JP3887477B2 - Electronic component recognition device - Google Patents

Electronic component recognition device Download PDF

Info

Publication number
JP3887477B2
JP3887477B2 JP01579598A JP1579598A JP3887477B2 JP 3887477 B2 JP3887477 B2 JP 3887477B2 JP 01579598 A JP01579598 A JP 01579598A JP 1579598 A JP1579598 A JP 1579598A JP 3887477 B2 JP3887477 B2 JP 3887477B2
Authority
JP
Japan
Prior art keywords
rotating member
electronic component
casing
flange portion
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01579598A
Other languages
Japanese (ja)
Other versions
JPH11211436A (en
Inventor
秀邦 新山
恵一 星野
勝彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Precision Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP01579598A priority Critical patent/JP3887477B2/en
Publication of JPH11211436A publication Critical patent/JPH11211436A/en
Application granted granted Critical
Publication of JP3887477B2 publication Critical patent/JP3887477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品認識装置に係り、特に、電子部品を基板に実装するにあたって、電子部品の状態を予め認識させるための電子部品認識装置に関するものである。
【0002】
【従来の技術】
従来の電子部品認識装置100は、図8に示すように、暗箱をなすボックス101を有している。このボックス101の前面には読取り窓102が設けられ、この読取り窓102の縁には、LEDからなる照明光源103が固定され、照明光源103によって電子部品104が照らし出され、電子部品104は、吸着ノズル(図示せず)によって読取り窓102の位置まで搬送される。また、ボックス101内には、読取り窓102の後方に位置するハーフミラー105が設けられ、このハーフミラー105によって光路を2つに分岐させ、一方の光路L1上には撮像ユニット106を配置させ、他方の光路L2上にはCCDエリアセンサ107を配置させ、ハーフミラー105とCCDエリアセンサ107との間には全反射ミラー108及び結像レンズ109を順次配列させている。
【0003】
また、撮像ユニット106には、図9及び図10に示すように、複数枚の結像レンズ111を配列させた鏡胴110が設けられ、この鏡胴110は、ケーシング112の前端に固定され、このケーシング112は、ボックス101内のスタンド113に固定されている(図8参照)。ケーシング112の背面112aには、撮像素子固定板114が4本の調整ネジ115によって固定され、各調整ネジ115は、撮像素子固定板114の貫通孔114cを介してケーシング112に螺着させる。また、撮像素子固定板114の背面114aにおいて、その開口部114bに臨む位置には、シールドケース116内に収容させたCCDエリアセンサ(撮像素子)117を固定させている。このCCDエリアセンサ117は、結像レンズ111の光軸S上に位置し、調整ネジ115を緩めることで、撮像素子固定板114は、貫通孔114cと調整ネジ115との隙間分の調整を可能にする。従って、光軸Sに対するCCDエリアセンサ117の傾き等の位置調整を可能ならしめる。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の電子部品認識装置は、上述したように構成されているため、次のような課題が存在していた。すなわち、CCDエリアセンサ117の位置調整は、図8に示すように、電子部品認識装置100内に撮像ユニット106を組み込んだ状態で実行され、CCDエリアセンサ117で得られる画像を外部モニターで見ながら行われる。この場合、各調整ネジ115を緩めた状態で、撮像素子固定板114を指で動かしながら、CCDエリアセンサ117の位置の微調整を行う必要があるので、ミクロン単位での調整は困難を極め、かなりの熟練を要するといった問題点があった。
【0005】
本発明は、上述の課題を解決するためになされたもので、特に、撮像素子の高精度な傾き調整を容易にした電子部品認識装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1に係る本発明の電子部品認識装置は、所定の場所に配置させた電子部品を、照明光により照らし出し、電子部品からの反射光を、鏡胴内に設けた結像レンズを介して、撮像素子に入射させ、撮像素子により、電子部品の像を認識するための電子部品認識装置において、
結像レンズの光軸上に撮像素子を配置させ、鏡胴の後方に、光軸を回転中心とする円筒状の回転部材を配置させ、回転部材の背面側に撮像素子を固定し
回転部材は、ケーシングに設けられた回転部材収容部内で光軸を回転中心として回転自在に配置され、回転部材には円筒状のフランジ部が設けられ、フランジ部の周面には、フランジ部の直径方向に対峙させた一対の突起部が設けられ、フランジ部の環状な前面は、光軸に対し垂直な平面として回転部材収容部に設けられた回転部材支持面に当接し、ケーシングには、回転部材支持面に対して平行で、各突起部の中心軸線に対して直交する方向に延在する一対の調整ネジが螺着され、調整ネジを、突起部の中心軸線より後方にずらし、調整ネジの先端を突起部の周面に当接させたことを特徴とする。
【0007】
この電子部品認識装置において、撮像素子を装置内に組み込んだ際、撮像素子の傾きを調整する必要が生じるが、この場合、回転部材を、結像レンズの光軸を中心に回転させるだけで、回転部材と一緒に、撮像素子も結像レンズの光軸を中心に回転させることができ、撮像素子の傾き調整を極めて簡単かつ確実に行うことができる。
【0008】
さらに、請求項記載の電子部品認識装置において、回転部材は、ケーシングに設けられた回転部材収容部内で光軸を回転中心として回転自在に配置され、回転部材には円筒状のフランジ部が設けられ、フランジ部の周面には、フランジ部の直径方向に対峙させた一対の突起部が設けられ、フランジ部の環状な前面は、光軸に対し垂直な平面として回転部材収容部に設けられた回転部材支持面に当接、ケーシングには、回転部材支持面に対して平行で、各突起部の中心軸線に対して直交する方向に延在する一対の調整ネジが螺着され、調整ネジを、突起部の中心軸線より後方にずらし、調整ネジの先端を突起部の周面に当接させる。
【0009】
このような構成を採用した場合、回転部材は、ケーシングに設けられた回転部材収容部内で、結像レンズの光軸を中心に所定角度だけ回転させることができ、その結果、回転部材の回り量に追従して、撮像素子も結像レンズの光軸を中心に回ることになる。このような回転量は、一対の調整ネジの回し量によって決定されるが、このとき、一方の調整ネジをケーシング内に少しずつ送り込むと、調整ネジの先端により突起部が押し下げられながら、回転部材は一方向に少しずつ回転し、撮像素子の微小な回転角度調整が実効される。なお、この調整時において、他方の調整ネジをケーシングから外に少しずつ送り出すことで、回転部材をスムーズに回転させ得る。更に、調整ネジの先端は、突起部の中心軸線より後方にずらされた状態で、突起部の周面に当接させられているので、調整ネジの付勢力により、回転部材のフランジ部は、ケーシングの回転部材支持面に押し付けられながら回転することになり、回転部材の安定した回転角度調整を可能にし、その微調整が確実なものとなる。
【0010】
請求項記載の電子部品認識装置において、回転部材には、フランジ部から前方に延びる円筒状の胴部が設けられ、ケーシングには、回転部材支持面に対して平行で、胴部の中心軸線に対して直交する方向に延在する止めネジが螺着され、胴部の周面には、止めネジの円錐状先端部を摺接させる断面V字状のガイド溝が周方向に形成されると好ましい。
【0011】
このような構成を採用した場合、止めネジを締め込むことにより、止めネジの先端部がガイド溝の斜面に沿って摺動し、胴部を前進させようとする結果として、フランジ部がケーシングの回転部材支持面に強く押し付けられ、回転部材が、回転角度調整後にケーシングにしっかりと固定されることになる。
【0012】
請求項記載の電子部品認識装置において、撮像素子は、CCDラインセンサであると好ましい。撮像素子がCCDラインセンサである場合、読取り対象物としての電子部品とのライン合わせが重要であり、そのライン調整の際に、撮像素子の微小な回転角度調整を必要とし、CCDエリアセンサに比してその実効が顕著である。
【0013】
【発明の実施の形態】
以下、図面と共に本発明による電子部品認識装置の好適な実施形態について詳細に説明する。
【0014】
図1は、本発明に係る電子部品認識装置を示す斜視図である。同図に示す電子部品認識装置1は、暗箱をなすボックス2を有している。このボックス2の前面には読取り窓3が設けられ、この読取り窓3の周縁部には、LEDからなる照明光源4が整列した状態で固定されている。従って、吸着ノズル5によって、読取り窓3の前まで搬送させた電子部品6を、各照明光源4により照らし出すことができる。また、ボックス2内には、直進光路L上に撮像ユニット8を配置させている。
【0015】
撮像ユニット8において、図2及び図3に示すように、その前部には複数枚の結像レンズ13を並列させた鏡胴14が設けられ、この鏡胴14は、ケーシング15の前端に固定され、このケーシング15は、ボックス2内のスタンド16に固定されている(図1参照)。ケーシング15内には、鏡胴14に隣接する円筒状の回転部材17が収容され、回転部材17は、鏡胴14を収容する鏡胴収容部18に連続する回転部材収容部19内に収容させると共に、鏡胴14内の結像レンズ13がもつ光軸Sを回転中心として、回転部材収容部19内でその壁面に沿って摺動回転する。
【0016】
また、回転部材17の前部には、小径をなす円筒状の胴部21が設けられ、その後部には、大径をなす円筒状のフランジ部20が設けられ、このフランジ部20は、回転部材収容部19に設けられた回転部材支持面19Aに当接し、この回転部材支持面19Aは、光軸Sに対して垂直な平面として形成されている。従って、フランジ部20の前面20aを回転部材支持面19Aに当接させながら、回転部材17を、光軸Sを中心に適切に回転させることができる。
【0017】
更に、回転部材17の中央には、光軸Sに沿って延在する光通過部17bが開口として設けられている。この回転部材17の背面17a側には、光通過部17bに対応するようにして、撮像素子の一例としてのCCDラインセンサ22が固定されている。なお、このCCDラインセンサ22は、シールドケース23内に収容され、このシールドケース23を、回転部材17の背面17aにネジ等で固定する結果として、CCDラインセンサ22は、回転部材17の背面17a側に固定される。そして、CCDラインセンサ22の各受光素子は、水平に且つ一列に並べられており、CCDラインセンサ22の固定に際し、CCDラインセンサ22の受光素子部22aの中央は、光軸Sに対する位置合わせが行われる。従って、回転部材17を光軸Sを中心に回転させると、CCDラインセンサ22の受光素子部22aもその中央を中心にして回転することになる。
【0018】
更に、図3及び図4に示すように、フランジ部20の周面20bには、フランジ部20の直径方向に対峙させた一対の突起部24が設けられ、各突起部24は、円柱状に形成され、CCDラインセンサ22の受光素子部22aの延在方向に一致させるように、ほぼ水平方向に突出する。また、ケーシング15には、2本の調整ネジ25が螺着され、各調整ネジ25は、突起部24に対応してそれぞれ設けられている。
【0019】
各調整ネジ25は、図2及び図5に示すように、回転部材支持面19Aに対して平行で、突起部24の中心軸線Pに対して直交する上下方向に延在し、各調整ネジ25の先端25aは、突起部24の中心軸線Pの真上に位置させることなく、その後方にずらされて、突起部24の周面24aに当接させている。従って、突起部24には、調整ネジ25の先端25aの付勢力によって、矢印Aの方向に力が常に与え続けられることになる。その結果、突起部24に調整ネジ25の先端25aが当接し続ける限り、フランジ部20の前面20aは、突起部24の前方に位置する回転部材支持面19Aに対して所定の力をもって押し付けられ続けることになる。なお、調整ネジ25の先端25aは半球状に丸められ、調整ネジ25の頭部にツマミ部25bを設けることで、調整ネジ25を指で回し易くしている。
【0020】
ここで、読取り窓3の前まで搬送させた電子部品6の水平度に合わせるように、CCDラインセンサ22に接続させた図示しない外部モニターを見ながら、CCDラインセンサ22の傾き調整を行う場合について説明する。
【0021】
CCDラインセンサ22のライン合わせを行うための微小な回転角度調整において、先ず、一方のツマミ部25bを一方向に回しながら、調整ネジ25をケーシング15内に少しずつ送り込むと同時に、他方のツマミ部25bを反対方向に同量だけ回しながら、他方の調整ネジ25をケーシング15の外に少しずつ送り出す。その結果、一方の調整ネジ25の先端25aの送り出しにより一方の突起部24が押し下げられ、回転部材17がその押し下げ方向に少しずつ回りながら、CCDラインセンサ22の微小な回転角度調整を行なっていく。
【0022】
このとき、調整ネジ25の先端25aは、突起部24の中心軸線Pより後方にずらされているので、各調整ネジ25を回す際、突起部24に調整ネジ25の先端25aが当接し続ける限り、回転部材17は、そのフランジ部20が、ケーシング15の回転部材支持面19Aに押し付けられながら一方向に少しずつ回転する。従って、CCDラインセンサ22の回転角度調整を行うにあたって、ミクロン単位での微調整が確実に達成されることになる。
【0023】
なお、一対の調整ネジ25が同一方向にネジ切りされる場合に限らず、一方の調整ネジ25を右ネジにし、他方の調整ネジ25を左ネジにすることで、両方の調整ネジ25の回し方向を同一にすることもできる。また、各ツマミ部25bを指によって所定方向に回す場合のその回し量は、調整ネジ25のネジ山のピッチ寸法によって決定されることは言うまでもない。
【0024】
ここで、前述した2本の調整ネジ25により、CCDラインセンサ22のライン合わせが完了した後、回転部材17をその位置にしっかりと固定させることが必要になる。
【0025】
そこで、図2,図6及び図7に示すように、ケーシング15には、回転部材支持面19Aに対して平行で、回転部材17の胴部21の中心軸線K(この中心軸線Kは光軸Sと一致する)に対して直交する方向に延在する2本の止めネジ30が螺着され、各止めネジ30は、ケーシング15に設けられた各ネジ孔29内に装填されている。ケーシング15内において、止めネジ30同士は胴部21の直径方向に対峙し、胴部21の周面には、その周方向に沿って断面V字状のガイド溝31が環状に形成されている。これに対し、止めネジ30の先端部30aは円錐状に形成され、この先端部30aは、ガイド溝31の斜面32a,32bのうちの、フランジ部20から遠い側の斜面32aに当接させる。
【0026】
このような構成を採用すると、CCDラインセンサ22の回転角度調整が完了した後、各止めネジ30を締め込むことにより、止めネジ30の先端部30aが、ガイド溝31の底に向けて図7の矢印B方向に摺動する。その結果、矢印C方向に胴部21が前進しようとして、フランジ部20の前面20aが回転部材支持面19Aに強く押し付けられ、回転部材17は、所望の位置でケーシング15に対し、しっかりと安定した状態で固定されることになる。
【0027】
本発明は、前述した実施形態に限定されるものではなく、回転部材17に固定される撮像素子22は、CCDラインセンサに限らず、CCDエリアセンサであってもよい。なお、撮像素子22がCCDラインセンサである場合、読取り対象物としての電子部品6とのライン合わせが、撮像素子22の読取り精度に多大な影響を与える。よって、その実効が顕著に現れる。
【0028】
【発明の効果】
本発明による電子部品認識装置は、以上のように構成されているため、次のような効果を得る。すなわち、所定の場所に配置させた電子部品を、照明光により照らし出し、電子部品からの反射光を、鏡胴内に設けた結像レンズを介して、撮像素子に入射させ、撮像素子により、電子部品の像を認識するための電子部品認識装置において、
結像レンズの光軸上に撮像素子を配置させ、鏡胴の後方に、光軸を回転中心とする円筒状の回転部材を配置させ、回転部材の背面側に撮像素子を固定し
回転部材は、ケーシングに設けられた回転部材収容部内で光軸を回転中心として回転自在に配置され、回転部材には円筒状のフランジ部が設けられ、フランジ部の周面には、フランジ部の直径方向に対峙させた一対の突起部が設けられ、フランジ部の環状な前面は、光軸に対し垂直な平面として回転部材収容部に設けられた回転部材支持面に当接し、ケーシングには、回転部材支持面に対して平行で、各突起部の中心軸線に対して直交する方向に延在する一対の調整ネジが螺着され、調整ネジを、突起部の中心軸線より後方にずらし、調整ネジの先端を突起部の周面に当接させたことにより、撮像素子の高精度な傾き調整を容易にする。
【図面の簡単な説明】
【図1】本発明に係る電子部品認識装置の一実施形態を示す斜視図である。
【図2】図1に示された電子部品認識装置の要部を示す断面図である。
【図3】図2に示された撮像ユニットの背面図である。
【図4】回転部材と調整ネジとの関係を示す斜視図である。
【図5】回転部材に設けられた突起部と調整ネジとの関係を示す側面図である。
【図6】回転部材と止めネジとの関係を示す斜視図である。
【図7】回転部材に設けられたガイド溝と止めネジとの関係を示す断面図である。
【図8】従来の電子部品認識装置を示す斜視図である。
【図9】図8に示された電子部品認識装置の要部を示す断面図である。
【図10】図9に示された撮像ユニットの背面図である。
【符号の説明】
P…突起部の中心軸線、S…光軸、1…電子部品認識装置、6…電子部品、8…撮像ユニット、13…結像レンズ、14…鏡胴、15…ケーシング、17…回転部材、17a…回転部材の背面、19…回転部材収容部、19A…回転部材支持面、20…フランジ部、20a…フランジ部の前面、20b…フランジ部の周面、21…胴部、22…CCDラインセンサ(撮像素子)、24…突起部、24a…突起部の周面、25…調整ネジ、30…止めネジ、30a…止めネジの先端部、31…ガイド溝。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic component recognition apparatus, and more particularly to an electronic component recognition apparatus for recognizing a state of an electronic component in advance when mounting the electronic component on a substrate.
[0002]
[Prior art]
As shown in FIG. 8, the conventional electronic component recognition apparatus 100 includes a box 101 that forms a dark box. A reading window 102 is provided on the front surface of the box 101, and an illumination light source 103 made of LEDs is fixed to the edge of the reading window 102, and the electronic component 104 is illuminated by the illumination light source 103. It is conveyed to the position of the reading window 102 by a suction nozzle (not shown). In the box 101, a half mirror 105 located behind the reading window 102 is provided. The half mirror 105 divides the optical path into two, and an imaging unit 106 is arranged on one optical path L1. A CCD area sensor 107 is disposed on the other optical path L 2, and a total reflection mirror 108 and an imaging lens 109 are sequentially arranged between the half mirror 105 and the CCD area sensor 107.
[0003]
Further, as shown in FIGS. 9 and 10, the imaging unit 106 is provided with a lens barrel 110 in which a plurality of imaging lenses 111 are arranged. The lens barrel 110 is fixed to the front end of the casing 112, The casing 112 is fixed to a stand 113 in the box 101 (see FIG. 8). The image sensor fixing plate 114 is fixed to the back surface 112 a of the casing 112 by four adjustment screws 115, and each adjustment screw 115 is screwed to the casing 112 through the through hole 114 c of the image sensor fixing plate 114. A CCD area sensor (imaging device) 117 housed in the shield case 116 is fixed at a position facing the opening 114b on the back surface 114a of the imaging device fixing plate 114. The CCD area sensor 117 is positioned on the optical axis S of the imaging lens 111 and loosens the adjustment screw 115, so that the image sensor fixing plate 114 can adjust the gap between the through hole 114c and the adjustment screw 115. To. Accordingly, it is possible to adjust the position of the CCD area sensor 117 such as the tilt with respect to the optical axis S.
[0004]
[Problems to be solved by the invention]
However, since the conventional electronic component recognition apparatus is configured as described above, the following problems exist. That is, as shown in FIG. 8, the position adjustment of the CCD area sensor 117 is performed in a state where the imaging unit 106 is incorporated in the electronic component recognition apparatus 100, and an image obtained by the CCD area sensor 117 is viewed on an external monitor. Done. In this case, since it is necessary to finely adjust the position of the CCD area sensor 117 while moving the image sensor fixing plate 114 with a finger while each adjustment screw 115 is loosened, adjustment in units of microns is extremely difficult. There was a problem that considerable skill was required.
[0005]
The present invention has been made to solve the above-described problems, and in particular, an object of the present invention is to provide an electronic component recognition device that facilitates highly accurate tilt adjustment of an image sensor.
[0006]
[Means for Solving the Problems]
An electronic component recognition apparatus according to a first aspect of the present invention illuminates an electronic component placed at a predetermined location with illumination light, and reflects reflected light from the electronic component through an imaging lens provided in a lens barrel. In the electronic component recognition apparatus for making the image incident on the image sensor and recognizing the image of the electronic component by the image sensor
An image sensor is disposed on the optical axis of the imaging lens, a cylindrical rotating member having the optical axis as a rotation center is disposed behind the lens barrel, and the image sensor is fixed to the back side of the rotating member ,
The rotating member is disposed so as to be rotatable around the optical axis in the rotating member accommodating portion provided in the casing, the rotating member is provided with a cylindrical flange portion, and the circumferential surface of the flange portion is provided with a flange portion. A pair of protrusions opposed to each other in the diameter direction are provided, and the annular front surface of the flange portion is in contact with a rotating member support surface provided in the rotating member accommodating portion as a plane perpendicular to the optical axis. A pair of adjustment screws that are parallel to the rotating member support surface and extend in a direction perpendicular to the central axis of each protrusion are screwed together, and the adjustment screws are shifted rearward from the central axis of the protrusion to adjust. The tip of the screw is brought into contact with the peripheral surface of the protrusion .
[0007]
In this electronic component recognition device, when the image sensor is incorporated into the device, it is necessary to adjust the tilt of the image sensor. In this case, just rotating the rotating member around the optical axis of the imaging lens, Together with the rotating member, the image sensor can also be rotated around the optical axis of the imaging lens, and the tilt adjustment of the image sensor can be performed very simply and reliably.
[0008]
Further, in the electronic component recognizing apparatus according to claim 1, wherein the rotating member is rotatably disposed as a rotation around the optical axis at a rotational member receiving portion provided on the casing, a cylindrical flange portion provided on the rotary member A pair of protrusions facing each other in the diameter direction of the flange portion is provided on the peripheral surface of the flange portion, and the annular front surface of the flange portion is provided in the rotating member accommodating portion as a plane perpendicular to the optical axis. contact the rotating member bearing surface has, in the casing, parallel to the rotating member supporting surface, a pair of adjustment screws extending in a direction perpendicular to the central axis of each projection portion is screwed, adjustment screws, offset rearwardly from the center axis of the protrusion, Ru is brought into contact with the tip of the adjusting screw on the peripheral surface of the protrusion.
[0009]
When such a configuration is adopted, the rotating member can be rotated by a predetermined angle around the optical axis of the imaging lens within the rotating member housing portion provided in the casing. Following this, the image sensor also rotates around the optical axis of the imaging lens. The amount of rotation is determined by the amount of rotation of the pair of adjustment screws. At this time, when one adjustment screw is fed into the casing little by little, the protrusion is pushed down by the tip of the adjustment screw, and the rotation member Rotates little by little in one direction, and fine rotation angle adjustment of the image sensor is effected. In this adjustment, the rotating member can be smoothly rotated by feeding the other adjustment screw little by little out of the casing. Furthermore, since the tip of the adjustment screw is shifted rearward from the central axis of the protrusion, it is brought into contact with the peripheral surface of the protrusion. The rotating member is rotated while being pressed against the rotating member support surface of the casing, so that the rotating member can be stably rotated and the fine adjustment thereof is ensured.
[0010]
3. The electronic component recognizing device according to claim 2, wherein the rotating member is provided with a cylindrical body portion extending forward from the flange portion, and the casing is parallel to the rotating member support surface and the center axis of the body portion. A set screw extending in a direction orthogonal to the screw is screwed, and a guide groove having a V-shaped cross section is formed in the circumferential direction on the circumferential surface of the body portion so that the conical tip of the set screw is slidably contacted. And preferred.
[0011]
When such a configuration is adopted, by tightening the set screw, the end of the set screw slides along the inclined surface of the guide groove, and as a result, the flange portion of the casing is moved forward. The rotating member is strongly pressed against the supporting surface of the rotating member, and the rotating member is firmly fixed to the casing after adjusting the rotation angle.
[0012]
4. The electronic component recognition apparatus according to claim 3, wherein the image pickup device is a CCD line sensor. When the image sensor is a CCD line sensor, it is important to align the line with the electronic component as the object to be read. When adjusting the line, it is necessary to finely adjust the rotation angle of the image sensor. The effectiveness is remarkable.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of an electronic component recognition apparatus according to the present invention will be described in detail with reference to the drawings.
[0014]
FIG. 1 is a perspective view showing an electronic component recognition apparatus according to the present invention. The electronic component recognition apparatus 1 shown in the figure has a box 2 that forms a dark box. A reading window 3 is provided on the front surface of the box 2, and an illumination light source 4 made of LEDs is fixed to the periphery of the reading window 3 in an aligned state. Therefore, the electronic components 6 conveyed to the front of the reading window 3 by the suction nozzle 5 can be illuminated by the respective illumination light sources 4. In the box 2, the imaging unit 8 is disposed on the straight light path L.
[0015]
As shown in FIGS. 2 and 3, the imaging unit 8 is provided with a lens barrel 14 in which a plurality of imaging lenses 13 are arranged in parallel at the front, and the lens barrel 14 is fixed to the front end of the casing 15. The casing 15 is fixed to a stand 16 in the box 2 (see FIG. 1). A cylindrical rotating member 17 adjacent to the lens barrel 14 is accommodated in the casing 15, and the rotating member 17 is accommodated in a rotating member accommodating portion 19 that is continuous with a lens barrel accommodating portion 18 that accommodates the lens barrel 14. At the same time, the optical axis S of the imaging lens 13 in the lens barrel 14 is rotated about the optical axis S along the wall surface in the rotating member accommodating portion 19.
[0016]
In addition, a cylindrical body portion 21 having a small diameter is provided at the front portion of the rotating member 17, and a cylindrical flange portion 20 having a large diameter is provided at the rear portion thereof. contact with the rotary member support surface 19A provided in the member accommodating portion 19, the rotary member support surface 19A is formed as a plane perpendicular to the optical axis S. Therefore, the rotating member 17 can be appropriately rotated around the optical axis S while the front surface 20a of the flange portion 20 is in contact with the rotating member support surface 19A.
[0017]
Further, a light passage portion 17b extending along the optical axis S is provided as an opening at the center of the rotating member 17. A CCD line sensor 22 as an example of an image sensor is fixed on the back surface 17a side of the rotating member 17 so as to correspond to the light passage portion 17b. The CCD line sensor 22 is housed in a shield case 23. As a result of fixing the shield case 23 to the back surface 17a of the rotating member 17 with screws or the like, the CCD line sensor 22 is connected to the back surface 17a of the rotating member 17. Fixed to the side. The light receiving elements of the CCD line sensor 22 are arranged horizontally and in a line. When the CCD line sensor 22 is fixed, the center of the light receiving element portion 22a of the CCD line sensor 22 is aligned with the optical axis S. Done. Therefore, when the rotating member 17 is rotated around the optical axis S, the light receiving element portion 22a of the CCD line sensor 22 is also rotated around the center.
[0018]
Further, as shown in FIGS. 3 and 4, the peripheral surface 20 b of the flange portion 20 is provided with a pair of protrusion portions 24 facing each other in the diameter direction of the flange portion 20, and each protrusion portion 24 has a cylindrical shape. It is formed and protrudes substantially in the horizontal direction so as to coincide with the extending direction of the light receiving element portion 22a of the CCD line sensor 22. In addition, two adjustment screws 25 are screwed into the casing 15, and each adjustment screw 25 is provided corresponding to the protrusion 24.
[0019]
As shown in FIGS. 2 and 5, each adjustment screw 25 extends in the vertical direction parallel to the rotation member support surface 19 </ b> A and orthogonal to the central axis P of the protrusion 24. The front end 25a of the protrusion 24 is shifted to the rear without being positioned directly above the central axis P of the protrusion 24, and is brought into contact with the peripheral surface 24a of the protrusion 24. Therefore, a force is always applied to the protrusion 24 in the direction of arrow A by the urging force of the tip 25a of the adjustment screw 25. As a result, as long as the tip 25a of the adjustment screw 25 continues to abut on the protrusion 24, the front surface 20a of the flange 20 continues to be pressed against the rotating member support surface 19A positioned in front of the protrusion 24 with a predetermined force. It will be. The tip 25a of the adjustment screw 25 is rounded into a hemispherical shape, and a knob portion 25b is provided on the head of the adjustment screw 25 so that the adjustment screw 25 can be easily turned with a finger.
[0020]
Here, the tilt adjustment of the CCD line sensor 22 is performed while looking at an external monitor (not shown) connected to the CCD line sensor 22 so as to match the level of the electronic component 6 conveyed to the front of the reading window 3. explain.
[0021]
In the minute rotation angle adjustment for line alignment of the CCD line sensor 22, first, while turning one knob portion 25b in one direction, the adjusting screw 25 is gradually fed into the casing 15, and at the same time the other knob portion The other adjustment screw 25 is fed out of the casing 15 little by little while rotating the same amount in the opposite direction by 25b. As a result, one protrusion 24 is pushed down by feeding the tip 25a of one adjustment screw 25, and the rotation angle of the CCD line sensor 22 is adjusted while the rotating member 17 is gradually turning in the pushing direction. .
[0022]
At this time, since the tip 25a of the adjustment screw 25 is shifted rearward from the central axis P of the protrusion 24, as long as each adjustment screw 25 is rotated, the tip 25a of the adjustment screw 25 is kept in contact with the protrusion 24. The rotating member 17 rotates little by little in one direction while the flange portion 20 is pressed against the rotating member support surface 19A of the casing 15. Therefore, when the rotation angle of the CCD line sensor 22 is adjusted, fine adjustment in units of microns is surely achieved.
[0023]
The pair of adjustment screws 25 is not limited to being threaded in the same direction, but one adjustment screw 25 is a right screw and the other adjustment screw 25 is a left screw, so that both adjustment screws 25 can be turned. The direction can also be the same. Needless to say, the amount of rotation when each knob portion 25b is rotated in a predetermined direction by a finger is determined by the pitch dimension of the thread of the adjusting screw 25.
[0024]
Here, after the line alignment of the CCD line sensor 22 is completed by the two adjusting screws 25 described above, it is necessary to firmly fix the rotating member 17 at the position.
[0025]
Therefore, as shown in FIGS. 2, 6, and 7, the casing 15 is parallel to the rotating member support surface 19 </ b> A, and the central axis K of the trunk portion 21 of the rotating member 17 (this central axis K is the optical axis). Two set screws 30 extending in a direction perpendicular to the S) are screwed, and each set screw 30 is loaded in each screw hole 29 provided in the casing 15. In the casing 15, the set screws 30 face each other in the diameter direction of the body portion 21, and a guide groove 31 having a V-shaped cross section is formed in an annular shape on the circumferential surface of the body portion 21 along the circumferential direction. . On the other hand, the distal end portion 30a of the set screw 30 is formed in a conical shape, and the distal end portion 30a is brought into contact with the inclined surface 32a far from the flange portion 20 out of the inclined surfaces 32a and 32b of the guide groove 31.
[0026]
When such a configuration is adopted, after the rotation angle adjustment of the CCD line sensor 22 is completed, each set screw 30 is tightened so that the tip 30a of the set screw 30 faces the bottom of the guide groove 31 as shown in FIG. Slide in the direction of arrow B. As a result, the body portion 21 tries to move forward in the direction of the arrow C, and the front surface 20a of the flange portion 20 is strongly pressed against the rotating member support surface 19A, so that the rotating member 17 is firmly stabilized against the casing 15 at a desired position. It will be fixed in the state.
[0027]
The present invention is not limited to the above-described embodiment, and the imaging element 22 fixed to the rotating member 17 is not limited to the CCD line sensor, but may be a CCD area sensor. When the image sensor 22 is a CCD line sensor, the line alignment with the electronic component 6 as a reading object greatly affects the reading accuracy of the image sensor 22. Therefore, the effect appears remarkably.
[0028]
【The invention's effect】
Since the electronic component recognition apparatus according to the present invention is configured as described above, the following effects are obtained. That is, an electronic component placed at a predetermined location is illuminated with illumination light, and reflected light from the electronic component is incident on an image sensor via an imaging lens provided in the lens barrel. In an electronic component recognition apparatus for recognizing an image of an electronic component,
An image sensor is disposed on the optical axis of the imaging lens, a cylindrical rotating member having the optical axis as a rotation center is disposed behind the lens barrel, and the image sensor is fixed to the back side of the rotating member ,
The rotating member is disposed so as to be rotatable around the optical axis in the rotating member accommodating portion provided in the casing, the rotating member is provided with a cylindrical flange portion, and the circumferential surface of the flange portion is provided with a flange portion. A pair of protrusions opposed to each other in the diameter direction are provided, and the annular front surface of the flange portion is in contact with a rotating member support surface provided in the rotating member accommodating portion as a plane perpendicular to the optical axis. A pair of adjustment screws that are parallel to the rotating member support surface and extend in a direction perpendicular to the central axis of each protrusion are screwed together, and the adjustment screws are shifted rearward from the central axis of the protrusion to adjust. By making the tip of the screw contact the peripheral surface of the protrusion, it is easy to adjust the inclination of the image sensor with high accuracy.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of an electronic component recognition apparatus according to the present invention.
FIG. 2 is a cross-sectional view showing a main part of the electronic component recognition apparatus shown in FIG.
FIG. 3 is a rear view of the imaging unit shown in FIG. 2;
FIG. 4 is a perspective view showing a relationship between a rotating member and an adjustment screw.
FIG. 5 is a side view showing a relationship between a protrusion provided on a rotating member and an adjustment screw.
FIG. 6 is a perspective view showing a relationship between a rotating member and a set screw.
FIG. 7 is a cross-sectional view showing the relationship between a guide groove and a set screw provided in a rotating member.
FIG. 8 is a perspective view showing a conventional electronic component recognition apparatus.
9 is a cross-sectional view showing a main part of the electronic component recognition apparatus shown in FIG.
10 is a rear view of the imaging unit shown in FIG. 9. FIG.
[Explanation of symbols]
P: central axis of the protrusion, S: optical axis, 1 ... electronic component recognition device, 6 ... electronic component, 8 ... imaging unit, 13 ... imaging lens, 14 ... lens barrel, 15 ... casing, 17 ... rotating member, 17a: Back surface of rotating member, 19: Rotating member accommodating portion, 19A: Rotating member supporting surface, 20 ... Flange portion, 20a ... Front surface of flange portion, 20b ... Peripheral surface of flange portion, 21 ... Body portion, 22 ... CCD line Sensor (imaging device), 24: protrusion, 24a ... peripheral surface of the protrusion, 25 ... adjustment screw, 30 ... set screw, 30a ... tip end of the set screw, 31 ... guide groove.

Claims (3)

所定の場所に配置させた電子部品を、照明光により照らし出し、前記電子部品からの反射光を、鏡胴内に設けた結像レンズを介して、撮像素子に入射させ、前記撮像素子により、前記電子部品の像を認識するための電子部品認識装置において、
前記結像レンズの光軸上に前記撮像素子を配置させ、前記鏡胴の後方に、前記光軸を回転中心とする円筒状の回転部材を配置させ、前記回転部材の背面側に前記撮像素子を固定し
前記回転部材は、ケーシングに設けられた回転部材収容部内で前記光軸を回転中心として回転自在に配置され、前記回転部材には円筒状のフランジ部が設けられ、前記フランジ部の周面には、前記フランジ部の直径方向に対峙させた一対の突起部が設けられ、前記フランジ部の環状な前面は、前記光軸に対し垂直な平面として前記回転部材収容部に設けられた回転部材支持面に当接し、前記ケーシングには、前記回転部材支持面に対して平行で、前記各突起部の中心軸線に対して直交する方向に延在する一対の調整ネジが螺着され、前記調整ネジを、前記突起部の中心軸線より後方にずらし、前記調整ネジの先端を前記突起部の周面に当接させたことを特徴とする電子部品認識装置。
An electronic component placed at a predetermined location is illuminated with illumination light, and reflected light from the electronic component is incident on an image sensor through an imaging lens provided in a lens barrel. In the electronic component recognition apparatus for recognizing the image of the electronic component,
The imaging element is disposed on the optical axis of the imaging lens, a cylindrical rotating member having the optical axis as a rotation center is disposed behind the lens barrel, and the imaging element is disposed on the back side of the rotating member. Fixed ,
The rotating member is rotatably arranged around the optical axis in a rotating member accommodating portion provided in a casing, the rotating member is provided with a cylindrical flange portion, and a circumferential surface of the flange portion is provided. A pair of protrusions facing each other in the diameter direction of the flange portion, and the annular front surface of the flange portion is a rotating member support surface provided in the rotating member accommodating portion as a plane perpendicular to the optical axis. A pair of adjustment screws extending in a direction orthogonal to the central axis of each projection are screwed onto the casing, and the adjustment screws are attached to the casing. The electronic component recognizing device is characterized in that the tip of the adjustment screw is brought into contact with the peripheral surface of the protruding portion by shifting backward from the central axis of the protruding portion .
前記回転部材には、前記フランジ部から前方に延びる円筒状の胴部が設けられ、前記ケーシングには、前記回転部材支持面に対して平行で、前記胴部の中心軸線に対して直交する方向に延在する止めネジが螺着され、前記胴部の周面には、前記止めネジの円錐状先端部を摺接させる断面V字状のガイド溝が周方向に形成されたことを特徴とする請求項記載の電子部品認識装置。The rotating member is provided with a cylindrical body portion extending forward from the flange portion, and the casing is parallel to the rotating member support surface and orthogonal to the central axis of the body portion. And a guide groove having a V-shaped cross section for slidingly contacting the conical tip of the set screw is formed in the circumferential direction on the peripheral surface of the body portion. The electronic component recognition apparatus according to claim 1 . 前記撮像素子は、CCDラインセンサであることを特徴とする請求項1又は2記載の電子部品認識装置。 3. The electronic component recognition apparatus according to claim 1, wherein the image pickup device is a CCD line sensor.
JP01579598A 1998-01-28 1998-01-28 Electronic component recognition device Expired - Fee Related JP3887477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01579598A JP3887477B2 (en) 1998-01-28 1998-01-28 Electronic component recognition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01579598A JP3887477B2 (en) 1998-01-28 1998-01-28 Electronic component recognition device

Publications (2)

Publication Number Publication Date
JPH11211436A JPH11211436A (en) 1999-08-06
JP3887477B2 true JP3887477B2 (en) 2007-02-28

Family

ID=11898782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01579598A Expired - Fee Related JP3887477B2 (en) 1998-01-28 1998-01-28 Electronic component recognition device

Country Status (1)

Country Link
JP (1) JP3887477B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019919A (en) * 2009-10-30 2013-01-31 Hamamatsu Photonics Kk Imaging unit

Also Published As

Publication number Publication date
JPH11211436A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
US7352387B2 (en) Camera with positioning device used to capture magnified and demagnified images
JP3538651B2 (en) Image forming apparatus having two-beam optical scanning device
WO2007037226A1 (en) Device having imaging element and imaging device using the same
JP2001218102A (en) Tilt adjustment device for imaging element
EP0096761B1 (en) An image fiber with a mechanism for rotating a field of view
JP3887477B2 (en) Electronic component recognition device
JP4312342B2 (en) Photoelectric switch
US3973231A (en) Position adjusting device for image pickup tube coil assembly
JP2000269581A (en) Mounting structure of light emitting element
US5515182A (en) Rotary scanner
JP4739560B2 (en) Multi-beam light source unit and optical scanning device having the same
US11656425B2 (en) Optical device and optical measuring machine
US6522466B2 (en) Apparatus for observing interior from an ultramicropore space
US7019916B2 (en) Lens apparatus, projection type optical apparatus and projection type image display apparatus
KR20010039392A (en) Projection-lens installing structure for projector
JP4226410B2 (en) Imaging device
JP2855018B2 (en) Image scanner
JP3822971B2 (en) Electronic component recognition device
JPH0787542B2 (en) Image sensor position adjustment device
JPH0942953A (en) Optical displacement sensor
JPH1123983A (en) Television camera apparatus for endoscope and its focusing method
JPH02177671A (en) Lens interchangeable video camera
JPH0534552A (en) Fitting device for read lens
JP2001183589A (en) Front end of side view type endoscope
JPH0328622Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees