JP3886378B2 - 海水の殺菌方法及びその装置 - Google Patents

海水の殺菌方法及びその装置 Download PDF

Info

Publication number
JP3886378B2
JP3886378B2 JP2001399766A JP2001399766A JP3886378B2 JP 3886378 B2 JP3886378 B2 JP 3886378B2 JP 2001399766 A JP2001399766 A JP 2001399766A JP 2001399766 A JP2001399766 A JP 2001399766A JP 3886378 B2 JP3886378 B2 JP 3886378B2
Authority
JP
Japan
Prior art keywords
seawater
electrode
ion exchange
exchange membrane
anode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001399766A
Other languages
English (en)
Other versions
JP2003190954A (ja
Inventor
博一 塩田
剛太郎 塩田
正博 塩田
Original Assignee
博一 塩田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博一 塩田 filed Critical 博一 塩田
Priority to JP2001399766A priority Critical patent/JP3886378B2/ja
Publication of JP2003190954A publication Critical patent/JP2003190954A/ja
Application granted granted Critical
Publication of JP3886378B2 publication Critical patent/JP3886378B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、海水を飲食品の原料に使用したり、飲食品(その容器を含む)の加工や洗浄用水に使用したり、海産物と共に該海産物の保存・運搬用水に使用したり、さらには魚介類等の養殖用水に使用する場合の、海水の殺菌方法及びその装置に関するものである。
【0002】
【従来の技術】
従来、海水は飲食物の原料や加工用水、洗浄用水、保存・運搬用水・養殖用水等に意外と大量に使用されており、そのほとんど全量は、採取した海水をそのままの状態で使用している。しかし、海水中にも大腸菌をはじめとして多くの病原菌が生息するもので、これら海水に起因する細菌感染対策としては、細菌の生息数の少ない沖から海水を汲み上げて使用する、といった程度のものであるのが現状である。
【0003】
そして、最近この海水を使用する機会が増えるにしたがって、海水中の細菌に起因する疑いの濃い感染症の発生が、目立つようになってきている。したがって、海水も殺菌した後に使用する必要性が指摘され、その方法、及び装置が従来より各種提案されている。
【0004】
そして、従来の海水の殺菌法としては、物理的殺菌法と化学的殺菌法とがあり、物理的な殺菌法には、「消極的な海水選択法」「細菌篩分法」「煮沸滅菌法」「紫外線等照射法」等が想定でき、化学的な殺菌法には「殺菌剤投入法」「オゾン曝気法」「電気分解法」等が想定できる。
【0005】
前記従来法の「消極的な海水選択法」は、前記もしたように細菌の生息数が少ない沖の海水を使用するものであるが、沖の海水といえども無菌ではあり得ず、充分な信頼性に欠けるという問題点を有している。そこで、ほぼ完全な無菌状態である、深層(水面下200〜300m)の海水を使用する方法が最近注目されているが、この方法は大型な海水汲み上げ装置、保存用密閉タンク等の大がかりな装置が必要となり、どこでも安全な海水を、容易に入手することが困難であるという問題点を有している。
【0006】
次に、細菌篩分法であるが、セラミック製のフィルターや中空糸フィルター等で工業的に細菌等を除去できることは、醸造工業等で広く実用化され、実証されているが、この篩分法は処理容量が大きくなると、篩分面積が大きく必要となるため、非常に大型な装置が必要で、大量の除菌海水を得るには、そのための工場を設ける必要性があり、前記深層海水の使用と同じく、どこでも安全な海水を、容易に入手することが困難であるという問題点を有している。また、この細菌篩分法はフィルターの目詰まりに伴うフィルターの定期的洗浄、又は交換が必要となり、ランニングコストが嵩むという問題点をも有している。
【0007】
また、煮沸滅菌法は、海水を一定時間所定温度に加熱して殺菌するもので、各種食品産業でこの種煮沸殺菌装置は汎用されているので、信頼性が高いものであるが、前記と同様に大型装置が必要であるばかりか、海水を原料とすると、その装置が高温海水で浸食されやすくなるので、特別な耐食装置が必要となるであろと思われる。また、この煮沸滅菌法は、熱源に消費されるエネルギーが大きく、非常に高価な海水になるという問題点をも有している。
【0008】
また、紫外線等を照射して殺菌する方法は、一部実用化されているが、紫外線等は殺菌力が意外と弱く(殺菌力の問題というよりは、確実に紫外線が海水の全てに照射されることが困難)で、確実な殺菌には長時間の照射や、大型な照射用タンクや、長距離の照射用海水流路が必要となるという問題点を有している。また、現在提供されている紫外線ランプは、寿命が意外と短く、所定の寿命時間ごとに、該紫外線ランプを頻繁に交換する必要性があって、ランニングコストが嵩むのが最大の問題点とされている。そこで、紫外線よりも強力な、放射線等を照射することも想定でき、この方法は装置等は小型できるも、危険性が増大するという問題点が発生し、現在も実用化には至っていないと思われる。
【0009】
なお、海水を微生物(通常、微生物を生息させた活性炭等の層)と接触させる、海水の微生物処理方法も提案されているが、この微生物処理方法は、養殖場での餌の残りや、魚介類の排泄物より生ずるアンモニア性窒素の分解・処理が目的で、海水中に含まれる細菌の殺菌は、目的とするものではないのが一般的であり、殺菌の効果は期待できるものではない。
【0010】
そこで、上記の物理的な方法に対して、海水を化学的に処理する方が、信頼性が高く、手軽であるとされ、最近の研究・開発はこの化学的方法に重点が置かれている。化学的殺菌法として最も一般的なものは、殺菌剤を海水中に投入するもので、水道水でも行われている塩素(Cl)による殺菌が最も簡易で、比較的安全な方法とされる。しかし、この塩素殺菌法は、海水の場合は発癌性物質であるトリハロメタン(クロロフォルム「CHCl」、ブロモジクロロメタン「CHBrCl」、ジブロモクロロメタン「CHBrCl」、ブロモホルム「CHBr」)の発生量が多くなるという傾向を有するという問題点があり、また、他の殺菌剤を使用した場合も、残留殺菌剤の人間等に対する毒性が問題点となるものである。
【0011】
そこで、最近特に注目されているのが、これも、一部水道で行われ安全性が高いとされているオゾン曝気法である。この殺菌法は、海水と気相のオゾン(O)とを気液接触させて、細菌をオゾンの酸化力で殺菌しようとするもので、確実な殺菌効果が得られることが報告され、オゾンは時間と共に無害な酸素に分解するので安全性も高いことが確認されている。しかしこのオゾン曝気法は、海水に応用すると、海水中に含まれるミネラル分が同時にオゾン酸化され、このオゾン酸化物がオゾニド(オゾン酸化物で、なお酸化力を有する物質)として強力な酸化力を残存させ、有害物質となることも報告されている。具体的には、海水1リットル中に60mg含まれているとされる臭素(Br)イオンが、オゾンと接触して臭素酸(BrO)や次亜臭素酸(HBrO)となり、この臭素酸等は非常に大な酸化力を有し、殺菌に役立つ(アンモニア性窒素の分解にも有効であるとの報告例もある。)ものであるが、一方では非常に微量でも、養殖又は搬送中の魚類が死滅するほどの毒性(酸化力)があるとする試験データもある。
【0012】
上記オゾン酸化物の問題点の解決法としては、すでに、海水とオゾンとを気液接触させて殺菌した後、該オゾン酸化物を薬剤(亜硫酸ナトリウム「NaSO」・チオ硫酸ナトリウム「Na」等)で還元する方法が提案されている。しかし、この方法は必要とする還元剤の量を正しく混合することが困難であるので、通常は還元剤を過剰気味に加え、その残留物を長時間空気曝気して酸化して使用する方法が採用されるも、この方法は、曝気に使用するエネルギーが大きいという問題点を有している。
【0013】
なお、オゾン曝気法は、第一に、オゾン発生装置には、高電圧電源が必要で、この電源装置をはじめとする装置が大型となるという問題点と、得られたオゾンガスは漏れを生じないように、厳格な管理下で使用しないと人間にも非常に有害であるという問題点を有している。
【0014】
また、報告例は少ないが、海水の殺菌に海水を電気分解する方法も提案されている。この、海水を電気分解すると殺菌される原理は必ずしも明らかではないが、真水(通常、多少の電解質を溶解する。)を電気分解すると殺菌効果があることは、経験上証明されている。細菌が電気分解の放電部と接触することで死滅するとは想定できない。そこで、電気分解で発生した発生期の酸素は酸化力が大きいので、この発生期の酸素が殺菌力を呈するものではないかとされている。しかし、海水を電気分解した場合は、海水には大量の塩化ナトリウムを溶存しているので、電気分解で次亜塩素酸ソーダが発生し、これらが主に殺菌力を呈するものではないかと想定されている。
【0015】
しかし、上記従来の海水の電気分解法は、陽極電極と陰極電極とを対設した電解槽内に、海水を一定時間閉じこめて確実に撹拌することが必要とされ、大型の装置が必要となる問題点を有し、また、通電に伴って電極金属が海水中に溶出することがあり海水が電気分解で汚染されるという問題点を有している。さらに、この電気分解法は、陽極電極にカルシウムやカリウムが析出・堆積し、これらが絶縁性を有するので、電気分解が長時間に渡って安定的に維持できないという問題点を有している。
【0016】
【発明が解決しようとする課題】
そこで、本発明は、上記の問題点に鑑みなされたもので、簡便・小型な装置で、安全性の高い殺菌済み海水を、容易に得られる海水の殺菌方法及びその装置を提供することを課題としたものである。
【0017】
【課題を解決するための手段】
本発明は、上記課題を達成するため、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる陰極電極3を重ね、該陽極電極2と陰極電極3とに直流電圧を印加するようになした電気分解装置本体10の、該イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになした技術的手段を講じたものである。
【0018】
上記請求項1の発明によると、海水は、電気分解装置本体10のイオン交換膜1の陽極電極2が当接する面側を流過する際に、その一部が電気分解され、該陽極電極2側においては、酸素(O)とオゾン(O)とが発生し、これら等は海水中に溶解される。そして、発生期の酸素、及びオゾンは強力な酸化力を有するので、細菌が海水中に混入していると、これを酸化し、殺菌する作用を呈するものである。
【0019】
なお、海水を電気分解して、その海水中にオゾンを溶解する方法は、電気分解の極く限られた電界部位でほとんど瞬時に行われ、一部電気分解で発生した酸素は気泡となって放出されることもあるが、酸素に比べて約8倍程度水に溶けやすいオゾンは気泡となって放出されることはほとんどなく、効率的に海水中に溶解する作用を呈する。
【0020】
また、海水を電気分解して該海水中に溶け込ませたオゾンは、海水中に含まれる有機物を選択的に酸化する傾向を有し、海水中の臭素と反応して臭素酸等を生成する割合が、気相のオゾンを海水に曝気する方法に比べて極端に少なくなる作用を呈する。この相違は、オゾン曝気法は、殺菌に必要な所定のオゾン濃度にするためには、高濃度の気相オゾンを長時間海水中に曝気する必要性があるので、オゾニドが発生しやすいが、本発明電気分解法は、発生したオゾンが短時間で海水中に溶解されるためと想定でき、この点に関しては後記するものとする。
【0021】
また、海水中に溶け込んだオゾンは、有機物を酸化することで、分解・消失するばかりか、一定時間そのまま放置するだけでも、無害な酸素に分解する作用を呈するもので、また、活性炭等の触媒に接触させて、積極的に酸素に分解させることも容易なもので、簡易な方法又は装置で安全性が確保できる作用を呈するものである。
【0022】
さらにまた、海水を電気分解すると、海水中に含まれる塩化ナトリウム(NaCl)が分解されて、オゾンと同様に殺菌力を有する次亜塩素酸ソーダをも生成する作用を呈するものである。
【0023】
なお、本発明は、イオン交換膜1を挟んで陽極電極2と陰極電極3とを配しているので、両電極の間隔を極端に近づけることができ、低電圧での電気分解が可能となる作用を呈するものである。
【0024】
次に、請求項2の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる陰極電極3を重ね、該陽極電極2と陰極電極3とに直流電圧を印加するようになした電気分解装置本体10の、該イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、一方、上記イオン交換膜1の陰極電極3が当接する面側に、別途海水を、陽極電極2側に比較して流過速度を遅くして流過させるようになした技術的手段を講じたものである。
【0025】
それ故、請求項2の発明によると、請求項1の作用に加え、電気分解の状態を安定化させる作用を呈する。すなわち、この種イオン交換膜を利用した電気分解では、イオン交換膜1の陰極電極3側には水を接触させなくとも電気分解が発生すると説明されているが、実際には、陰極電極側にも水が接触している状態を確保した方が、電気分解が安定して発生するものである。
【0026】
さらに、上記陰極電極3側に接触する水は、陽極電極2側に接触する海水よりも、電解物質の溶存濃度が高い方が、言い換えると伝導率が高い方が、電気分解し易いという作用と、イオン交換膜1と陽極電極2及び陰極電極3との夫々の間に無機物質が析出することが抑止され、長時間安定して電気分解を継続させることが可能となるという作用とを呈するものである。そして、上記イオン交換膜1の陰極電極3が当接する面側に、別途海水を、陽極電極2側に比較して流過速度を遅くして流過させると、陰極電極3側の海水は電気分解で生じた水素が蒸散して海水の導電率が高まる作用を呈するものである。
【0027】
つぎに、請求項3の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる陰極電極3を重ね、該陽極電極2と陰極電極3とに直流電圧を印加するようになした電気分解装置本体10の、該イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、一方、上記イオン交換膜1の陰極電極3が当接する面側に、別途陽極電極2側の海水に比較して伝導率が高い電解水を流過させるようになした技術的手段を講じたものである。
【0028】
それ故、本請求項3の発明によると、請求項2の作用にさらに加えて、陰極電極3側に接触する水は、予め、陽極電極2側の海水に比較して伝導率が高い電解水を用意しているので、前記請求項2の作用がより積極的に機能する作用を呈するものである。すなわち、陰極電極3側に接触する水が、陽極電極2側の海水に比較して伝導率が高いと、陰極電極3と陽極電極2との間に流れる電流が流れやすくなり、電気分解が発生し易くなる作用を呈する。また、同時に、陽極電極2側よりは海水中に含まれるカルシウム等の無機イオン物質が、イオン交換膜1を通過して陰極電極3側に移動してくるが、無機イオン物質が、陰極電極3側の伝導率が高いと、この陰極電極3側の電解液中に順次溶け込み、無機物質(絶縁性物質)がイオン交換膜1と陽極電極2又は陰極電極3との境界部に析出、堆積して、電流が流れるのを阻止することを抑止する作用を呈するものである。
【0029】
次に、請求項4の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ねた陽極室4を、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる陰極電極3を重ねた陰極室5を設け、上記陽極室4には海水の流入口4aと流出口4bを、陰極室5には同じく海水等の電解液の流入口5aと流出口5bとを設けて、陽極室4には原料の海水を流過するようになし、また、陰極室5には海水等の電解液が別途流過するようになし、さらに、前記陽極電極2と陰極電極3とは、両者間に直流電圧を印加する電源30に連結し、上記陽極電極2と陰極電極3との間に流れる電流を測定する電流計6a、又は、原料の海水の溶存電解質濃度に応じた起電力と、陽極室4出口部の海水の溶存電解質濃度に応じた起電力とを測定して両者の濃度差を測定する濃度差測定装置6bを設け、さらに、陽極室4の流出口4bに、海水を環流する環流流路7bと、海水を使用するために所定の場所に運ぶ用水流路7aとに切り換える切換弁7を設け、上記電流計6a又は濃度差測定装置6bの測定値が所定値以上となると、切換弁7が用水流路側7aを連通状態に切換えるようになした技術的手段を講じたものである。
【0030】
それ故、本請求項4の発明によると、請求項1の作用に加え、電流計6a又は濃度差測定装置6bの測定値で、電気分解が順調に行われ、オゾン等が発生していることが間接的に測定される作用を呈する。そして、該電流計6a又は濃度差測定装置6bの測定値で、オゾン等が発生していることを間接的に保証された場合のみ、用水流路側7a側に海水が流れ、その他の場合は海水は環流される作用を呈するものである。
【0031】
次に、請求項5の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ねた陽極室4を、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる陰極電極3を重ねた陰極室5を設け、上記陽極室4には原料の海水の流入口4aと流出口4bを、陰極室5には同じく海水等の電解液の流入口5aと流出口5bとを設けて、陽極室4には原料の海水を流過するようになし、また、陰極室5には海水等の電解液が別途流過するようになし、さらに、前記陽極電極2と陰極電極3とは、両者間に直流電圧を印加する電源30に連結し、原料海水の溶存電解質濃度に応じた起電力と、陰極室5内の海水の溶存電解質濃度に応じた起電力とを測定して両者の濃度差を測定する濃度差測定装置6bを設け、さらに、陰極室5に濃縮海水又は塩等を供給して、該陰極室5内の電解水の伝導率を高める伝導率向上装置60を連結し、上記濃度差測定装置6bの測定値が所定値以下となると、該伝導率向上装置60を作動させ、陰極室5内の電解液の伝導率を高めるようになした技術的手段を講じたものである。
【0032】
それ故、本請求項5の発明によると、請求項1の作用に加え、濃度差測定装置6bの測定値が低下すると、電気分解に支障が生じたとみなし、より電気分解が生じやすい状態となすべく、伝導率向上装置60を作動させ、陰極電極3側に接する電解液(海水)の伝導率(塩分濃度等)を高め、電気分解の発生・継続を促す作用を呈するものである。
【0033】
次に、請求項6の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる相手電極2aを重ね、この相手電極2aの前記陽極電極2とは反対側に一定の間隔を設けて耐食金属材よりなる陰極電極3を対設し、該陽極電極2と陰極電極3とに直流電圧を印加すると共に、該相手電極2aには陽極電極2よりは低い電圧を印加するようになした電気分解装置本体10aの、該イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになした技術的手段を講じたものである。
【0034】
それ故、本請求項6の発明によると、請求項1の作用に加え、陰極電極3と陽極電極2との間に、第3の相手電極2aが存在するので、この3者の電極2,2a,3の間に電位勾配が生じ、電子の流れが励起・助長され、イオン交換膜1を利用して行う塩分濃度の高い海水でも、オゾンが発生するような激しい電気分解を発生させる作用を呈するものである。
【0035】
次に、請求項7の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる相手電極2aを重ね、この相手電極2aの前記陽極電極2とは反対側に一定の間隔を設けて耐食金属材よりなる陰極電極3を対設し、該陽極電極2と陰極電極3とに直流電圧を印加すると共に、相手電極2aには陽極電極2よりは低い電圧を印加するようになした電気分解装置本体10aの、該イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、一方、イオン交換膜1の陰極電極3が当接する面側に、別途海水を陽極電極2側に比較して流過速度を遅くして流過させるようになした技術的手段を講じたものである。
【0036】
それ故、本請求項7の発明は、相手電極2aを設けたので、上記請求項6の作用を呈すると共に、陰極電極3が当接する面側に、別途海水を陽極電極2側に比較して流過速度を遅くして流過させるようになしたので、請求項2の作用をも共に呈するものである。
【0037】
次に、請求項8の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる相手電極2aを重ね、この相手電極2aの前記陽極電極2とは反対側に一定の間隔を設けて耐食金属材よりなる陰極電極3を対設し、該陽極電極2と陰極電極3とに直流電圧を印加すると共に、相手電極2aには陽極電極2よりは低い電圧を印加するようになした電気分解装置本体10aの、該イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、一方、イオン交換膜1の陰極電極3が当接する面側に、別途、陽極電極2側の海水に比較して伝導率が高い電解水を流過させるようになした技術的手段を講じたものである。
【0038】
それ故、本請求項8の発明は、相手電極2aを設けたことで前記請求項6の作用を呈すると共に、イオン交換膜1の陰極電極3が当接する面側に、別途、陽極電極2側の海水に比較して伝導率が高い電解水を流過させるようになしたので、請求項3の作用をも共に呈するものである。
【0039】
次に、請求項9の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、チタン等の海水に溶出しづらい金属の多孔材よりなる陰極電極3を重ね、該陽極電極2と陰極電極3とに直流電圧を印加するようになした電気分解装置本体10の、該イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、次いで、陽極電極2側を流過した上記海水を、殺菌に必要な反応時間を確保する滞留槽20に所定時間滞留させた後、この殺菌済みの海水を上記イオン交換膜1の陰極電極3が接触する面側を流過させるようになした技術的手段を講じたものである。
【0040】
それ故、本請求項9の発明によると、陽極電極2側を流過した上記海水を、殺菌に必要な反応時間を確保する滞留槽20に所定時間滞留させた後、この殺菌済みの海水を上記イオン交換膜1の陰極電極3が接触する面側を流過させるようになしたため、海水が滞留槽20内で、充分殺菌される作用を呈するのは無論であるが、その後、殺菌済みの該海水は、陰極電極3側を流過することで、この陰極電極3側に電気分解で発生する発生期の水素と接触し、オゾン酸化物の還元作用を呈する。すなわち、陽極電極2側で魚介類に有害な臭素酸等が万が一生じていても、これを、使用に先立って、陰極電極3側で元の臭素に還元する作用を呈するものである。
【0041】
次に、請求項10の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、チタン等の海水に溶出しづらい金属の多孔材よりなる相手電極2aを重ね、この相手電極2aの前記陽極電極2とは反対側に一定の間隔を設けて同じくチタン等の海水に溶出しづらい金属材よりなる陰極電極3を対設し、該陽極電極2と陰極電極3とに直流電圧を印加すると共に、相手電極2aには陽極電極2よりは低い電圧を印加するようになした電気分解装置本体10aの、該イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、次いで、陽極電極2側を流過した上記海水を、殺菌に必要な反応時間を確保する滞留槽20に所定時間滞留させた後、この殺菌済みの海水を上記イオン交換膜1の相手電極2aが当接すると共に陰極電極3が対設する面側を流過するようになした技術的手段を講じたものである。
【0042】
それ故、本請求項10の発明によると、殺菌済みの海水を上記イオン交換膜1の相手電極2aが当接すると共に陰極電極3が対設する面側を流過するようになしているので、前記請求項9の作用を呈すると共に、相手電極2aを設けているので、請求項6の作用をも共に呈するものである。なお、陰極電極3と相手電極2aとは、共にチタン等の海水に溶出しづらい金属を使用したので、電気分解を行って(陰極電極3と相手電極2aとの間には、所定の電位差を有し、両電極3,2aの間には殺菌済みの海水が介在するので、この部位でも電気分解が発生する。)も、電極の金属が海水中に溶出することを抑止する作用を呈するものである。
【0043】
次に、請求項11の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる陰極電極3を重ね、該陽極電極2と陰極電極3とに直流電圧を印加するようになした電気分解装置本体10の、該イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、次いで、陽極電極2側を流過した上記海水を、殺菌に必要な反応時間を確保する滞留槽20に所定時間滞留させ、一方、イオン交換膜1の陰極電極3が当接する面側に、別途海水を陽極電極2側に比較して流過速度を遅くして流過させるようになし、電気分解で上記イオン交換膜1の陰極側で発生した水素、又はこの水素と空気との混合気体と、前記滞留槽20から流出する海水とを気液接触するようになすか、該水素が混入する海水を前記滞留槽20から流出する海水と混合するようになした技術的手段を講じたものである。
【0044】
それ故、本請求項11の発明によると、陰極電極3側で発生する水素による還元作用を呈するのは請求項9と同じであるが、陰極電極3側の海水の流過速度を遅くすることで、前記請求項2の作用をも呈するものである。
【0045】
次に、請求項12の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる相手電極2aを重ね、この相手電極2aの前記陽極電極2とは反対側に一定の間隔を設けて耐食金属材よりなる陰極電極3を対設し、該陽極電極2と陰極電極3とに直流電圧を印加すると共に、相手電極2aには陽極電極2よりは低い電圧を印加するようになした電気分解装置本体10aの、該イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、次いで、陽極電極2側を流過した上記海水を、殺菌に必要な反応時間を確保する滞留槽20に所定時間滞留させ、一方、イオン交換膜1の陰極電極3が当接する面側に、別途海水を陽極電極2側に比較して流過速度を遅くして流過させるようになし、電気分解で上記イオン交換膜1の陰極側で発生した水素、又はこの水素と空気との混合気体と、前記滞留槽20から流出する海水とを気液接触するようになすか、該水素が混入する海水を前記滞留槽20から流出する海水と混合するようになした技術的手段を講じたものである。
【0046】
それ故、本請求項12の発明によると、水素による還元作用を呈するのは請求項9と同じであるが、相手電極2aを設けたので、請求項6の作用をも呈するものである。
【0047】
次に、請求項13の発明は、海水の電気分解装置本体10aと滞留槽20とを有し、該電気分解装置本体10aは、イオン交換膜1の一面側を陽極室4、他面側を陰極室5となし、上記陽極室4には、原料の海水の流入口4aと流出口4bとを設けると共に、イオン交換膜1の一面側に接触して、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ねて収納し、上記陰極室5には、海水の流入口5aと流出口5bとを設けると共に、イオン交換膜1の他面側に接触して、耐食性金属の多孔材よりなる相手電極2aを重ねて収納し、さらに、この相手電極2aと一定の間隔を設けてチタン等の海水に溶出しづらい金属よりなる陰極電極3を対設して収納し、上記陽極電極2と陰極電極3とに直流電圧を印加すると共に、相手電極2aには陽極電極2よりは低い電圧を印加する電源装置30を設け、前記滞留槽20を陽極室4の流出口4bと、陰極室5の流入口5aとを連結する流路7cの途中に介装した技術的手段を講じたものである。
【0048】
それ故、本請求項13の発明によれば、電気分解装置本体10aと滞留槽20と電源装置30と、その他流路7cとの流路配管のみのコンパクトな構成で、海水を殺菌できる作用を呈し、さらに使用に供される海水は、水素によって有害物質が還元され無毒化される作用を呈するものである。
【0049】
次に、請求項14の発明は、円筒状の電気分解装置本体10aの周面の一部又は全部を、イオン交換膜1で構成し、該イオン交換膜1の内面に金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有する白金等の金属製の多孔材からなる陽極電極2を重ねて収納し、この電気分解装置本体10a内を、円筒部の軸方向に原料海水の流入口4aを円筒の接線方向に流出口4bを有した陽極室4となし、さらに、この陽極室4内には、前記流入口4aより流入する原料水を旋回流となす翼体51よりなる旋回流発生装置50を収納し、上記イオン交換膜1の外面側は、海水の流入口5aと流出口5bとを有した陰極室5で覆い、この陰極室5内には、前記イオン交換膜1の外面に接して耐食金属の多孔材よりなる相手電極2aを収納し、さらに、該陰極室5内には該相手電極2aと所定の間隔を有して陰極電極3を対設収納し、上記陽極電極2と陰極電極3と相手電極2aとは、該陽極電極2と陰極電極3とに直流電圧を印加すると共に、該相手電極2aには陽極電極2よりは低い電圧を印加する電源装置30に連結してなる技術的手段を講じたものである。
【0050】
それ故、本請求項14の発明によると、電気分解装置本体10a内で海水は旋回し、その遠心力でイオン交換膜1の陽極電極2が接触する面側に圧接されることになる。すなわち、海水はイオン交換膜1付近で内圧が高められ、同時に旋回する作用を呈する。そして、その結果、圧力の高い海水中には、オゾンが溶解し易く、効率的なオゾン溶解が促進される作用を呈する。
【0051】
また、旋回する圧力の高い海水流は、流速も速まり、発生した酸素やオゾンを発生場所より即座に別の場所に移動し、電気分解で発生した気泡による導電性の低下を防止して円滑な電気分解を継続し、さらには、水流による放電部位の清掃・冷却作用をも呈するものである。
【0052】
次に、請求項15の発明は、円柱状の芯材8の周面に該芯材8の長手方向一端側より他端側に連通する螺旋状の流路4rを設け、この芯材8の外側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン生成触媒機能を有した金属の多孔材よりなる陽極電極2を巻き付けて重ね、この陽極電極2の外側にイオン交換膜1を巻き付けて重ね、上記流路4rの一端を原料海水の流入口4a、他端を流出口4bとなし、この流路4rを原料海水が螺旋状に流過する陽極室4となし、上記イオン交換膜1の外側に耐食金属の多孔材よりなる相手電極2aを巻き付けて重ね、さらに、この相手電極2aの外側には絶縁性のスペーサー9を介して、筒状の陰極電極3を配し、上記相手電極2aと陰極電極3を、海水の流入口5aと流出口5bとを有した筒状の陰極室4で覆い、上記陽極電極2と陰極電極3と相手電極2aとは、該陽極電極2と陰極電極3とに直流電圧を印加すると共に、相手電極2aには陽極電極2よりは低い電圧を印加する電源装置30に連結してなる技術的手段を講じたものである。
【0053】
それ故、本請求項15の発明によれば、海水が狭くて長い流路4rを流過するので、装置がコンパクト化できるのは無論、海水はイオン交換膜1の陽極電極2との接触面に、圧接状態で激しい流速で接触し、発生したオゾンを即座に、該海水中に捕集する作用を呈するものであり、前記請求項14の作用をコンパクトな装置で実現可能とする作用を呈するものである。
【0054】
【実施例】
次に、本発明の実施例を添付図面を参照して詳細に説明する。図中、1がイオン交換膜である。このイオン交換膜1としては、従来公知なものを使用すればよいが、本発明では厚みが200ミクロン程度の比較的厚手のものを使用することが望ましく、実例としては、米国デュポン社のナフイオン424(商品名)を使用した。このナフィオン(商標)のイオン交換膜1は固体ではあるが電解質と見做すことができ、電気分解の陽極電極2と陰極電極3とをこのイオン交換膜1の両面に重ねることで、両者の距離を近づけることが可能となり、このイオン交換膜20を介して電子の移動が行われるので、低電圧での激しい電気分解が可能となることは従来知られた技術である。
【0055】
そして、上記イオン交換膜1の一面側に、金(Au),プラチナ(Pt),ニッケル(Ni),チタン(Ti)のいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ねてある。この種、オゾン発生触媒機能を有する金属としては上記のようなものが知られているが、無論、これら触媒機能を有した金属を鍍金したものを使用しても、実質的には相違点はなく、安価に製造できて望ましいものである。
【0056】
また、上記オゾン発生触媒機能を有した金属の多孔材としては、金属板に多数の小孔またはスリットを開穿したものを使用してもよいが、本実施例では金網状に上記オゾン発生触媒機能を有した金属線を編んだものを使用している。金網形状となして、これを平面形状のイオン交換膜1と接触させると、金網の針金部が該イオン交換膜1と接触し、編み目部は非接触部位となる。そして、このイオン交換膜1と陽極電極2との両者が、接触する部位と非接触の部位との境界部位で最も強い電気分解が発生するもので、金網形状とすることで、前記境界部全長を長くすることが容易に実現できるものである。また、金網は両面に平面的なところがなく、金網を構成する針金の、どこの位置も小さな湾曲形状となっている。したがって、この金網形状の陽極電極2を平面のイオン交換膜1と重ねると、針金の湾曲形状部はイオン交換膜1に接触する部位から順次離れる部位を形成させ、この僅かな間隙の変化部位の存在によって、放電界を広い範囲で惹起し易くなり、惹起した強い放電界を広範囲に広めることができるものである。
【0057】
なお、この金網状の一形態として、後記する集電板11のようなラス網状のものがある。このラス網とは、金属板に細かなスリットを多数入れ、スリット部が金網の網目となるように、該金属板をスリットとは直交方向に引き延ばした形状のもので、このラス網の両面側に突出する尖端部のみをプレスで押し潰したものを使用すると、各網目を構成する網線部位が捻られた形状となり複雑な方向を向き、その面方向に流れる海水は、該ラス網構成網線部位をくぐり抜けて流れることで、複雑な小渦流を多数起こし、発生したオゾンを該渦流によって発生部位より他の場所に移動させ、原料の海水の流れを攪拌して、オゾン発生効率を高めるものであった。
【0058】
そして、上記イオン交換膜1の他面側には、耐食性金属の多孔材よりなる陰極電極3を重ね、該陽極電極2と陰極電極3とに直流電圧を印加するようになして、電気分解装置本体10を構成している。この直流電源は数ボルト乃至十数ボルトの比較的低電圧でよく、電流値はその容量にもよるが、本実施例の原料の海水を毎分50リットル処理するイオン交換膜10cm角のもので、40〜80アンペアーが必要であり、相応の電流容量を有する電源装置30を用意することは無論である。
【0059】
そして、本発明は上記イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになす。すなわち、本発明は、従来の海水の殺菌に、無声放電界に空気又は酸素を接触させて気相のオゾンを一度生成して、この気相のオゾンを海水に曝気していたのに対して、本発明では、海水を電気分解して、陽極電極2側に発生する酸素の一部を、陽極電極2の触媒機能によってオゾン化し、発生したオゾンを即座に海水中に溶解させるもので、一部、微少なオゾン気泡が発することはあるも、オゾンが気泡となって海水表面より大気中に放出されることはほとんど生じないもので、海水より気相のオゾンが大気中に蒸散する危険性は考慮しなくてもよく(万が一の対策を行うことを、拒否するものではない。)、前記電気分解装置本体10を流過した海水は、ほとんどオゾン臭がしないものであった。
【0060】
イオン交換膜1の陽極電極2が当接する面側に、原料の海水を流過させる具体例としては、図1に示すように、電気分解装置本体10を容器状に形成し、その中央をイオン交換膜1で仕切っている。そして、このイオン交換膜1の一面側を陽極室4となし、この陽極室4には陽極電極2を該イオン交換膜1に重ねて収納してある。また、上記イオン交換膜1の他面側は陰極室5となし、この陰極室5にはイオン交換膜1に重ねて陰極電極3が収納してある。そして、この陽極電極2と陰極電極3とは、電源装置30が連結され、両者間に直流電圧が印加されるようになしてある。また、陽極室4には一端に流入口4aが、他端に流出口4bが設けられ、ポンプP1で汲み上げる原料の海水が、流入口4aより陽極室4内に流入し、流出口4bより流出するようになしてある。なお、図1の、符号11は金網状の集電板を示すものである。
【0061】
原料の海水は、上記電気分解装置本体10に供給する前に濾過して、異物が混入しないようになすことが、望ましく、特に、プランクトン等の生物が混入しない程度の、濾過を行うことが望ましいが、無論、混入する細菌まで濾過して除去することまでをも要求するものではない。
【0062】
上記電気分解装置本体10の陽極電極2側を流過した海水(図1の流出口4bより流出する海水)中には、オゾンが数ppm混入し、オゾン濃度1ppmでは接触した大腸菌は数秒乃至数十秒で死滅する。さらに大腸菌よりも抵抗性の高い腸炎ビブリオ菌も、オゾン濃度3ppmでは、数十秒で死滅することが実験の結果確認された。特に、この腸炎ビブリオ菌は水産物中毒の主因をなすものとして水産加工用海水中には存在してはならないものとして指定されており、従来の紫外線照射法では滅菌に数時間の長時間を要するものとして、問題視されているが、本発明法により発生するオゾン化海水では、3ppm程度の濃度を維持することが技術的に問題なく、極めて短時間に滅菌できることは装置がコンパクト化・経済性の向上につながり、実用化が容易となるものである。なお、ここでのオゾン濃度はヨウ素滴定法で求めているもので、オゾン以外の酸化物等をも含むものである。
【0063】
さらに、本発明法の一つの特徴として、本発明法によるオゾン化された海水と、従来のオゾンがス曝気溶解方法によるオゾン化海水を比較すると、本発明法によるものは、オゾン濃度に比較した臭素酸(BrO)や次亜臭素酸(HBrO)の量が、オゾンガス曝気法に比べて少ないことが判明した。海水中に含まれる臭素イオンが、オゾンによって臭素酸となることは以前から知られているが、臭素酸等は魚類の生存にとって有害である、所謂、魚毒としてできるだけその含有量を抑えるために多くの努力が払われてきた。例えば、活性炭に吸着させるとか、空気を曝気して気散させるなどの方法が知れれているが、これらの方法では、せっかく海水中に溶解したオゾンまで減衰し、しかも装置も大型化し、運転動力も大きくなるなどの欠点があった。
【0064】
そこで、臭素酸等の発生度の比較の一例を示すと、次の「表1」のようになり、本発明法が臭素酸等の発生は少ないものである。そこで、この原因を鋭意調査したのであるが、その、主因は本発明法は電極で発生したオゾンを含む微細な酸素気泡が微細気泡であるために極めて短時間に海水中に溶解するのに対し、従来のオゾンがス曝気法では、気泡の径が数十ミクロンから数百ミクロン、時には、数mmに達し、海水中に溶解する時間がかなり長いせいであると推定された。そして、臭素酸等の発生は、高濃度オゾンガスと海水との接触時間に比例して増加することが実験により証明され、本発明法のイオン交換膜1を使用した電極界面における短時間溶解法が、臭素酸等の発生を押さえるのに効果があるものと類推されるものである。
【0065】
【表1】
Figure 0003886378
【0066】
また、上記電気分解装置本体10を流過した海水中には、酸素が過飽和状態(一部微細気泡状に混在するものを含むため測定値が過飽和となると思われる。)に混入しており、この酸素も電気分解で発生した際には、発生期の化学的に不安定な状態にあって、酸化力が強く、殺菌に役立っているものと推考される。また、電気分解された海水中には、塩素イオンが存在し、海水を電気分解することで発生期の酸素・オゾン・塩素による殺菌が行われるものである。
【0067】
次に、請求項2の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる陰極電極3を重ね、該陽極電極2と陰極電極3とに直流電圧を印加するようになした電気分解装置本体10の、該イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになしたのは請求項1と同じである。
【0068】
そして、本発明は、上記イオン交換膜1の陰極電極3が当接する面側に、別途海水を、陽極電極2側に比較して流過速度を遅くして流過させるようになしている。この種、イオン交換膜1を利用した電気分解においては、陰極電極3側には、水が接触していなくても、電気分解に支障はないとされている。しかし実際は、通電にともなって陽極電極側2側の水がイオン交換膜1内を通過して陰極電極3側に移動して、イオン交換膜1と陰極電極3との接触面が湿潤してから、円滑な電気分解が生ずるもので、陰極電極3側をも水で満たしておくことが望ましいことは、実験の結果容易に確認できるものであった。
【0069】
また、本発明において海水を電気分解しようとしたところ、上記の傾向、すなわち、陰極電極3側に水を満たすことで電気分解が活発化する傾向は、真水を電気分解する場合より顕著に現れ、陰極電極3側に水を順次供送することはしないまでも、該陰極電極3を真水で満たしたところ、電気分解は僅かに発生し、設定条件によってはオゾンの発生も不可能とは断言できないが、現在のところオゾンが発生するような激しい電気分解は期待できないものであった。そこで、陰極電極3側に、陽極電極2側と同様に海水を供送したところ、電気分解の状態は改善されたが、なお、当初期待したオゾンの発生量が実現できなかった。そこで、陰極電極3側の海水の供送は止め、陰極電極3は滞留する海水に満たされた状態で運転を継続したところ、徐々に、電気分解が活発に生ずる傾向が観察できた。
【0070】
上記電気分解の改善の原因を鋭意追求したところ、電気分解の進行に伴う陰極電極3側の水の化学的変化があることは、実証できなかったが、電気分解の改善の比率が僅かなものであることから、電気分解によって水の一部が蒸散して、塩分濃度が向上したのがその原因と想定されるもので、実際に電気分解の改善が見受けられた状態で、陽極電極2側の原料の海水と、陰極電極3側の滞留する海水の導電率で多少の差が生じ、陰極電極3側の滞留海水の方が、伝導率が高いものであった。
【0071】
従って、本発明で陽極電極2側に比較して流過速度を遅くして流過させるとするのは、その流過速度は極端に遅くする必要性があり、ほとんど滞留するが、数分乃至数十分でその全量が入れ替わる程度の流速を想定するものである。
【0072】
なお、図1の陰極室5にも流入口5aと、流出口5bとが設けられ、ポンプP2で、海水を該流入口5aより陰極室5内に供送することで、この陰極室5に陽極電極2側に比較して(該ポンプP2を調整することで)流過速度を遅くして海水を流過することができるもので、さらには、流入口5aの上流側に図示はしてない流量調整弁を介装しておくことも有効である。
【0073】
次に、請求項3の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる陰極電極3を重ね、該陽極電極2と陰極電極3とに直流電圧を印加するようになした電気分解装置本体10の、該イオン交換膜1の陽極電極2が当接する面側に、海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになしてあるのは、前記請求項1及び請求項2と同じである。
【0074】
そして、本発明は、上記イオン交換膜1の陰極電極3が当接する面側に、別途陽極電極2側に比較して伝導率が高い電解水を流過させるようになしている。すなわち、前記請求項2で電気分解が活発化した原因が、陰極電極3側の塩分濃度が高まることに起因するのではないかと想定できたので、本発明では、陰極電極3側に接触する水を、積極的に塩分濃度を陽極電極2側の原料の海水よりも高めて、陽極電極2側の原料の海水に比較して電気的な伝導率が高い雰囲気で安定した電気分解の条件を整えるようになしたもので、伝導率の高い電解液を別途用意したものである。なお、この電解液は、図2のタンクT1に所定量を収容し、ポンプP2で、陰極室5の流入口5aに供送し、該陰極室5内を流過して流出口5bより流出する電解液は、該タンクT1に循環するようになしてあるが、循環式でなく陰極室5内を一度流過したものは排水するようになしても差し支えない。
【0075】
上記陽極電極2側より伝導率が高い電解水としては、原料と同じ海水に、塩化ナトリウムを加えればよく、無論、塩化カリウム(KCl)等のその他の塩類を加えてもよい。塩分濃度を高めることで伝導率は高まるが、さらには、本発明では導電性を向上することが、真の目的であるので、クエン酸等を溶解させてもよいものである。なお、実験の結果では、陰極電極側の海水(電解液)は陽極電極側の原料の海水に比べて、伝導率が100μS/cmマイクロジーメンス・センチメートル以上高いことが望ましいものであった。
【0076】
次に、請求項4の発明は、上記殺菌方法を実現するための装置であって、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ねた陽極室4を、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる陰極電極3を重ねた陰極室5を設け、上記陽極電極2と陰極電極3とは、両者間に直流電圧を印加する電源30に連結してなる。すなわち、本発明では、イオン交換膜1で仕切られた、一方側を陽極室4、他方側を陰極室5となしている。
【0077】
そして、上記陽極室4には海水の流入口4aと流出口4bを、陰極室5には同じく海水等の電解液の流入口5aと流出口5bとを設けて、陽極室4には原料の海水を流過するようになし、また、陰極室5には海水等の電解液が別途流過するようになし、さらに、前記陽極電極2と陰極電極3とは、両者間に直流電圧を印加する電源30に連結してある。したがって、陽極電極2と陰極電極3とに直流電圧を印加し、陽極室4には原料の海水が、陰極室5には海水等の電解液が別途流過するようになすことで、海水は電気分解され、陽極室4側では酸素が、陰極室5側では水素が発生し、陽極室4側で発生した酸素の一部は陽極電極2の触媒機能でオゾン化され、このオゾンが原料の海水中に溶解するものである。
【0078】
そして、本発明は、上記陽極電極2と陰極電極3との間に流れる電流を測定する電流計6a、又は、原料の海水の溶存電解質濃度に応じた起電力と、陽極室4出口部の海水の溶存電解質濃度に応じた起電力とを測定して両者の濃度差を測定する濃度差測定装置6bを設けている。上記電流計6aは従来公知なものを使用すればよく、濃度差測定装置6bとしては、図3に最も明らかに示すように、検知電極6xと相手電極6yとの間に電解質が存在すると、電解質の溶存濃度に対応した起電力が生ずる、所謂、ガルバニー電池の原則を利用すればよい。すなわち、図3例では原料の陽極室4の海水が流入する流入口4a内と、流出口4b内とに、上記検知電極6xと相手電極6yを夫々設けて、各部位での起電力を測定し、その差を比較回路6zで比較するようになしている。
【0079】
なお、上記電流計6aでは、実際に電気分解が行われていれば相応の電流が流れているものであるから、その電流値を求めてオゾンが発生していることを推定する。また、上記濃度差測定装置6bで所定の濃度差が測定できれば、この差は海水中に電気分解で発生したオゾン等のイオン物質の増加によるもので、電気分解の円滑な発生が保証できるものである。すなわち、上記電流計6aで所定以上の電流を測定できるか、上記濃度差測定装置6bで所定以上の濃度差が測定できれば、電気分解が円滑に発生しており、陽極電極2側を流過する原料の海水に、該電気分解で発生したオゾンが混入しているであろうとする、一つの判断基準となるものである。そこで、本発明では、この電流計6a又は濃度差測定装置6bで、オゾンが発生しているであろうことを間接的に検出しているものである。
【0080】
さらに、本発明は、陽極室4の流出口4bに、海水を環流する環流流路7bと、海水を使用するために所定の場所に運ぶ用水流路7aとに切り換える切換弁7を設け(図3参照)、上記電流計6a又は濃度差測定装置6bの測定値が所定値以上となると、切換弁7が用水流路側7aを連通状態に切換える(この切替弁7は、前記比較回路6zで電磁弁12を介して駆動されるようになせばよい。)ようになしている。本発明では、信頼性を高めるため、オゾンが発生しておらず殺菌が不充分な際には、本装置を介した原料の海水を使用不能となしたもので、上記電流計6a又は濃度差測定装置6bの測定値が所定値以上となりオゾンの発生が充分であろうと想定できる場合のみ、切換弁7が用水流路側7aを連通状態に切換えて、当該海水を利用可能となしたものである。なお、図3例の電気分解装置本体10は、遠心ポンプの原理を利用したもので、その構成の詳細については後記するものとする。
【0081】
次に、請求項5の発明は、同じく、本発明法を実施する装置であって、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ねた陽極室4を、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる陰極電極3を重ねた陰極室5を設け、上記陽極室4には海水の流入口4aと流出口4bを、陰極室5には同じく海水等の電解液の流入口5aと流出口5bとを設けて、陽極室4には原料となる海水を流過するようになし、また、陰極室5には海水等の電解液が別途流過するようになし、さらに、前記陽極電極2と陰極電極3とは、両者間に直流電圧を印加する電源30に連結してあるのは、上記請求項4と同じ構成である。
【0082】
そして、本発明は、原料海水の溶存電解質濃度に応じた起電力と、陰極室5内の海水の溶存電解質濃度に応じた起電力とを測定して両者の濃度差を測定する濃度差測定装置6cを設けてなる。この濃度差測定装置6cは前記請求項4の濃度差測定装置6bと略同じ構成のものを使用すればよいが、請求項4の発明では濃度差測定装置6bが、陽極室4の流入口4aと流出口4bとの部位での、起電力の差を求めていたが、本発明の濃度差測定装置6cは、原料海水と陰極室5内の海水(電解液)との起電力の差(電気的な導電性の差)を求めるようになしてある。
【0083】
そして、本発明は、陰極室5に濃縮海水又は塩等を供給して、該陰極室5内の電解水の伝導率を高める伝導率向上装置60を連結し、上記濃度差測定装置6cの測定値が所定値以下となると、該伝導率向上装置60を作動させ、陰極室5内の電解液の伝導率を高めるようになしている。この伝導率向上装置60は、図4に示すように、高濃度海水や粉状塩類等を収容する収容タンクT2と、その排出弁13等で構成され、濃度差測定装置6cの測定値が所定値以下となると、オゾンの発生に支障がある(支障があると予想できる)ので、陰極室5側に伝導率向上装置60より塩分濃度を高める物質(正確には、伝導率の高い電解液、又は電解液の伝導率を高める物質)を所定量供給して、オゾンの円滑な発生条件を確保できるようになしたものである。なお、該濃度差測定装置6cの測定値が所定値以下となると、その結果を比較回路6zで検出して、排出弁13を駆動して、該タンクT2内の濃縮海水又は塩類等を、陰極室5内に所定量供送するようになしてある。
【0084】
なお、図4例の濃度差測定装置6cは、陰極室5内のPHを計測するPH計に代えてもよい場合がある。この陰極室5内の電解液は、前記したようにクエン酸等を溶解しても目的が達成できるもので、この場合、通常中性の海水に対して、陰極室5内の電解液が所定以上の酸性値がPH計で測定されないと、前記排出弁13を作動させるようになせばよい。また、図4例は、陰極室5内の電解液は、タンクT1内のものをポンプP2で循環して使用しているが、無論、海水を一度使用したら排水してしまうようになしてもよい。また、この図4の、符号20は滞留槽を示すものである。
【0085】
次に、請求項6の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる相手電極2aを重ね、この相手電極2aの前記陽極電極2とは反対側に一定の間隔を設けて耐食金属材よりなる陰極電極3を対設し、該陽極電極2と陰極電極3とに直流電圧を印加すると共に、該相手電極2aには陽極電極2よりは低い電圧を印加するようになした電気分解装置本体10aの、該イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになしたものである。すなわち、本発明は請求項3の原料の海水に比べて伝導率が高い電解水を特別に用意しないで、効率的なオゾン発生が可能でないかを追求したもので、陽極電極2と陰極電極3との間に、電子の移動を円滑化するための第三電極としての相手電極2aを設けたものである。
【0086】
イオン交換膜1は、固体ではあるが電解質として機能する性質を有していることは前記したとおりである。従って、このイオン交換膜1の両面に直流電圧を印加すれば電子が移動することになり、陽極電極2側では海水が電気分解され、酸素が発生し、陰極電極3側では水素が発生するのが本発明の原理である。しかし、海水は電気的に大きな伝導性を有するもので、この原料の海水に比較するとイオン交換膜1の電解質としての導電性は小さなものとなってしまい、電子が陰極電極3側から陽極電極2側に整然と流れる現象が生じづらくなる。現に、実験の結果では、イオン交換膜1の両面を同じ濃度の海水としたところでは、電気分解は発生するも、目的とするオゾンが発生する程度の激しい電気分解は期待できなかった。
【0087】
そこで、前記請求項3では、陰極電極3側の塩分濃度を高める(導電性を高める)ことで、電子の流れを助長したが、本発明では荷電方法で、電子の流れを助長したものである。すなわち、陽極電極2と相手電極2aと陰極電極3とに順次電位勾配を設けることで、陰極電極3より相手電極2aを介して陽極電極2に電子が整然と流れるようになしたものである。なお、具体的な実施例としては、図5及び図6のごとき装置が使用でき、図5例では第一電源装置30aと第二電源装置30bとを設け、該第2電源装置30bは第一電源装置30aより出力電圧が低いものであって、陽極電極2が第一電源装置30aのプラス出力端に、相手電極2aが第二電源装置30bのプラス出力端に連結され、この両電源装置30a、30bの他端出力端は陰極電極3と共に接地されてなる。なお、図6及び図10例では一つの電源装置30より、異なる電位(V・V)の出力が得られるようになしてある。なお、図5及び図6の装置の構成に関しては後にその詳細を説明することとする。
【0088】
なお、図5例において、陽極電極2に15V、相手電極2aに5V、陰極電極3は接地したところ、前記イオン交換膜1が10cm角の例で、電流は50アンペア流れ、流量毎分50リットルの海水を約7ppmのオゾン濃度の海水となすことができたが、同図の相手電極2aを陰極電極3と共に接地して、陽極電極に15Vの電圧を印加したところでは、印加当初は30アンペア程度の電流が流れたが、即座に電流値は低減し、数分で電流値は10アンペア程度となり、電位勾配を設けることの有利性が確認できた。
【0089】
次に、請求項7の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる相手電極2aを重ね、この相手電極2aの前記陽極電極2とは反対側に一定の間隔を設けて耐食金属材よりなる陰極電極3を対設し、該陽極電極2と陰極電極3とに直流電圧を印加すると共に、相手電極2aには陽極電極2よりは低い電圧を印加するようになした電気分解装置本体10aの、該イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになしてあるのは、前記請求項6の発明と同じである。
【0090】
そして、本発明は、イオン交換膜1の陰極電極3が当接する面側に、別途海水を陽極電極2側に比較して流過速度を遅くして流過させるようになしたものである。この、イオン交換膜1の陰極電極3が当接する面側に、別途海水を陽極電極2側に比較して流過速度を遅くして流過させることは、前記請求項2と一見すると同じであるが、本発明では、その目的に相違点があり、必ずしも、請求項2と同じではない。すなわち、本発明では、イオン交換膜1の陰極電極3側では、陰極電極3と相手電極2aとの間でも、僅かな電気分解が発生している。そして、この電気分解でイオン交換膜1の陰極電極3が当接する面側の海水は反応して、次亜塩素酸ソーダ等が発生し海水の電気的伝導度が高まる現象が確認できた。
【0091】
すなわち、この現象を、図6を参照して説明すると、陰極室5には、相手電極2aと陰極電極3とが対設収納されており、この陰極室5内は海水で満たされることになる。従って、相手電極2aと陰極電極3との間で電子が移動し、陰極室5内で電気分解が生じ、その結果、オゾンは発生しないまでも、酸素は発生し、海水中の塩素は、次亜塩素酸ソーダ等を生成し、次第に陰極室5内の海水の電気的な導電性が高まるものである。そこで、上記相手電極2aを含む陰極電極3の海水の変化を積極的に利用しようとしたのが本発明の要旨とするところで、陽極電極2側と陰極電極3側とで流過する海水の速度を変化させたところ、陰極室5側の海水の流過速度を遅くするほど電気分解は円滑に行われ、発生するオゾン量も多くなるものであった。具体的な実施例としては、前記請求項6の具体的実施例で、陰極室5側の海水の流過量を、陽極電極2側に比べて半減させたところ、陽極電極2側を流過した海水のオゾン濃度は7.04ppmの濃度となった。なお、陰極室5側の海水の流過量を遅くするには、図6のポンプP2の吐出量を調整すればよいのは無論で、前記もした該陰極室5の流入口5aの上流部位に流量調整弁を設けてもよい。なお、同一の海水を長時間電気分解すると、言い換えると、海水が長時間電気分解雰囲気中にあると、次亜塩素酸ソーダの生成率が飛躍的に向上するもので、陰極室5側の海水の流過量を毎分数ccと極端に遅くすることで、陽極電極2側を流過した海水のオゾン濃度を7.5ppmの濃度まで向上することができた。
【0092】
次に、請求項8の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる相手電極2aを重ね、この相手電極2aの前記陽極電極2とは反対側に一定の間隔を設けて耐食金属材よりなる陰極電極3を対設し、該陽極電極2と陰極電極3とに直流電圧を印加すると共に、相手電極2aには陽極電極2よりは低い電圧を印加するようになした電気分解装置本体10aの、該イオン交換膜1の陽極電極2が当接する面側に、原料の海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになしたのは、請求項6及び請求項7と同じである。
【0093】
そして、本発明は、イオン交換膜1の陰極電極3が当接する面側に、別途陽極電極2側の海水に比較して伝導率が高い電解水を流過させるようになしている。すなわち、この陽極電極2側の海水に比較して伝導率が高い電解水は、前記請求項3で使用したものと同じで、本発明は請求項6及び請求項7の相手電極2aの利用と、請求項3の伝導率が高い電解水との併用で、より電気分解の発生を促進したものである。
【0094】
次に、請求項9の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、チタン等の海水に溶出しづらい金属の多孔材よりなる陰極電極3を重ね、該陽極電極2と陰極電極3とに直流電圧を印加するようになした電気分解装置本体10の、該イオン交換膜1の陽極電極2が当接する面側に、海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになしたのは、請求項1と同じである。
【0095】
そして、本発明は、次いで、陽極電極2側を流過した上記海水を、殺菌に必要な反応時間を確保する滞留槽20に所定時間滞留させた後、この殺菌済みの海水を上記イオン交換膜1の陰極電極3が接触する側を流過させるようになしている。海水中に、オゾンを溶解させても、細菌は即座に死滅するものではなく、殺菌には所定時間を要するのは無論である。そこで、オゾンを溶解した海水はそのまま使用せず、図7に示すように、一定時間滞留槽20に滞留させ完全に滅菌してから使用することが望ましい。また、この滞留槽20で所定時間の反応時間を設けると、電気分解とオゾンとの接触とで発生した酸化物等が反応で消費され、安全性の高い海水となすことができるものである。
【0096】
しかし、殺菌が完了した海水も、前記したオゾン酸化で海水中に臭素酸(BrO)や次亜臭素酸(HBrO)等の有害物質が含まれている場合があるので、これをできるだけ除去する必要性がある。オゾン溶解海水より、残留オゾン、気相塩素等を除去するには、該海水中に空気を吹き込むか、該海水を空気中に噴射して、海水と空気とを気液接触してこれらを蒸散する方法が提案されているが、臭素酸や次亜臭素酸等の安定した物質で、揮発性が少ない物質はこの方法では除去できないので、本発明では、使用せんとする海水を、陰極電極3側を流過させて、電気分解で発生する発生期の水素と接触させ、還元して、無害化するものである。
【0097】
滞留槽20から、陰極室5に海水を案内する装置例として、図7例では、陽極室4の流出口4bと滞留槽20とを流路7aで連通してある。そして、この滞留槽20は図示例では、仕切り板21,21,21・・・複数に仕切られ、この仕切り板21,21,21・・・を順次乗り越えて次の小部屋に溢れ出ることで、所定の滞留時間が確実に得られるようになしてあるが、無論、この滞留槽20は海水が確実に一定時間滞留できるもであれは、この図示例に限定されるものではない。そして、この滞留槽20の流出口20bと陰極室5の流入口5aとが途中にポンプP3を介した流路7cで連結してなる。
【0098】
次に、請求項10の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、チタン等の海水に溶出しづらい金属の多孔材よりなる相手電極2aを重ね、この相手電極2aの前記陽極電極2とは反対側に一定の間隔を設けて同じくチタン等の海水に溶出しづらい金属材よりなる陰極電極3を対設し、該陽極電極2と陰極電極3とに直流電圧を印加すると共に、相手電極2aには陽極電極2よりは低い電圧を印加するようになした電気分解装置本体10aの、該イオン交換膜1の陽極電極2が当接する面側に、海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになすのは、前記請求項6と同じである。
【0099】
但し、本発明においては、原料海水を、次に説明するように、イオン交換膜1の相手電極2aが当接すると共に陰極電極3が対設する面側を流過するようになしているので、この原料海水中に電極(特に、陰極電極3)の金属が溶出するのを防止する必要性(図8の陰極室5の流出口4bより排出される海水が利用されるため。)がある。そこで、本発明では、図8の、陰極電極3と相手電極2aとをチタン等の海水に溶出しづらい金属材で構成している。チタンは表面に強固な酸化被膜を形成し、この酸化被膜によって保護され、海水に対する対抗性を有することが知られ、この種海水処理装置には汎用されているものである。また、前記においては、陽極電極2は鍍金でも実質的同じとしたが、この陰極電極3と相手電極2aとは海水に溶出しづらい金属材を鍍金したもので構成すると、電子の流れと共に、金属の溶出の危険性が増大するので、鍍金したものは採用しない必要性がある。
【0100】
そして、本発明は、次いで、陽極電極2側を流過した上記海水を、殺菌に必要な反応時間を確保する滞留槽20に所定時間滞留させた後、この殺菌済みの海水を上記イオン交換膜1の相手電極2aが当接すると共に陰極電極3が対設する面側を流過するようになしたもので、この点は、前記請求項9と同じである。なお、この相手電極2aと陰極電極3との間でも弱い電気分解が発生し、オゾンが発生することはないが、多少の次亜塩素酸ソーダが発生するが、その発生量は微量であるので、海水の使用段階での殺菌力を期待できる程度のものではないと共に、その毒性は問題とならないものである。
【0101】
次に、請求項11の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる陰極電極3を重ね、該陽極電極2と陰極電極3とに直流電圧を印加するようになした電気分解装置本体10の、該イオン交換膜1の陽極電極2が当接する面側に、海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、次いで、陽極電極2側を流過した上記海水を、殺菌に必要な反応時間を確保する滞留槽20に所定時間滞留させるのは、前記請求項1または、請求項9と同じである。
【0102】
そして、本発明は、イオン交換膜1の陰極電極3が当接する面側に、別途海水を陽極電極2側に比較して流過速度を遅くして流過させるようになし、電気分解で上記イオン交換膜1の陰極側で発生した水素、又はこの水素と空気との混合気体と、前記滞留槽20から流出する海水とを気液接触するようになすか、該水素が混入する海水を前記滞留槽20から流出する海水と混合するようになしている。陰極電極3側を流過する海水の量を陽極電極2側より遅くすると、陽極電極2側を流過した海水の全量を陰極電極3側を流過させることができない。そこで、滞留槽20から流出する海水の全量を電気分解で発生した水素と接触させて還元処理するため、本発明では、電気分解で上記イオン交換膜1の陰極電極3側で発生した水素、又はこの水素と空気との混合気体と、前記滞留槽20から流出する海水とを気液接触するようになすか、該水素が混入する陰極室5内の海水を前記滞留槽20から流出する海水と混合するようになしたものである。
【0103】
図9が、上記請求項11の発明を実施する装置例で、陽極室4の流出口4bと滞留槽20とが連通され、この滞留槽20の流出口20bと陰極室5の流入口5aとが途中にポンプP2を介した流路7cで連結してなる。そして、陰極室5の流出口5bにはタンクT3が連結され、このタンクT3内の海水、気泡として液面からでた水素、逆止弁14より吸い込まれる外気等がポンプP4,P5でタンクT4内に噴射するようになしてある。なお、図9例の噴射ノズル17は二流体ノズルで、噴射口先方には共鳴箱15が設けられ、噴射液滴は超音波音場で微細化するようになしてあり、タンクT4の開口部にはミストキャッチャー16を設けている。なお、この図9例とは異なり、陰極室5の流出口5bよりの海水と、滞留槽20から使用場所に延設する図9には図示していない流路とを合流(図10の滞留槽20の流出口20b部位を参照)させて、両者の海水を混合して使用しても、水素による還元作用が得られるものであった。なお、同9図中、19は活性炭充填槽等からなるオゾン分解槽を示すもので、万が一にも、滞留槽20より気相のオゾンが大気中に排気されることを防止するものである。
【0104】
次に、請求項12の発明は、イオン交換膜1の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ね、該イオン交換膜1の他面側には、耐食性金属の多孔材よりなる相手電極2aを重ね、この相手電極2aの前記陽極電極2とは反対側に一定の間隔を設けて耐食金属材よりなる陰極電極3を対設し、該陽極電極2と陰極電極3とに直流電圧を印加すると共に、相手電極2aには陽極電極2よりは低い電圧を印加するようになした電気分解装置本体10aの、該イオン交換膜1の陽極電極2が当接する面側に、海水を該イオン交換膜1と陽極電極2とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになすのは、前記請求項6乃至請求項8と同じである。
【0105】
次いで、本発明は、陽極電極2側を流過した上記海水を、殺菌に必要な反応時間を確保する滞留槽20に所定時間滞留させた、一方、イオン交換膜1の陰極電極3が当接する面側に、別途海水を陽極電極2側に比較して流過速度を遅くして流過させるようになし、電気分解で上記イオン交換膜1の陰極側で発生した水素、又はこの水素と空気との混合気体と、前記滞留槽20から流出する海水とを気液接触するようになすか、該水素が混入する海水を前記滞留槽20から流出する海水と混合するようになしている。すなわち、本発明も、前記請求項11と同様に、陽極電極2側でオゾンを溶解した海水は、滞留槽20で殺菌に必要な時間を確保した後、陰極電極3側で水素と接触させて有害酸化物の還元を行うが、滞留槽20を流出する海水の全量を陰極電極3側を流過することができないため、電気分解で上記イオン交換膜1の陰極電極3側で発生した水素、又はこの水素と空気との混合気体と、前記滞留槽20から流出する海水とを気液接触するようになすか、該水素が混入する海水を前記滞留槽20から流出する海水と混合するようになしたものである。
【0106】
図10が、上記請求項12の装置例で、陽極室4の流出口4bは、滞留槽20に連結されると共に、流量調整弁18を介して、陰極室5の流入口4aにも連通してある。そして、該陰極室5の流出口5bと滞留槽20の流出口20bとを流路7dで連通してある。なお、該陰極室5の流出口5bに、図9のタンクT3,T4等を連結して、陰極電極3側で発生した水素、又はこの水素と空気との混合気体と前記滞留槽20から流出する海水とを気液接触するようになしてもよいものである。
【0107】
次に、請求項13の発明は、海水の電気分解装置本体10aと滞留槽20とを有し、該電気分解装置本体10aは、イオン交換膜1の一面側を陽極室4、他面側を陰極室5となしてある。この、陽極室4と陰極室5とは通常絶縁性と耐オゾン製を有する材質で構成され、その中をイオン交換膜1で仕切ることで、該陽極室4と陰極室5とを形成している。
【0108】
そして、上記陽極室4には、海水の流入口4aと流出口4bとを設けると共に、イオン交換膜1の一面側に接触して、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極2を重ねて収納してある。この陽極電極2は金網状とすることが望ましいことは前記したが、金網は細い線で細かな編み目とすると、イオン交換膜1との接触部と非接触部とが多数形成され、オゾン発生効率がより効率的となるが、金網はその針金部材を細くすると全体的に変形しやすくなり、イオン交換膜1と均一に接触させることが困難となり、また、局所的に電流が集中して流れると、その部位で針金部材が破断することも想定される。
【0109】
そこで、図5例では、陽極電極2のイオン交換膜1とは反対側面に、集電板11を重ねている。この集電板11は、陽極電極2の押さえと、電流の均一な流れを担保するもので、さらには、海水の流過を阻止しないことが要求されるので、太い金網で強靱に製造した金網等を使用すればよいが、本実施例では、金属板に細かなスリットを多数入れ、スリット部が金網の網目となるように、該金属板をスリットとは直交方向に引き延ばした、所謂、ラス網状のものを使用し、このラス網の両面側に突出する尖端部のみをプレスで押し潰したものを使用した。このラス網形状の集電板11は各網目を構成する網線部位が捻られた形状となり複雑な方向を向き、この集電板11の面方向に流れる海水は、該ラス網構成網線部位をくぐり抜けて流れることで、複雑な小渦流を多数起こし、発生したオゾンを該渦流によって発生部位より他の場所に移動させ、原料の海水の流れを攪拌して、オゾン発生効率を高めるものである。なお、この集電板11を介して、陽極電極2に電圧を印加するようになすのは無論である。
【0110】
また、上記陰極室5には、海水の流入口5aと流出口5bとを設けると共に、イオン交換膜1の他面側に接触して、耐食性金属の多孔材よりなる相手電極2aを重ねて収納し、さらに、この相手電極2aと一定の間隔を設けてチタン等の海水に溶出しづらい金属よりなる陰極電極3を対設して収納してある。該相手電極2aと陰極電極3とは、チタン等の海水に溶出しづらい金属材の金網等が使用でき、相手電極2aと陰極電極3との間隔を設けるためには、適宜スぺーサー11a等をその間に介装すればよく、このスペーサー11aは、図5例では絶縁性の網を使用しているが、適所に、該相手電極2aと陰極電極3を一定の間隔(放電条件を所定に保つため、正確な位置決めができることが望ましい。)を設けて保持できる場合は、このスペーサー11aは省略してもよいのは無論である。なお、図5例で、相手電極2aとスぺーサ11aの間に、図示しない集電板11をさらに介装してもよく、また、陰極電極3とその集電板11を省略して、導電性の電気分解装置本体10aを接地して陰極電極3となしてもよいものである。
【0111】
そして、上記陽極電極2と陰極電極3とに直流電圧を印加すると共に、相手電極2aには陽極電極2よりは低い電圧を印加する電源装置30を設けている。この電源装置30は、図5例では、第一電源装置30aと第二電源装置30bとの一組を使用しているが、無論、図6又は図10に示すような、一台で異なる電圧を出力するものを使用してもよいのは無論である。
【0112】
そして、本発明は、前記滞留槽20を、陽極室4の流出口4bと、陰極室5の流入口5aとを連結する流路7cの途中に介装(図7参照)してなる。従って、本発明では、陽極室4の流出口4bより流出するオゾンを溶解した海水は滞留槽20に入り、この滞留槽20で一定時間を経過して殺菌が完了した後(主に、オゾン酸化が終了した後)、該海水は陰極室5に流入して、オゾン酸化された酸化物(特に、オゾニド)が該陰極室5で、電気分解により発生する水素によって還元されることになる。
【0113】
次に、請求項14の発明は、円筒状の電気分解装置本体10の周面の一部又は全部を、イオン交換膜1で構成し、該イオン交換膜1の内面に金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有する白金等の金属製の多孔材からなる陽極電極2を重ねて収納し、この電気分解装置本体10a内を、円筒部の軸方向に原料海水の流入口4aを円筒の接線方向に流出口4bを有した陽極室4となし、さらに、この陽極室4内には、前記流入口4aより流入する原料水を旋回流となす翼体51よりなる旋回流発生装置50を収納してある。すなわち、本発明では電気分解装置本体10aを、長さが短い円筒容器状(円盤容器状)に構成し、その周面の全部又は一部をイオン交換膜1で構成している。なお、図示10例では、該電気分解装置本体10aの周面に窓孔を設け、この窓孔をイオン交換膜1で塞いでいる。なお、この図10には明示していが、このイオン交換膜1は可曲性を有するので、前記した集電板11等で陽極電極2、及び陰極電極3又は相手電極2a(本発明では相手電極2a)と共に変形できないように挟持固定することが望ましい。
【0114】
また、上記旋回流発生装置50は、遠心ポンプが使用でき、モータ等(図示せず)で回転する放射状の翼体51を電気分解装置本体10a内に同芯状に収容してなり、該電気分解装置本体10aの円筒部の軸方向の流入口4aから原料海水を吸引し、該海水を電気分解装置本体10a内で旋回させた後、接線方向の流出口4bより排出するようになしてある。なお、旋回する海水は旋回にともなって遠心力で電気分解装置本体10aの内周面に押圧されるようになり、結果として、前記陽極電極2を重ねたイオン交換膜1の内面に圧接されつつ旋回するようになしてある。
【0115】
上記のように、加圧状態の海水が、電気分解で発生したオゾンと接触すると、オゾンが海水中に溶解し易くなるのは明らかなことであるが、原因は究明されていないも、実験の結果では、この圧力を全く掛けないとオゾンの発生効率は極端に低下する現象が生じ、原料海水を加圧状態とすることで、電気分解で発生する酸素に何らかのストレスを与え、電気分解によるオゾンの発生効率自体が向上する現象を確認することができた。
【0116】
そして、上記イオン交換膜1の外面側は、海水の流入口5aと流出口5bとを有した陰極室5で覆い、この陰極室5内には、前記イオン交換膜1の外面に接して耐食金属の多孔材よりなる相手電極2aを収納し、さらに、該陰極室5内には該相手電極2aと所定の間隔を有して陰極電極3を対設収納してある。上記相手電極2aと陰極電極3とは、耐食性の金属を使用すればよいが、相手電極2aにも一種の触媒機能があり、金,プラチナ,ニッケル,チタン等を使用することが望ましいものであった。また、陰極電極3は電気分解で溶出する可能性があるので、陰極室5を流過した海水を利用する場合は、できるだけ、金属の溶出が少ないチタン等の海水に溶出しづらい金属を使用することが望ましいものであることは前記したとおりである。そして、上記陽極電極2と陰極電極3と相手電極2aとは、該陽極電極2と陰極電極3とに直流電圧を印加すると共に、相手電極2aには陽極電極2よりは低い電圧を印加する電源装置30に連結してなるのは、前記請求項13と同じ構成である。
【0117】
次に、請求項15の発明は、円柱状の芯材8の周面に該芯材8の長手方向一端側(図11下端側)より他端側(図11上端側)に連通する螺旋状の流路4rを設け、この芯材8の外側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン生成触媒機能を有した金属の多孔材よりなる陽極電極2を巻き付けて重ね、この陽極電極2の外側にイオン交換膜1を巻き付けて重ねてある。上記円柱状の芯材8としてはセラミック等の絶縁性柱体が使用でき、その周面に、図11に示すように、該芯材8の長手方向一端側より他端側に連通する螺旋状の流路4rを設けるが、この流路4rは芯材8の周面に凹溝を設けて構成してもよいが、本実施例では、該芯材8に耐オゾン性に優れた樹脂帯体4c(テフロン(登録商標)等が使用できる。)を螺旋状に巻き付けて流路4rを形成してある。なお、上記樹脂帯体4cの外側に陽極電極2を、さらにその外側にイオン交換膜1を巻き付けて、上記樹脂帯体4cの間隙部が流路4rとして画定されるようになしてある。
【0118】
そして、上記流路4rの一端を原料海水の流入口4a、他端を流出口4bとなし、この流路4rを原料海水が螺旋状に流過する陽極室4となしている。すなわち、流入口4aからは原料の海水が圧送され、該海水は螺旋状の流路4r内を螺進することになり、螺進にともなって、該海水は前記請求項14と同様にイオン交換膜1と陽極電極2との接触面側に圧接しつつ流過することになる。また、本発明では螺進にともなって、長い距離イオン交換膜1と陽極電極2との接触面側に沿って海水が流れることになり、その分、発生するオゾンとの接触効率を高めるものである。
【0119】
また、上記イオン交換膜1の外側に耐食金属の多孔材よりなる相手電極2aを巻き付けて重ね、さらに、この相手電極2aの外側には絶縁性のスペーサー9を介して、筒状の陰極電極3を配してなる。この、スペーサー9は絶縁材で構成され、前記した樹脂帯体4cと同じものを使用すればよい。
【0120】
そして、上記相手電極2aと陰極電極3を、海水の流入口5aと流出口5bとを有した筒状の陰極電極3で覆っている。この図11の実施例での陰極電極3はケーシングを兼ねるもので、筒状に構成し、前記した芯材8乃至スペーサー9をその中に圧入気味に収容することで、これらを固定するようになせばよい。そして、前記スペーサー9で確保された陰極電極3と前記相手電極2aとの間が陰極室5となしてある。そして、この陰極室5は、該スペーサー9が所定のピッチで螺旋状に設けられることで、流入口5aと流出口5bとが連通する螺旋状に構成してある。
【0121】
そして、上記陽極電極2と陰極電極3と相手電極2aとは、該陽極電極2と陰極電極3とに直流電圧を印加すると共に、相手電極2aには陽極電極2よりは低い電圧を印加する電源装置30に連結してなるのは前記請求項14と同じ構成である。
【0122】
【発明の効果】
従って、本発明法又は装置によれば、海水を、危険度の高い気相のオゾンを使用することなく、容易・安全にオゾン殺菌できるものである。なお、イオン交換膜1を使用した電気分解は前記もしたように低電圧で行えるので、電源装置は従来の無声放電による数キロボルトの高電圧電源に比較して、顕著に低電圧化、小型化でき、さらに、イオン交換膜1の面積が10cm角程度で、毎分3リッター程度の処理能力があり、装置自体も小型化できる海水の殺菌方法及びその装置を提供できるものである。すなわち、本発明は小型で、安全性の高い海水の殺菌方法及びその装置を提供できるもので、漁船に積み込んで使用する例等の、どこでも、容易に使用することができる海水の殺菌方法及びその装置を提供できるものである。
【0123】
そして、イオン交換膜を使用した海水の電気分解は、発生した海水中に溶解したオゾンが、有機物を選択的に酸化して、臭素酸(BrO)や次亜臭素酸(HBrO)の生成量が、気相の酸素を海水に曝気する方法に比べて少なくてすむ利点を有している。海水のオゾン殺菌は、多くの試験例が報告されているが、この臭素酸等の発生が最も大きな未解決課題とされており、臭素酸等の発生自体を抑止した、本発明は海水の安全利用に大きく貢献できるものである。
【0124】
また、イオン交換膜1を使用した海水の電気分解による本発明は、発生期の酸素や、海水中の塩化ナトリウムより次亜塩素酸ソーダ等の殺菌に役立つ物質が同時に得られるという利点と、その発生量を海水の電気分解時間である程度制御できる海水の殺菌方法及びその装置を提供できるものである。
【0125】
さらに、本発明は、陰極室5側では、還元剤として利用可能な発生期の水素が得られるという利点とを有した海水の殺菌方法及びその装置を提供できるものである。
【図面の簡単な説明】
【図1】本発明の一実施例を示す装置例縦断面図である。
【図2】別の実施例を示す装置例縦断面図である。
【図3】さらに別の実施例を示す装置例縦断面図である。
【図4】さらに別の実施例を示す装置例縦断面図である。
【図5】さらに別の実施例を示す装置例縦断面図である。
【図6】さらに別の実施例を示す装置例縦断面図である。
【図7】さらに別の実施例を示す装置例縦断面図である。
【図8】さらに別の実施例を示す装置例縦断面図である。
【図9】さらに別の実施例を示す装置例縦断面図である。
【図10】さらに別の実施例を示す装置例縦断面図である。
【図11】さらに別の実施例を示す装置例縦断面図である。
【符号の説明】
1 イオン交換膜
2 陽極電極
3 陰極電極
4 陽極室
4a 流入口
4b 流出口
4r 流路
5 陰極室
5a 流入口
5b 流出口
6a 電流計
6b 濃度差測定装置
7 切換弁
7a 用水流路
7b 廃棄流路
7c 流路
8 芯材
9 スペーサ
10 電気分解装置本体
10a 電気分解装置本体
20 滞留槽
30 電源装置
50 旋回流発生装置
51 翼体
60 伝導率向上装置

Claims (15)

  1. イオン交換膜(1)の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極(2)を重ね、該イオン交換膜(1)の他面側には、耐食性金属の多孔材よりなる陰極電極(3)を重ね、該陽極電極(2)と陰極電極(3)とに直流電圧を印加するようになした電気分解装置本体(10)の、該イオン交換膜(1)の陽極電極(2)が当接する面側に、原料の海水を該イオン交換膜(1)と陽極電極(2)とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになした海水の殺菌方法。
  2. イオン交換膜(1)の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極(2)を重ね、該イオン交換膜(1)の他面側には、耐食性金属の多孔材よりなる陰極電極(3)を重ね、該陽極電極(2)と陰極電極(3)とに直流電圧を印加するようになした電気分解装置本体(10)の、該イオン交換膜(1)の陽極電極(2)が当接する面側に、原料の海水を該イオン交換膜(1)と陽極電極(2)とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、
    一方、上記イオン交換膜(1)の陰極電極(3)が当接する面側に、別途海水を、陽極電極(2)側に比較して流過速度を遅くして流過させるようになした海水の殺菌方法。
  3. イオン交換膜(1)の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極(2)を重ね、該イオン交換膜(1)の他面側には、耐食性金属の多孔材よりなる陰極電極(3)を重ね、該陽極電極(2)と陰極電極(3)とに直流電圧を印加するようになした電気分解装置本体(10)の、該イオン交換膜(1)の陽極電極(2)が当接する面側に、原料の海水を該イオン交換膜(1)と陽極電極(2)とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、
    一方、上記イオン交換膜(1)の陰極電極(3)が当接する面側に、別途陽極電極(2)側の海水に比較して伝導率が高い電解水を流過させるようになした海水の殺菌方法。
  4. イオン交換膜(1)の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極(2)を重ねた陽極室(4)を、該イオン交換膜(1)の他面側には、耐食性金属の多孔材よりなる陰極電極(3)を重ねた陰極室(5)を設け、
    上記陽極室(4)には海水の流入口(4a)と流出口(4b)を、陰極室(5)には同じく海水等の電解液の流入口(5a)と流出口(5b)とを設けて、陽極室(4)には原料の海水を流過するようになし、また、陰極室(5)には海水等の電解液が別途流過するようになし、さらに、前記陽極電極(2)と陰極電極(3)とは、両者間に直流電圧を印加する電源(30)に連結し、
    上記陽極電極(2)と陰極電極(3)との間に流れる電流を測定する電流計(6a)、又は、原料の海水の溶存電解質濃度に応じた起電力と、陽極室(4)出口部の海水の溶存電解質濃度に応じた起電力とを測定して両者の濃度差を測定する濃度差測定装置(6b)を設け、
    さらに、陽極室(4)の流出口(4b)に、海水を環流する環流流路(7b)と、海水を使用するために所定の場所に運ぶ用水流路(7a)とに切り換える切換弁(7)を設け、
    上記電流計(6a)又は濃度差測定装置(6b)の測定値が所定値以上となると、切換弁(7)が用水流路側(7a)を連通状態に切換えるようになした海水の殺菌装置。
  5. イオン交換膜(1)の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極(2)を重ねた陽極室(4)を、該イオン交換膜(1)の他面側には、耐食性金属の多孔材よりなる陰極電極(3)を重ねた陰極室(5)を設け、
    上記陽極室(4)には原料の海水の流入口(4a)と流出口(4b)を、陰極室(5)には同じく海水等の電解液の流入口(5a)と流出口(5b)とを設けて、陽極室(4)には原料の海水を流過するようになし、また、陰極室(5)には海水等の電解液が別途流過するようになし、さらに、前記陽極電極(2)と陰極電極(3)とは、両者間に直流電圧を印加する電源(30)に連結し、
    原料海水の溶存電解質濃度に応じた起電力と、陰極室(5)内の海水の溶存電解質濃度に応じた起電力とを測定して両者の濃度差を測定する濃度差測定装置(6b)を設け、
    さらに、陰極室(5)に濃縮海水又は塩等を供給して、該陰極室(5)内の電解水の伝導率を高める伝導率向上装置(60)を連結し、
    上記濃度差測定装置(6b)の測定値が所定値以下となると、該伝導率向上装置(60)を作動させ、陰極室(5)内の電解液の伝導率を高めるようになした海水の殺菌装置。
  6. イオン交換膜(1)の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極(2)を重ね、該イオン交換膜(1)の他面側には、耐食性金属の多孔材よりなる相手電極(2a)を重ね、この相手電極(2a)の前記陽極電極(2)とは反対側に一定の間隔を設けて耐食金属材よりなる陰極電極(3)を対設し、該陽極電極(2)と陰極電極(3)とに直流電圧を印加すると共に、該相手電極(2a)には陽極電極(2)よりは低い電圧を印加するようになした電気分解装置本体(10a)の、該イオン交換膜(1)の陽極電極(2)が当接する面側に、原料の海水を該イオン交換膜(1)と陽極電極(2)とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになした海水の殺菌方法。
  7. イオン交換膜(1)の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極(2)を重ね、該イオン交換膜(1)の他面側には、耐食性金属の多孔材よりなる相手電極(2a)を重ね、この相手電極(2a)の前記陽極電極(2)とは反対側に一定の間隔を設けて耐食金属材よりなる陰極電極(3)を対設し、該陽極電極(2)と陰極電極(3)とに直流電圧を印加すると共に、相手電極(2a)には陽極電極(2)よりは低い電圧を印加するようになした電気分解装置本体(10a)の、該イオン交換膜(1)の陽極電極(2)が当接する面側に、原料の海水を該イオン交換膜(1)と陽極電極(2)とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、
    一方、イオン交換膜(1)の陰極電極(3)が当接する面側に、別途海水を陽極電極(2)側に比較して流過速度を遅くして流過させるようになした海水の殺菌方法。
  8. イオン交換膜(1)の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極(2)を重ね、該イオン交換膜(1)の他面側には、耐食性金属の多孔材よりなる相手電極(2a)を重ね、この相手電極(2a)の前記陽極電極(2)とは反対側に一定の間隔を設けて耐食金属材よりなる陰極電極(3)を対設し、該陽極電極(2)と陰極電極(3)とに直流電圧を印加すると共に、相手電極(2a)には陽極電極(2)よりは低い電圧を印加するようになした電気分解装置本体(10a)の、該イオン交換膜(1)の陽極電極(2)が当接する面側に、原料の海水を該イオン交換膜(1)と陽極電極(2)とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、
    一方、イオン交換膜(1)の陰極電極(3)が当接する面側に、別途、陽極電極(2)側の海水に比較して伝導率が高い電解水を流過させるようになした海水の殺菌方法。
  9. イオン交換膜(1)の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極(2)を重ね、該イオン交換膜(1)の他面側には、チタン等の海水に溶出しづらい金属の多孔材よりなる陰極電極(3)を重ね、該陽極電極(2)と陰極電極(3)とに直流電圧を印加するようになした電気分解装置本体(10)の、該イオン交換膜(1)の陽極電極(2)が当接する面側に、原料の海水を該イオン交換膜(1)と陽極電極(2)とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、
    次いで、陽極電極(2)側を流過した上記海水を、殺菌に必要な反応時間を確保する滞留槽(20)に所定時間滞留させた後、この殺菌済みの海水を上記イオン交換膜(1)の陰極電極(3)が接触する面側を流過させるようになした海水の殺菌方法。
  10. イオン交換膜(1)の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極(2)を重ね、該イオン交換膜(1)の他面側には、チタン等の海水に溶出しづらい金属の多孔材よりなる相手電極(2a)を重ね、この相手電極(2a)の前記陽極電極(2)とは反対側に一定の間隔を設けて同じくチタン等の海水に溶出しづらい金属材よりなる陰極電極(3)を対設し、該陽極電極(2)と陰極電極(3)とに直流電圧を印加すると共に、相手電極(2a)には陽極電極(2)よりは低い電圧を印加するようになした電気分解装置本体(10a)の、該イオン交換膜(1)の陽極電極(2)が当接する面側に、原料の海水を該イオン交換膜(1)と陽極電極(2)とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、
    次いで、陽極電極(2)側を流過した上記海水を、殺菌に必要な反応時間を確保する滞留槽(20)に所定時間滞留させた後、この殺菌済みの海水を上記イオン交換膜(1)の相手電極(2a)が当接すると共に陰極電極(3)が対設する面側を流過するようになした海水の殺菌方法。
  11. イオン交換膜(1)の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極(2)を重ね、該イオン交換膜(1)の他面側には、耐食性金属の多孔材よりなる陰極電極(3)を重ね、該陽極電極(2)と陰極電極(3)とに直流電圧を印加するようになした電気分解装置本体(10)の、該イオン交換膜(1)の陽極電極(2)が当接する面側に、原料の海水を該イオン交換膜(1)と陽極電極(2)とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、
    次いで、陽極電極(2)側を流過した上記海水を、殺菌に必要な反応時間を確保する滞留槽(20)に所定時間滞留させ、
    一方、イオン交換膜(1)の陰極電極(3)が当接する面側に、別途海水を陽極電極(2)側に比較して流過速度を遅くして流過させるようになし、
    電気分解で上記イオン交換膜(1)の陰極側で発生した水素、又はこの水素と空気との混合気体と、前記滞留槽(20)から流出する海水とを気液接触するようになすか、該水素が混入する海水を前記滞留槽(20)から流出する海水と混合するようになした海水の殺菌方法。
  12. イオン交換膜(1)の一面側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極(2)を重ね、該イオン交換膜(1)の他面側には、耐食性金属の多孔材よりなる相手電極(2a)を重ね、この相手電極(2a)の前記陽極電極(2)とは反対側に一定の間隔を設けて耐食金属材よりなる陰極電極(3)を対設し、該陽極電極(2)と陰極電極(3)とに直流電圧を印加すると共に、相手電極(2a)には陽極電極(2)よりは低い電圧を印加するようになした電気分解装置本体(10a)の、該イオン交換膜(1)の陽極電極(2)が当接する面側に、原料の海水を該イオン交換膜(1)と陽極電極(2)とに接触させて流過させ、該海水中に電気分解で発生した直後のオゾンを溶解させるようになし、
    次いで、陽極電極(2)側を流過した上記海水を、殺菌に必要な反応時間を確保する滞留槽(20)に所定時間滞留させ、
    一方、イオン交換膜(1)の陰極電極(3)が当接する面側に、別途海水を陽極電極(2)側に比較して流過速度を遅くして流過させるようになし、
    電気分解で上記イオン交換膜(1)の陰極側で発生した水素、又はこの水素と空気との混合気体と、前記滞留槽(20)から流出する海水とを気液接触するようになすか、該水素が混入する海水を前記滞留槽(20)から流出する海水と混合するようになした海水の殺菌方法。
  13. 海水の電気分解装置本体(10a)と滞留槽(20)とを有し、該電気分解装置本体(10a)は、イオン交換膜(1)の一面側を陽極室(4)、他面側を陰極室(5)となし、
    上記陽極室(4)には、海水の流入口(4a)と流出口(4b)とを設けると共に、イオン交換膜(1)の一面側に接触して、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有した金属の多孔材よりなる陽極電極(2)を重ねて収納し、
    上記陰極室(5)には、海水の流入口(5a)と流出口(5b)とを設けると共に、イオン交換膜(1)の他面側に接触して、耐食性金属の多孔材よりなる相手電極(2a)を重ねて収納し、さらに、この相手電極(2a)と一定の間隔を設けてチタン等の海水に溶出しづらい金属よりなる陰極電極(3)を対設して収納し、
    上記陽極電極(2)と陰極電極(3)とに直流電圧を印加すると共に、相手電極(2a)には陽極電極(2)よりは低い電圧を印加する電源装置(30)を設け、
    前記滞留槽(20)を陽極室(4)の流出口(4b)と、陰極室(5)の流入口(5a)とを連結する流路(7c)の途中に介装した海水の殺菌装置。
  14. 円筒状の電気分解装置本体(10a)の周面の一部又は全部を、イオン交換膜(1)で構成し、該イオン交換膜(1)の内面に金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン発生触媒機能を有する白金等の金属製の多孔材からなる陽極電極(2)を重ねて収納し、この電気分解装置本体(10a)内を、円筒部の軸方向に原料海水の流入口(4a)を円筒の接線方向に流出口(4b)を有した陽極室(4)となし、さらに、この陽極室(4)内には、前記流入口(4a)より流入する原料水を旋回流となす翼体(51)よりなる旋回流発生装置(50)を収納し、
    上記イオン交換膜(1)の外面側は、海水の流入口(5a)と流出口(5b)とを有した陰極室(5)で覆い、この陰極室(5)内には、前記イオン交換膜(1)の外面に接して耐食金属の多孔材よりなる相手電極(2a)を収納し、さらに、該陰極(5)内には該相手電極(2a)と所定の間隔を有して陰極電極(3)を対設収納し、
    上記陽極電極(2)と陰極電極(3)と相手電極(3)とは、該陽極電極(2)と陰極電極(3)とに直流電圧を印加すると共に、相手電極(2a)には陽極電極(2)よりは低い電圧を印加する電源装置(30)に連結してなる海水の殺菌装置。
  15. 円柱状の芯材(8)の周面に該芯材(8)の長手方向一端側より他端側に連通する螺旋状の流路(4r)を設け、この芯材(8)の外側に、金,プラチナ,ニッケル,チタンのいずれか又はこれらを含む合金よりなるオゾン生成触媒機能を有した金属の多孔材よりなる陽極電極(2)を巻き付けて重ね、この陽極電極(2)の外側にイオン交換膜(1)を巻き付けて重ね、
    上記流路(4r)の一端を原料海水の流入口(4a)、他端を流出口(4b)となし、この流路(4r)を原料海水が螺旋状に流過する陽極室(4)となし、上記イオン交換膜(1)の外側に耐食金属の多孔材よりなる相手電極(2a)を巻き付けて重ね、さらに、この相手電極(2a)の外側には絶縁性のスペーサー(9)を介して、筒状の陰極電極(3)を配し、
    上記相手電極(2a)と陰極電極(3)を、海水の流入口(5a)と流出口(5b)とを有した筒状の陰極室(4)で覆い、
    上記陽極電極(2)と陰極電極(3)と相手電極(3)とは、該陽極電極(2)と陰極電極(3)とに直流電圧を印加すると共に、相手電極(2a)には陽極電極(2)よりは低い電圧を印加する電源装置(30)に連結してなる海水の殺菌装置。
JP2001399766A 2001-12-28 2001-12-28 海水の殺菌方法及びその装置 Expired - Fee Related JP3886378B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001399766A JP3886378B2 (ja) 2001-12-28 2001-12-28 海水の殺菌方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001399766A JP3886378B2 (ja) 2001-12-28 2001-12-28 海水の殺菌方法及びその装置

Publications (2)

Publication Number Publication Date
JP2003190954A JP2003190954A (ja) 2003-07-08
JP3886378B2 true JP3886378B2 (ja) 2007-02-28

Family

ID=27604658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001399766A Expired - Fee Related JP3886378B2 (ja) 2001-12-28 2001-12-28 海水の殺菌方法及びその装置

Country Status (1)

Country Link
JP (1) JP3886378B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220049894A (ko) * 2020-10-15 2022-04-22 주식회사 포스코건설 막여과공정의 uv처리장치

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224771A (ja) 2004-02-16 2005-08-25 Mitsubishi Heavy Ind Ltd 排水処理装置
JP4964120B2 (ja) * 2005-01-24 2012-06-27 ニューテック オースリー インコーポレイテッド オゾンを注入する方法およびシステム
GB201019993D0 (en) * 2010-11-24 2011-01-05 Seafarm Products As Process
KR101694380B1 (ko) * 2014-07-02 2017-01-23 김성우 전해환원수 생성 장치
JP7037937B2 (ja) * 2014-07-17 2022-03-17 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ 二酸化塩素の触媒又は電極触媒生成
ES2693338T3 (es) * 2014-07-31 2018-12-11 Daebong Ls, Ltd. Método de producción en agua estéril para acuicultura, y métodos de utilización del mismo para piscicultura que utilizan agua corriente estéril
CN112979045A (zh) * 2021-03-08 2021-06-18 南昌航空大学 一种处理化学镀镍废水的电解/紫外装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220049894A (ko) * 2020-10-15 2022-04-22 주식회사 포스코건설 막여과공정의 uv처리장치
KR102516932B1 (ko) 2020-10-15 2023-03-31 주식회사 포스코건설 막여과공정의 uv처리장치

Also Published As

Publication number Publication date
JP2003190954A (ja) 2003-07-08

Similar Documents

Publication Publication Date Title
JP7197495B2 (ja) 自己洗浄電気塩素化デバイスのハーフセル電気化学構成
JP5113891B2 (ja) オゾン水製造装置、オゾン水製造方法、殺菌方法及び廃水・廃液処理方法
JP3988827B2 (ja) 負および正の酸化還元電位(orp)水を生成するための方法および装置
JP5544181B2 (ja) オゾン微細気泡の電解合成方法
US6328896B1 (en) Process for removing strong oxidizing agents from liquids
US6287450B1 (en) Apparatus and method for purifying water with an immersed galvanic cell
JP2011246799A5 (ja)
KR101812008B1 (ko) 3차원 다공성 단극 전극체를 구비한 전기살균 필터 및 이를 이용한 수처리 방법
JP2009507638A (ja) 船舶用のバラスト水の電解消毒装置
JP2004143519A (ja) 水処理方法および水処理装置
CN101863548A (zh) 一种去除水中有机物的装置及方法
JP3886378B2 (ja) 海水の殺菌方法及びその装置
CN102246712B (zh) 驱除养殖鱼的外寄生物的方法
EP2537537B1 (en) Waste treatment system
JP2005177672A (ja) 電解式オゾナイザ
JP3448545B2 (ja) 急速酸化装置
KR101903387B1 (ko) 전기를 이용하는 장치
KR101028360B1 (ko) 가상 전극을 이용한 밸러스트수 처리장치
KR100958677B1 (ko) 고성능 무격막 전해셀 및 이를 포함하는 이산화염소 발생장치
RU156246U1 (ru) Устройство для электрохимической обработки жидкой среды
JP2013193000A (ja) バラスト水処理システム及びバラスト水処理方法
US20130299434A1 (en) Removing Ammonia From Water
WO2014172582A1 (en) Removing ammonia from water
JP2013000646A (ja) 過酸化水素の分解促進方法
JP2004089935A (ja) 水処理方法および水処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061207

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070424

LAPS Cancellation because of no payment of annual fees