JP3886757B2 - Electronic endoscope device - Google Patents

Electronic endoscope device Download PDF

Info

Publication number
JP3886757B2
JP3886757B2 JP2001295273A JP2001295273A JP3886757B2 JP 3886757 B2 JP3886757 B2 JP 3886757B2 JP 2001295273 A JP2001295273 A JP 2001295273A JP 2001295273 A JP2001295273 A JP 2001295273A JP 3886757 B2 JP3886757 B2 JP 3886757B2
Authority
JP
Japan
Prior art keywords
signal
circuit
blood vessel
color
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001295273A
Other languages
Japanese (ja)
Other versions
JP2003093342A (en
Inventor
充 樋口
大輔 綾目
一則 阿部
信次 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2001295273A priority Critical patent/JP3886757B2/en
Priority to US10/255,079 priority patent/US6956602B2/en
Publication of JP2003093342A publication Critical patent/JP2003093342A/en
Application granted granted Critical
Publication of JP3886757B2 publication Critical patent/JP3886757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電子内視鏡装置、特に被観察体内の毛細血管等を詳細に表示することができる電子内視鏡の画像処理に関する。
【0002】
【従来の技術】
電子内視鏡装置は、照明光を照射して対物光学系を介して捉えられた被観察体を、CCD(Charge Coupled Device)等の撮像素子で撮像し、この被観察体像をモニタ等に表示するものであるが、近年、この種の電子内視鏡装置では、上記対物光学系に変倍機構を組み込み、被観察体像を光学的に拡大して表示することが行われる。従って、モニタ等に表示された拡大画像により、注目部位の細部が良好に観察できるようになっている。
【0003】
【発明が解決しようとする課題】
ところで、電子内視鏡装置では、撮像対象が消化器官等、生体内であることが多く、図5に示されるように、拡大された被観察体画像1(モニタ等の表示)においては粘膜2の中に血管(毛細血管)3が存在しており、この血管3の走行状態やこの血管(血液)3の集中状況は、病巣の診断、癌組織の特定等において重要な観察対象となる。一方、生体内は桃色或いは赤みを帯びた色で構成されることから、血管3と粘膜2等の他の組織との区別が不明瞭になる傾向がある。従って、血管3を粘膜2と対比させて明確に表示できれば、生体内の観察、診断に役立つ情報を提供することが可能となる。
【0004】
本発明は上記問題点に鑑みてなされたものであり、その目的は、血管を粘膜等の他の組織に対して高いコントラストにより明確に画像表示することができる電子内視鏡装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明に係る電子内視鏡装置は、撮像素子で得られた信号に基づき所定の色信号を形成する色信号形成回路と、この色信号形成回路にて得られた赤色以外の所定の色信号を微分処理して微分信号を生成する微分回路と、この微分回路から出力された微分信号を増幅するゲイン回路と、このゲイン回路から出力された微分信号に基づき上記所定色信号以外の少なくとも赤信号を増幅して血管を強調する血管強調回路と、を含んでなることを特徴とする。
請求項2に係る発明は、上記色信号形成回路では、赤,緑,青の色信号を形成し、上記微分回路では、緑信号に対し微分処理を施し、上記血管強調回路では、赤色と青色の信号を微分信号により増幅することを特徴とする。
【0006】
上記の構成によれば、色信号形成回路によりR(赤),G(緑),B(青)の色信号が形成され、例えばG信号(B信号でもよい)が微分回路にて微分処理される。このG信号ではレベルの低い信号部分(黒い部分)に血管が存在し、その他の部分に粘膜が存在することになり、このレベルの低い部分においてある程度急激に変化する場所を微分処理で検出することにより、血管の位置(存在)を抽出する。即ち、本願発明は、血管の主要色である赤色以外の画像信号を微分処理することにより血管の位置を検出する。
【0007】
次に、上記微分回路によって得られた微分信号は、所定の増幅率で増幅された後に、血管強調回路に供給されており、ここではこの微分信号をゲイン信号として上記のR,B信号(又はR信号のみ)を増幅し、このR,B信号と微分信号を与えないG信号により被観察体画像が形成される。即ち、上記微分信号の急激な変化レベルに応じて増幅されたR,B信号と、微分回路直前のG信号によって画像が形成されることになり、この結果、粘膜の中にある血管が高いコントラストで表示される。
【0008】
【発明の実施の形態】
図1には、実施形態に係る電子内視鏡装置の一部の構成が示されており、この電子内視鏡装置は例えば同時式とされ、スコープ、プロセッサ装置、光源装置、モニタ及び記録装置等を有する。この図1において、撮像素子であるCCD10がスコープ先端部に設けられ、このCCD10では画素単位の色フィルタ[例えばMg(マゼンタ),G(グリーン),Cy(シアン),Ye(イエロー)]を介して被観察体像が捉えられる。即ち、上記光源装置からの光がライトガイドを介してスコープ先端から被観察体に照射されることにより、この被観察体がCCD10で撮像される。また、このCCD10の前方に、変倍レンズが移動可能に組み込まれた対物光学系を設ければ、この変倍レンズを駆動することによって被観察体の拡大像を得ることができる。
【0009】
上記CCD10の後段には、CDS(Correlated Double Sampling−相関二重サンプリング)/AGC(Automatic Gain Control−自動利得制御回路)12が配置されており、このCDS/AGC12はCCD10の出力信号に対し相関二重サンプリングを施すと共に、所定の増幅処理をする。このCDS/AGC12には、A/D(アナログ/デジタル)変換器14を介して、DSP(Digital Signal Processor−デジタル信号プロセッサ)16が設けられている。
【0010】
このDSP16では、ホワイトバランス、ガンマ補正等の各種の処理を施すと共に、Y(輝度)信号とR(赤)−Y及びB(青)−Yの色差(C)信号が形成されており、このDSP16の後段に、上記Y信号とC信号をR(赤),G(緑),B(青)の信号に変換する色変換回路18が設けられる。即ち、当該例では、上記DSP16では、Mg,G,Cy,Yeの各色フィルタを介して得られた信号から色変換演算によってY信号とR−Y及びB−YのC信号が形成されるが、このY,C信号を更に色変換演算することによりR,G,Bの各色信号が得られる。なお、上記DSP16内にて色差信号ではなく、RGB信号を直接形成することもできる。
【0011】
そして、上記色変換回路18から入力されたG信号を微分する微分回路20、この微分回路20から出力された微分信号を増幅するゲイン回路22、このゲイン回路22で得られた微分信号により上記変換回路18から出力されたR,B信号を増幅する血管強調回路24が設けられており、これらの回路により血管を抽出する処理が行われる。
【0012】
即ち、図2(A)には上記微分回路20に入力されるG信号による画像5Gが示されており、このG画像では点線で示す血管3が低いレベル(黒に近いレベル)となる。ここで、このG画像5の水平ラインLaの信号レベルは、図2(B)に示されるように、血管3の部分が急激に低下する信号となるが、微分回路20ではこの信号を微分し、図2(C)に示されるように、低下→この低下の倍量の上昇→元のレベルへの低下となる急激な変化を呈する微分信号を形成する。
【0013】
そして、上記ゲイン回路22は、微分回路20から出力された微分信号を所定増幅率gで増幅し、更にレベル差の大きな信号とし、上記血管強調回路24では、この微分信号をゲイン信号としてR信号,B信号を増幅し、図3に示されるような血管を強調するためのレベル差のあるR信号[図3(A)]とB信号[図3(B)]を形成する。
【0014】
更に、上記血管強調回路24の後段には、上記血管強調のためのR,B信号を入力すると共に上記色変換回路18から出力されたG信号を入力し、これらの信号から輪郭を強調するエンハンサ26が接続され、このエンハンサ26にはモニタ出力するための各種処理を施す信号処理回路28が設けられる。
【0015】
実施形態例は以上の構成からなり、まずスコープ先端部からの照射光により照明された被観察体がCCD10で撮像されると、このCCD10からの出力信号は、CDS/AGC12でサンプリングされると共に増幅され、A/D変換器14を介してデジタル信号としてDSP16へ供給される。このDSP16では、各種の画像処理が施されたY信号とR−Y及びB−YのC(色差)信号が形成され、このY信号とC信号は色変換回路18によりR,G,Bの各色信号に変換される。
【0016】
この内のG信号は、輪郭強調回路であるエンハンサ26に出力されると共に、微分回路20に供給されており、この微分回路20では、このG信号に基づいて血管の位置に対応した図2(C)に示される微分信号が得られる。この微分信号は、ゲイン回路22により所定増幅率gで増幅され、血管強調回路24へそのゲイン信号として供給される。この血管強調回路24では、上述したように、R信号とB信号がゲイン信号としての微分信号で増幅(又は微分信号を係数として乗算)され、血管部分を強調した図3(A)のR信号と図3(B)のB信号が形成される(これらは図2(A)の水平ラインLaの信号として示す)。そして、このR,B信号は、上記色変換回路18から出力されたG信号と共に、エンハンサ26へ供給され、輪郭強調処理が行われた後、信号処理回路28でモニタ出力のための各種処理が施される。
【0017】
図4には、上記血管部分の色形成を説明するための図が示されており、図4(A)は、上記血管強調回路24から出力されたR信号[図3(A)]による画像5Rであり、図示のように、点線の黒の部分と1点鎖線の赤の部分3rで血管(両線が並走する部分)が表示される画像となる。図4(B)は、上記血管強調回路24から出力されたB信号[図3(B)]による画像5Bであり、この場合も、点線の黒の部分と2点鎖線の青の部分3bで血管が表示される画像となる。そして、図4(C)は、上記色変換回路18から出力されたG信号の画像であり、これらのRGB信号が合成されると、図4(D)に示されるように、点線の黒の部分と実線のRGB合成部で構成される血管3が表示されることになる。
【0018】
このようにして、最終的にモニタ画像では、血管(毛細血管)3が粘膜2中に良好なコントラストにて明瞭に表示されることになり、この結果、血管3の走行状態や集中状況が良好に観察でき、またこの血管3の走行状態等を参考に病巣の診断、癌組織の特定等も良好に行われる。
【0019】
上記実施形態例では、血管強調回路24においてR(赤)信号とB(青)信号を微分信号に基づいて増幅したが、このR信号のみを増幅処理して血管を強調することもできる。また、上記微分回路20では、G信号に基づいて微分信号を得るようにしたが、B信号を入力して微分信号を生成し、これに基づいて上記の血管強調処理を実行してもよい。即ち、本発明は血管の主要色である赤色以外の画像信号から血管の存在(位置)を検出しており、G信号以外の色信号を用いることも可能である。
【0020】
【発明の効果】
以上説明したように、本発明によれば、血管の主要色信号であるR信号以外の例えばG信号を微分した微分信号を生成し、かつ増幅し、この微分信号に基づいて少なくともR信号を増幅することにより血管を強調するようにしたので、血管を粘膜等の他の組織に対して高いコントラストにより明確にモニタ表示することができ、被観察体の観察や診断に有益な情報を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態例に係る電子内視鏡装置の主要構成を示すブロック図である。
【図2】実施形態例の各回路で得られるもので、図(A)はG信号画像、図(B)は図(A)のG信号画像の水平ラインLaの信号レベル、図(C)は図(B)のG信号の微分信号を示す図である。
【図3】実施形態例の血管強調回路から出力される水平ラインLaのR信号[図(A)]とB信号[図(B)]を示す図である。
【図4】実施形態例の各回路で得られる画像で、図(A)はR信号画像、図(B)はB信号画像、図(C)はG信号画像、図(D)はRGB合成画像を示す図である。
【図5】電子内視鏡装置で撮像・表示される被観察体の拡大画像を示す図である。
【符号の説明】
10…CCD、 16…DSP、
18…色変換回路、 20…微分回路、
22…ゲイン回路、 24…血管強調回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to image processing of an electronic endoscope apparatus, in particular, an electronic endoscope capable of displaying in detail the capillaries and the like in a body to be observed.
[0002]
[Prior art]
The electronic endoscope apparatus captures an object to be observed captured through an objective optical system by irradiating illumination light with an imaging element such as a CCD (Charge Coupled Device), and uses the object image as a monitor. In recent years, in this type of electronic endoscope apparatus, a zooming mechanism is incorporated in the objective optical system, and an object image is optically enlarged and displayed. Therefore, the details of the site of interest can be satisfactorily observed by the enlarged image displayed on the monitor or the like.
[0003]
[Problems to be solved by the invention]
By the way, in an electronic endoscope apparatus, an imaging target is often in a living body such as a digestive organ, and as shown in FIG. 5, in an enlarged object image 1 (display on a monitor or the like), a mucous membrane 2 A blood vessel (capillary blood vessel) 3 exists in the blood vessel, and the running state of the blood vessel 3 and the concentration state of the blood vessel (blood) 3 are important observation targets in diagnosis of a lesion, identification of a cancer tissue, and the like. On the other hand, since the living body is configured in pink or reddish color, the distinction between the blood vessel 3 and other tissues such as the mucous membrane 2 tends to be unclear. Therefore, if the blood vessel 3 can be clearly displayed in contrast with the mucous membrane 2, information useful for in-vivo observation and diagnosis can be provided.
[0004]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an electronic endoscope apparatus capable of clearly displaying a blood vessel with high contrast on other tissues such as mucous membranes. It is in.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an electronic endoscope apparatus according to a first aspect of the present invention includes a color signal forming circuit that forms a predetermined color signal based on a signal obtained by an image sensor, and the color signal forming circuit. A differential circuit that generates a differential signal by differentiating a predetermined color signal other than red color obtained in the above, a gain circuit that amplifies the differential signal output from the differential circuit, and a differential signal output from the gain circuit And a blood vessel enhancement circuit for amplifying at least a red signal other than the predetermined color signal to enhance the blood vessel.
According to a second aspect of the present invention, the color signal forming circuit forms red, green, and blue color signals, the differentiation circuit performs differentiation processing on the green signal, and the blood vessel enhancement circuit performs red and blue color processing. Is amplified by a differential signal.
[0006]
According to the above configuration, R (red), G (green), and B (blue) color signals are formed by the color signal forming circuit. For example, the G signal (or B signal) is differentiated by the differentiation circuit. The In this G signal, blood vessels are present in the low-level signal part (black part), and mucous membranes are present in the other parts, and the place where the level changes abruptly in this low-level part is detected by differential processing. To extract the position (presence) of the blood vessel. That is, the present invention detects the position of the blood vessel by differentiating the image signal other than red, which is the main color of the blood vessel.
[0007]
Next, the differential signal obtained by the differential circuit is amplified at a predetermined amplification factor and then supplied to the blood vessel enhancement circuit. Here, the differential signal is used as a gain signal and the R, B signals (or An R object signal is amplified by this R, B signal and a G signal that does not give a differential signal. That is, an image is formed by the R and B signals amplified according to the rapid change level of the differential signal and the G signal immediately before the differential circuit. As a result, the blood vessels in the mucous membrane have a high contrast. Is displayed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a partial configuration of an electronic endoscope apparatus according to the embodiment. This electronic endoscope apparatus is, for example, a simultaneous type, and includes a scope, a processor device, a light source device, a monitor, and a recording device. Etc. In FIG. 1, a CCD 10 as an image pickup device is provided at the distal end of the scope, and this CCD 10 passes through color filters [for example, Mg (magenta), G (green), Cy (cyan), Ye (yellow)] in units of pixels. The object image is captured. That is, the object to be observed is imaged by the CCD 10 by irradiating the object to be observed from the distal end of the scope through the light guide with the light guide. Further, if an objective optical system in which a variable power lens is movably incorporated is provided in front of the CCD 10, an enlarged image of the object to be observed can be obtained by driving the variable power lens.
[0009]
A CDS (Correlated Double Sampling) / AGC (Automatic Gain Control) 12 is arranged at the subsequent stage of the CCD 10. The CDS / AGC 12 is correlated with the output signal of the CCD 10. Double sampling is performed and predetermined amplification processing is performed. The CDS / AGC 12 is provided with a DSP (Digital Signal Processor) 16 via an A / D (analog / digital) converter 14.
[0010]
The DSP 16 performs various processes such as white balance and gamma correction, and forms a Y (luminance) signal and R (red) -Y and B (blue) -Y color difference (C) signals. A color conversion circuit 18 for converting the Y signal and the C signal into R (red), G (green), and B (blue) signals is provided at the subsequent stage of the DSP 16. That is, in this example, the DSP 16 forms the Y signal and the RY and BY C signals from the signals obtained through the Mg, G, Cy, and Ye color filters by color conversion calculation. The Y, C signals are further subjected to a color conversion operation to obtain R, G, B color signals. In addition, RGB signals can be directly formed in the DSP 16 instead of color difference signals.
[0011]
The differentiation circuit 20 that differentiates the G signal input from the color conversion circuit 18, the gain circuit 22 that amplifies the differentiation signal output from the differentiation circuit 20, and the conversion by the differential signal obtained by the gain circuit 22. A blood vessel emphasizing circuit 24 for amplifying the R and B signals output from the circuit 18 is provided, and processing for extracting blood vessels is performed by these circuits.
[0012]
That is, FIG. 2A shows an image 5G based on the G signal input to the differentiation circuit 20, and in this G image, the blood vessel 3 indicated by the dotted line is at a low level (a level close to black). Here, as shown in FIG. 2B, the signal level of the horizontal line La of the G image 5 is a signal in which the portion of the blood vessel 3 rapidly decreases. The differentiation circuit 20 differentiates this signal. As shown in FIG. 2 (C), a differential signal is formed that exhibits a sudden change in which a decrease → an increase in the double of this decrease → a decrease to the original level.
[0013]
The gain circuit 22 amplifies the differential signal output from the differentiation circuit 20 with a predetermined amplification factor g to obtain a signal having a large level difference, and the blood vessel enhancement circuit 24 uses the differential signal as a gain signal as an R signal. , B signals are amplified to form R signals [FIG. 3 (A)] and B signals [FIG. 3 (B)] having a level difference for emphasizing blood vessels as shown in FIG.
[0014]
Further, an R and B signal for blood vessel enhancement are input to the subsequent stage of the blood vessel enhancement circuit 24 and a G signal output from the color conversion circuit 18 is input, and an enhancer that enhances the contour from these signals. 26 is connected, and the enhancer 26 is provided with a signal processing circuit 28 for performing various processes for monitor output.
[0015]
The embodiment is configured as described above. First, when an object to be observed illuminated by the irradiation light from the distal end of the scope is imaged by the CCD 10, an output signal from the CCD 10 is sampled and amplified by the CDS / AGC 12. The digital signal is supplied to the DSP 16 through the A / D converter 14. In the DSP 16, Y signals subjected to various image processing and RY and BY C (color difference) signals are formed. The Y signals and the C signals are converted into R, G, and B signals by a color conversion circuit 18. Each color signal is converted.
[0016]
Of these, the G signal is output to the enhancer 26, which is a contour emphasis circuit, and is also supplied to the differentiating circuit 20. The differentiating circuit 20 corresponds to the position of the blood vessel based on this G signal (FIG. 2). The differential signal shown in C) is obtained. This differential signal is amplified by the gain circuit 22 at a predetermined amplification factor g and supplied to the blood vessel enhancement circuit 24 as its gain signal. In the blood vessel enhancement circuit 24, as described above, the R signal and the B signal are amplified by the differential signal as the gain signal (or multiplied by the differential signal as a coefficient) to emphasize the blood vessel portion in FIG. 3A. 3B is formed (these are shown as signals on the horizontal line La in FIG. 2A). The R and B signals are supplied to the enhancer 26 together with the G signal output from the color conversion circuit 18 and subjected to contour enhancement processing. Then, the signal processing circuit 28 performs various processes for monitor output. Applied.
[0017]
FIG. 4 is a diagram for explaining the color formation of the blood vessel part. FIG. 4A shows an image based on the R signal [FIG. 3A] output from the blood vessel emphasizing circuit 24. FIG. 5R, and as shown in the figure, a blood vessel (a portion where both lines run side by side) is displayed by a black portion of a dotted line and a red portion 3r of a one-dot chain line. FIG. 4B is an image 5B based on the B signal [FIG. 3B] output from the blood vessel emphasizing circuit 24. In this case as well, a dotted black portion and a two-dot chain blue portion 3b are used. It becomes an image in which blood vessels are displayed. FIG. 4C shows an image of the G signal output from the color conversion circuit 18, and when these RGB signals are combined, as shown in FIG. The blood vessel 3 composed of the portion and the solid line RGB composition unit is displayed.
[0018]
Thus, finally, in the monitor image, the blood vessels (capillaries) 3 are clearly displayed in the mucous membrane 2 with good contrast, and as a result, the running state and concentration state of the blood vessels 3 are good. In addition, the diagnosis of the lesion, the identification of the cancer tissue, and the like are performed well with reference to the running state of the blood vessel 3 and the like.
[0019]
In the above-described embodiment, the R (red) signal and the B (blue) signal are amplified based on the differential signal in the blood vessel enhancement circuit 24. However, it is possible to enhance the blood vessel by amplifying only this R signal. In the differentiation circuit 20, the differential signal is obtained based on the G signal, but the B signal may be input to generate a differential signal, and the blood vessel enhancement processing may be executed based on this. That is, the present invention detects the presence (position) of a blood vessel from an image signal other than red, which is the main color of the blood vessel, and can use a color signal other than the G signal.
[0020]
【The invention's effect】
As described above, according to the present invention, a differential signal obtained by differentiating, for example, the G signal other than the R signal that is the main color signal of the blood vessel is generated and amplified, and at least the R signal is amplified based on the differential signal. Because the blood vessels are emphasized by doing so, the blood vessels can be clearly displayed on the monitor with high contrast against other tissues such as mucous membranes, and provide useful information for observation and diagnosis of the observed object Is possible.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a main configuration of an electronic endoscope apparatus according to an embodiment of the present invention.
FIG. 2 is obtained by each circuit of the embodiment. FIG. (A) is the G signal image, FIG. (B) is the signal level of the horizontal line La of the G signal image of FIG. These are figures which show the differential signal of G signal of figure (B).
FIG. 3 is a diagram illustrating an R signal [FIG. (A)] and a B signal [FIG. (B)] of a horizontal line La output from the blood vessel emphasizing circuit of the embodiment.
4A and 4B are images obtained by each circuit according to the embodiment. FIG. 4A is an R signal image, FIG. 4B is a B signal image, FIG. C is a G signal image, and FIG. It is a figure which shows an image.
FIG. 5 is a diagram illustrating an enlarged image of an object to be observed that is captured and displayed by the electronic endoscope apparatus.
[Explanation of symbols]
10 ... CCD, 16 ... DSP,
18 ... color conversion circuit, 20 ... differentiation circuit,
22 ... Gain circuit, 24 ... Blood vessel enhancement circuit.

Claims (2)

撮像素子で得られた信号に基づき所定の色信号を形成する色信号形成回路と、
この色信号形成回路にて得られた赤色以外の所定の色信号を微分処理して微分信号を生成する微分回路と、
この微分回路から出力された微分信号を増幅するゲイン回路と、
このゲイン回路から出力された微分信号に基づき上記所定色信号以外の少なくとも赤信号を増幅して血管を強調する血管強調回路と、を含んでなる電子内視鏡装置。
A color signal forming circuit for forming a predetermined color signal based on a signal obtained by the image sensor;
A differentiating circuit for differentiating a predetermined color signal other than red obtained by the color signal forming circuit to generate a differentiated signal;
A gain circuit for amplifying the differential signal output from the differential circuit;
An electronic endoscope apparatus comprising: a blood vessel enhancement circuit that amplifies at least a red signal other than the predetermined color signal based on a differential signal output from the gain circuit to enhance a blood vessel.
上記色信号形成回路は、赤,緑,青の色信号を形成し、上記微分回路は、緑信号に対し微分処理を施し、上記血管強調回路は、赤色と青色の信号を微分信号により増幅することを特徴とする上記請求項1記載の電子内視鏡装置。The color signal forming circuit forms red, green and blue color signals, the differentiating circuit performs a differentiation process on the green signal, and the blood vessel emphasizing circuit amplifies the red and blue signals with the differentiated signal. The electronic endoscope apparatus according to claim 1, wherein:
JP2001295273A 2001-09-27 2001-09-27 Electronic endoscope device Expired - Fee Related JP3886757B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001295273A JP3886757B2 (en) 2001-09-27 2001-09-27 Electronic endoscope device
US10/255,079 US6956602B2 (en) 2001-09-27 2002-09-26 Electronic endoscope for highlighting blood vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001295273A JP3886757B2 (en) 2001-09-27 2001-09-27 Electronic endoscope device

Publications (2)

Publication Number Publication Date
JP2003093342A JP2003093342A (en) 2003-04-02
JP3886757B2 true JP3886757B2 (en) 2007-02-28

Family

ID=19116738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001295273A Expired - Fee Related JP3886757B2 (en) 2001-09-27 2001-09-27 Electronic endoscope device

Country Status (1)

Country Link
JP (1) JP3886757B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000183A (en) 2008-06-19 2010-01-07 Fujinon Corp Processor device for electronic endoscope
EP2351515A4 (en) * 2008-10-27 2015-03-11 Olympus Medical Systems Corp Image processing device, in-examinee guiding device, medical system, and image processing method
WO2012114600A1 (en) * 2011-02-22 2012-08-30 オリンパスメディカルシステムズ株式会社 Medical image processing device and medical image processing method
JP6319370B2 (en) * 2016-06-23 2018-05-09 カシオ計算機株式会社 DIAGNOSIS DEVICE, IMAGE PROCESSING METHOD IN THE DIAGNOSIS DEVICE, AND PROGRAM THEREOF
JP6838549B2 (en) * 2017-12-08 2021-03-03 カシオ計算機株式会社 Diagnostic support device, image processing method and its program
JPWO2019198576A1 (en) * 2018-04-11 2021-04-08 富士フイルム株式会社 Medical image processing equipment

Also Published As

Publication number Publication date
JP2003093342A (en) 2003-04-02

Similar Documents

Publication Publication Date Title
US7042488B2 (en) Electronic endoscope for highlighting blood vessel
JP4009626B2 (en) Endoscope video signal processor
JP2807487B2 (en) Endoscope device
JP3228627B2 (en) Endoscope image processing device
JP4891990B2 (en) Endoscope device
JP6234350B2 (en) Endoscope system, processor device, operation method of endoscope system, and operation method of processor device
KR101050882B1 (en) Biometric observation system
JP5288775B2 (en) Endoscope device
JP2011098088A (en) Electronic endoscope system, processor device for electronic endoscope, and image processing method
JP2003010101A (en) Imaging method and device of endoscope system
US6956602B2 (en) Electronic endoscope for highlighting blood vessel
JPH07111978A (en) Image processor for endoscope
JP2010069063A (en) Method and apparatus for capturing image
JPH11332819A (en) Fluorescent image device
CN105007801B (en) Image processing apparatus and the method for work of endoscopic system
JP3886757B2 (en) Electronic endoscope device
JPH0546816B2 (en)
JP5829568B2 (en) Endoscope system, image processing apparatus, method of operating image processing apparatus, and image processing program
JP3894762B2 (en) Electronic endoscope device
JP3958761B2 (en) Dimming signal generator for endoscope
JP2547195B2 (en) Image signal processing circuit for endoscope
JP2007306974A (en) Endoscope processor, endoscope program, image processing program, and endoscopic image recording and reproducing apparatus
JPH0789672B2 (en) Endoscope device
JP2022156811A (en) Processor for electronic endoscope and electronic endoscope system
JP4159291B2 (en) Electronic endoscope device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees