generation facility, for example, a fuel amount adjusting valve, a combustion air amount adjusting device or the like, or deterioration of a spring, and the like. A value suitable for reducing the remaining lifetime consumption is set. The output signal of the dead zone setter 17 is transmitted to the first-order lag element 15 via the rate-of-change setter 18 and is delayed by passing through the first-order lag element 15, and then biased to the MWD signal 2 by the adder 12. It is added as a signal.
[0021]
In the first-order lag element 15, a fuel command signal supplied to the gas turbine power generation facility, which is adjusted by increasing / decreasing the output deviation signal calculated by the first subtractor 4, is a stable operating condition of the facility. A time constant suitable to follow the load while maintaining the above is set. The output signal of the adder 12 is transmitted to the first subtracter 4 via the change rate setting unit 13. In the two change rate setting devices 13 and 18, a change rate value suitable for the operation state amount of the target gas turbine power generation facility to be within the stable allowable range is set manually by the suppression rate setting device 14. .
[0022]
The contents of the fluctuation suppression filter means 16 in FIG. 1 will be described below with reference to FIG. The system frequency signal 3 is converted into a rotation speed signal (% SPD) by the gain setting unit 26 and transmitted to the primary delay element 27, the switch 32 and the subtractor 28. The rotational speed signal, that is, the frequency signal, is converted into a small and gentle fluctuation by a time constant preset in the first-order lag element 27, and is then transmitted to the switch 32 and the subtractor 28. The The subtractor 28 subtracts the output signal of the gain setting unit 26 from the output signal of the first-order lag element 27 and outputs the calculation result to the comparator 30 via the absolute value calculator 29. The comparator 30 outputs a signal 0 when the input from the absolute value calculator 29 is less than or equal to a preset allowable set value of frequency fluctuation, and outputs 1 when the opposite is true. This output is input as a switching signal to the switch 32 via the dead time setting device 31.
[0023]
In the switch 32, when the signal from the dead time setter 31 is “0”, the input signal from the first-order lag element 27 is used, and when the signal is “1”, the signal from the gain setter 26 is used as the speed. Output as command signal 33 (% SPD). This speed command signal 33 (% SPD) is input to the dead zone setting device 17.
[0024]
By the above method, the following effects can be obtained.
[0025]
The function within the broken line frame in FIG. 1 is referred to as a speed adjustment suppression bias function. Fig. 3 shows the effect of the speed adjustment suppression bias function when the system frequency is increased, and Fig. 4 shows the effect of the speed adjustment suppression bias function when the system frequency is decreased. It shows about ratio.
[0026]
When the frequency is increased, the effect as shown in FIG. 3 is obtained. When the system frequency rises, the fuel amount command value to the gas turbine in the governor control system becomes a decrease signal, and this decrease signal operates at a rate of change set in advance in the rate of change setting unit 13. By this operation, the change in the fuel amount command value is delayed with respect to the target load, and the time difference from the change in the supply amount of combustion air is shortened. As a result, the premixed fuel-air ratio can change within the stable operation range of the low N0x combustor shown in the lower part of FIG.
[0027]
When the frequency drops, the effect as shown in FIG. 4 is obtained. When the system frequency decreases, the fuel amount command value to the gas turbine in the governor control system becomes an increase signal, and this increase signal operates at a change rate preset in the change rate setting unit 13. By this operation, the change in the fuel amount command value is delayed with respect to the target load, and the time difference from the change in the supply amount of combustion air is shortened. As a result, the premixed fuel-air ratio can change within the stable operation range of the low N0x combustor shown in the lower part of FIG.
[0028]
In the above process, as shown in the middle of FIG. 3 and FIG. 4, a slight deviation from the target load occurs. For example, in the case of the target multi-shaft combined power generation facility Therefore, by distributing the load deviation to a plurality of gas turbines, the load deviation in the entire power generation facility can be suppressed.
[0029]
Next, the effect of the fluctuation suppressing filter means will be described with reference to FIG. Normally, as shown in the upper diagram of FIG. 5, the input value of the system frequency signal 3 includes a slight fluctuation component in addition to a swell component having a large system frequency. When the signal including this minute fluctuation component is used as it is and used as the speed adjustment bias signal, the opening signal of the fuel amount control valve of the power generation equipment, particularly the gas turbine, and the combustion air amount adjusting means, etc. Since a minute operation component is also added to the control operation end operation signal, the movable parts such as the fuel amount regulating valve and the combustion air amount adjusting means are frequently operated with a small amount, and the remaining life consumption rate is increased. Therefore, the fluctuation suppression filter means filters the input system frequency fluctuation signal so as to obtain the waveform shown in the lower diagram of FIG. By this filtering, the control operation end operation signal is suppressed from instructing a minute operation, and the remaining life consumption rate of the movable part can be reduced.
[0030]
According to the present embodiment, the MWD signal 2 (MW) of the output command value from the central power supply command station is corrected using the system frequency signal 3, and the rate of change in the system frequency used for the correction is suppressed. The time difference between the change in the amount of fuel and the change in the amount of combustion air is reduced, and the fuel-air ratio is kept stable even in the process of changing the fuel amount according to the fluctuation of the MWD signal 2 and the system frequency. It becomes possible to maintain the range. Further, since the minute fluctuation component of the system frequency signal used for the correction is removed, the fine movement of the movable part of the fuel amount adjusting valve of the gas turbine and the combustion air amount adjusting means is reduced, and the life of these devices is extended. There is an effect.
[0031]
In the above embodiment, for example, when the speed adjustment suppression bias is operated during the load change operation of the plant, when the load fluctuates discontinuously due to the operation of the dead zone setter 17 in FIG. The set value of the dead zone setter 17 is set to a slope value (bias change rate) that does not exceed the speed regulation rate that is continuously instructed in advance to the target plant. By setting the set value of the dead band setting device 17 to the above-described value, it is possible to prevent the load from fluctuating discontinuously, and there is an effect of realizing smooth load followability.
[0032]
【The invention's effect】
According to the present invention, as described above, in the fuel amount control corresponding to the frequency fluctuation, the control with reduced speed adjustment sensitivity is performed so that the dynamic fuel-air ratio of the low N0x combustor satisfies the allowable value. As a result, it is possible to follow the frequency fluctuation due to a system fault or the like without impairing the operation performance of the power generation facility, which contributes to system stabilization.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a control device according to an embodiment of the present invention.
FIG. 2 is a block diagram showing the contents of fluctuation suppression filter means 16 shown in FIG.
FIG. 3 is a conceptual diagram showing an effect of speed adjustment suppression bias means when the system frequency is increased in the embodiment shown in FIG.
4 is a conceptual diagram showing an effect of speed adjustment suppression bias means when the system frequency is lowered in the embodiment shown in FIG.
FIG. 5 is a conceptual diagram showing the effect of the fluctuation suppressing filter means in the embodiment shown in FIG.
[Explanation of symbols]
1 Real MW signal (MW)
2 MWD signal (MW)
3 System frequency signal 4 1st subtractor 5 Analog memory 6 1st gain setter 7 2nd subtractor 8 3rd gain setter 9 Adder 10 Constant setter,
11 Low value selector 12 Adder 13 Change rate setter 14 Suppression rate setter 15 First order lag element 16 Fluctuation suppression filter means 17 Dead band setter 18 Change rate setter 19 Second gain setter 20 Third subtractor 21 Constant setter 22 Load limiter control signal 23 Exhaust temperature control signal 24 Governor control command signal 25 Speed signal (rpm)
26 Gain setter 27 Primary delay element 28 Subtractor 29 Absolute value calculator 30 Comparator 31 Dead time setter 32 Switch 33 Speed command signal (% SPD)

Claims (7)

ガスタービン発電設備の発電量指令信号と前記発電設備の実発電量信号との偏差を0とするように燃料量指令信号を調整するとともに、系統周波数信号を入力として前記発電量指令信号を調整するガスタービン発電設備のガバナフリー制御方法において、系統周波数の変動への感度を低下させるよう前記入力される系統周波数信号の変化率を制限し、該変化率が制限された信号により前記発電量指令信号を調整することを特徴とするガスタービン発電設備のガバナフリー制御方法。The fuel amount command signal is adjusted so that the deviation between the power generation amount command signal of the gas turbine power generation facility and the actual power generation amount signal of the power generation facility is zero, and the power generation amount command signal is adjusted with the system frequency signal as an input. In a governor-free control method for a gas turbine power generation facility, a rate of change of the input system frequency signal is limited so as to reduce sensitivity to changes in system frequency, and the power generation amount command signal is generated by a signal with the rate of change limited. A governor-free control method for a gas turbine power generation facility, characterized in that 請求項1に記載のガスタービン発電設備のガバナフリー制御方法において、入力される系統周波数信号に含まれる、所望の周期以下の周期の小さい変動を除去する手順を含んでなることを特徴とするガスタービン発電設備のガバナフリー制御方法。  The gas turbine power generation facility governor-free control method according to claim 1, further comprising a step of removing a small fluctuation of a cycle equal to or less than a desired cycle contained in an input system frequency signal. A governor-free control method for a turbine power generation facility. 請求項1または2に記載のガスタービン発電設備のガバナフリー制御方法において、前記入力される系統周波数信号は、むだ時間を設定した一次遅れ要素を通過したのち、前記発電量指令信号の調整に用いられることを特徴とするガスタービン発電設備のガバナフリー制御方法。  3. The governor-free control method for a gas turbine power generation facility according to claim 1 or 2, wherein the input system frequency signal is used for adjusting the power generation amount command signal after passing through a first-order lag element in which a dead time is set. A governor-free control method for a gas turbine power generation facility. ガスタービン発電設備の発電量指令信号と前記発電設備の実発電量信号との偏差を0とするように燃料量指令信号を調整するとともに、系統周波数信号を入力として前記発電量指令信号を調整するガスタービン発電設備のガバナフリー制御装置において、系統周波数の変動への感度を低下させるよう前記入力される系統周波数信号の変化率を制限し、該変化率が制限された信号により前記発電量指令信号を調整する速度調整抑制バイアス手段を設けたことを特徴とするガスタービン発電設備のガバナフリー制御装置。The fuel amount command signal is adjusted so that the deviation between the power generation amount command signal of the gas turbine power generation facility and the actual power generation amount signal of the power generation facility is zero, and the power generation amount command signal is adjusted with the system frequency signal as an input. In a governor-free control device for a gas turbine power generation facility, the rate of change of the input system frequency signal is limited so as to reduce the sensitivity to changes in the system frequency, and the power generation amount command signal is generated by a signal with the rate of change limited. A governor-free control device for gas turbine power generation equipment, characterized in that a speed adjustment suppression bias means for adjusting the pressure is provided. 請求項4に記載のガスタービン発電設備のガバナフリー制御装置において、入力される系統周波数信号に含まれる、所望の周期以下の周期の小さい変動を除去する系統周波数変動抑制フィルタ手段を含んでなることを特徴とするガスタービン発電設備のガバナフリー制御装置。  5. A governor-free control device for a gas turbine power generation facility according to claim 4, further comprising system frequency fluctuation suppression filter means for removing small fluctuations having a period equal to or less than a desired period contained in the inputted system frequency signal. A governor-free control device for gas turbine power generation equipment. 請求項4または5に記載のガスタービン発電設備のガバナフリー制御方法において、前記速度調整抑制バイアス手段は、前記入力される系統周波数信号が、変化率が制限されたのち通過する、むだ時間を設定した一次遅れ要素を有してなることを特徴とするガスタービン発電設備のガバナフリー制御装置。  6. The governor-free control method for a gas turbine power generation facility according to claim 4 or 5, wherein the speed adjustment suppression bias means sets a dead time during which the input system frequency signal passes after the rate of change is limited. A governor-free control device for a gas turbine power generation facility, characterized by comprising a first-order lag element. 請求項4に記載のガスタービン発電設備のガバナフリー制御装置において、前記速度調整抑制バイアス手段は、系統周波数を引数とする不感帯設定器を含んで形成され、この不感帯設定器には前記ガスタービン発電設備に予め設定されている速度調定率を超えないバイアス変化率が設定されていることを特徴とするガスタービン発電設備のガバナフリー制御装置。  5. The governor-free control device for a gas turbine power generation facility according to claim 4, wherein the speed adjustment suppression bias means includes a dead band setter having a system frequency as an argument, and the dead band setter includes the gas turbine power generation unit. A governor-free control device for a gas turbine power generation facility, wherein a bias change rate that does not exceed a speed regulation rate preset in the facility is set.
JP2002245804A 2001-12-10 2002-08-26 Governor-free control method and control apparatus for gas turbine power generation equipment Expired - Lifetime JP3887777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002245804A JP3887777B2 (en) 2001-12-10 2002-08-26 Governor-free control method and control apparatus for gas turbine power generation equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-375489 2001-12-10
JP2001375489 2001-12-10
JP2002245804A JP3887777B2 (en) 2001-12-10 2002-08-26 Governor-free control method and control apparatus for gas turbine power generation equipment

Publications (2)

Publication Number Publication Date
JP2003239763A JP2003239763A (en) 2003-08-27
JP3887777B2 true JP3887777B2 (en) 2007-02-28

Family

ID=27790643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002245804A Expired - Lifetime JP3887777B2 (en) 2001-12-10 2002-08-26 Governor-free control method and control apparatus for gas turbine power generation equipment

Country Status (1)

Country Link
JP (1) JP3887777B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10161317B2 (en) 2014-02-05 2018-12-25 Mitsubishi Hitachi Power Systems, Ltd. Gas-turbine control device, gas turbine, and gas-turbine control method
US10815905B2 (en) 2014-05-26 2020-10-27 Mitsubishi Hitachi Power Systems, Ltd. Fuel control method for gas turbine, control device for executing said method, and gas turbine installation provided with said control device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4727566B2 (en) * 2006-12-27 2011-07-20 財団法人電力中央研究所 Frequency control apparatus and frequency control method
DE102007007913A1 (en) * 2007-02-14 2008-08-21 Alstom Technology Ltd. Method for operating a power plant
JP4838785B2 (en) 2007-11-06 2011-12-14 三菱重工業株式会社 Gas turbine operation control device and operation control method
EP2450535A1 (en) * 2008-06-27 2012-05-09 Alstom Technology Ltd Primary regulation process of a combined cycle power plant
US8768529B2 (en) * 2010-07-20 2014-07-01 General Electric Company Grid frequency rate limiting system
US8694172B2 (en) * 2011-07-12 2014-04-08 General Electric Company Systems and devices for controlling power generation
US10079564B2 (en) * 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
KR101893689B1 (en) * 2017-04-26 2018-08-30 두산중공업 주식회사 Gas Turbine System and Controlling Method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10161317B2 (en) 2014-02-05 2018-12-25 Mitsubishi Hitachi Power Systems, Ltd. Gas-turbine control device, gas turbine, and gas-turbine control method
US10815905B2 (en) 2014-05-26 2020-10-27 Mitsubishi Hitachi Power Systems, Ltd. Fuel control method for gas turbine, control device for executing said method, and gas turbine installation provided with said control device

Also Published As

Publication number Publication date
JP2003239763A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
JP3361053B2 (en) Power plant load control device
JP5457626B2 (en) Method and system for detection and transmission for isolated operation of power
US9388753B2 (en) Generator control having power grid communications
JP4745767B2 (en) Fuel flow control device, power generation system, and fuel flow control method
EP1275822B1 (en) Primary frequency regulation method in combined-cycle steam turbines
CA2352421C (en) Steam turbine controller having method and apparatus for providing variable frequency regulation
JP3887777B2 (en) Governor-free control method and control apparatus for gas turbine power generation equipment
JP3677536B2 (en) Gas turbine power generation control device
JP3872406B2 (en) Power plant load control method
JP4317651B2 (en) Gas turbine plant and control method of gas turbine plant
RU2156865C2 (en) Turbine speed governing system and method for controlling turbine speed at load shedding
JP4656029B2 (en) System frequency stabilization apparatus and method
CN113217197A (en) Method for operating a power plant and power plant
JP3792853B2 (en) Combined cycle control device and gas turbine control device
JP2749123B2 (en) Power plant control method and device
JP2004060615A (en) Control device for gas turbine plant and operation control method for gas turbine plant
JP2692974B2 (en) Control method for combined cycle power plant
JPH04303103A (en) Turbine control method and device
JP2010156308A (en) Controller for gas turbine engine
JP2004159466A (en) Method and apparatus for preventing reverse power flow in electric power plant
JPS6390606A (en) Governor free control device for combined plant
JP2642999B2 (en) Load control device for combined cycle plant
JP2612023B2 (en) Gas turbine control device
JP2021161993A (en) Controller, control method and program
JPH10196315A (en) Method and device for controlling load of multi-shaft combined cycle plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3887777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term