JP3886198B2 - Method for producing chlorinated acetone - Google Patents

Method for producing chlorinated acetone Download PDF

Info

Publication number
JP3886198B2
JP3886198B2 JP04778597A JP4778597A JP3886198B2 JP 3886198 B2 JP3886198 B2 JP 3886198B2 JP 04778597 A JP04778597 A JP 04778597A JP 4778597 A JP4778597 A JP 4778597A JP 3886198 B2 JP3886198 B2 JP 3886198B2
Authority
JP
Japan
Prior art keywords
chlorinated
reaction
acetoacetate
acetone
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04778597A
Other languages
Japanese (ja)
Other versions
JPH10245356A (en
Inventor
嘉彦 後藤
峰男 渡辺
孝 坂谷
正富 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP04778597A priority Critical patent/JP3886198B2/en
Publication of JPH10245356A publication Critical patent/JPH10245356A/en
Application granted granted Critical
Publication of JP3886198B2 publication Critical patent/JP3886198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は医農薬中間体として有用な塩素化アセトン類の製造法に関する。
【0002】
【従来の技術】
塩素化アセトン類の製造方法としては、アセトンを光、金属塩化物、酸、金属有機酸塩などを触媒として塩素により塩素化する方法、対応する塩素化アルコールの酸化による方法などが知られている。
【0003】
また、アセト酢酸やアセト酢酸エステルは酸または塩基性物質を触媒として分解でき、何れもアセトンが得られることも知られている。
【0004】
【発明が解決しようとする課題】
塩素化アセト酢酸エステルを塩酸水溶液の存在下に加熱すると、塩素化アセトンの得られることが知られている(Annales de Chimie et de Physique 〔6〕24, 82)。しかしながら、アセト酢酸エステルが酸あるいは塩基を触媒として容易に加水分解してアセトンを生成するのと異なり、塩素化アセト酢酸エステルは塩酸水溶液によっても容易に加水分解することはできず、前記文献では160〜170℃の封管中で反応が行われている。
【0005】
この方法は反応温度が高温であり、水を反応剤とすることから高圧のもとで反応を行わなければならない。そこで、本発明はより温和な条件で塩素化アセト酢酸エステルから塩素化アセトンを得る方法を提供する。
【0006】
【課題を解決するための具体的手段】
本発明者らは、塩素化アセト酢酸エステルから対応する塩素化アセトンを製造する方法について鋭意検討を加えたところ、塩素化アセト酢酸エステルと塩化水素を新規な触媒の存在下加熱することで効率的に塩素化アセトンが得られることを見いだし、本発明を完成させた。
【0007】
すなわち、本発明は、一般式(1)、
CHnCl3-nCOCHmCl2-mCO2R (1)
(式中、RはC1〜C5の分岐を有することもあるアルキル基またはクロロアルキ
ル基を表す。n、mは0または正の整数を表し、かつ0≦n≦3、0≦m≦2を満たす。ただし、 n =3かつ m =2の場合を除く。また、n、mは片方もしくは両方が0であっても良い)で表される塩素化アセト酢酸エステルを触媒の存在下塩化水素と接触させて一般式(2)、
CHnCl3-nCOCHm+1Cl2-m (2)
(式中、n、mは前記と同じ。)で表される塩素化アセトンを製造する方法において、触媒としてトリフェニルフォスフィンを用いる塩素化アセトンの製造法である。
【0008】
本発明にかかる一般式(1)の塩素化アセト酢酸エステルにおいて、式中のRはC1〜C5の分岐を有することもあるアルキル基またはクロロアルキル基のものであり、余り炭素数の多いものを使用することに有利な点はなく、具体的にはメチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基などおよびそれらの水素原子が任意の個数だけ塩素原子に置換したもの、例えば、ジクロロエチル基、トリクロロエチル基、テトラクロロエチル基などが挙げられる。一般式(1)の塩素化アセト酢酸エステルとしては、具体的には、2−クロロアセト酢酸エチル、2−クロロアセト酢酸メチル、2,2−ジクロロアセト酢酸エチル、2,2−ジクロロアセト酢酸メチル、4−クロロアセト酢酸エチル、4−クロロアセト酢酸メチル、4,4−ジクロロアセト酢酸エチル、4,4−ジクロロアセト酢酸メチル、2,2,4−トリクロロアセト酢酸エチル、2,2,4−トリクロロアセト酢酸メチル、4,4,4−トリクロロアセト酢酸エチル、4,4,4−トリクロロアセト酢酸メチル、2,2,4,4−テトラクロロアセト酢酸エチル、2,2,4,4−テトラクロロアセト酢酸メチル、ペンタクロロアセト酢酸エチル、ペンタクロロアセト酢酸メチルなどが好適に用いられる。
【0009】
本発明の方法にかかる反応は下記反応式(3)、
CHnCl3-nCOCHmCl2-mCO2R + HCl → CH n Cl 3-n COCH m+1 Cl 2-m +CO2 + RCl (3)
(式中、R n mは前記と同じ。)に従うものと考えられる。
【0010】
本発明は、触媒としてトリフェニルフォスフィンを添加した塩素化アセト酢酸エステルを加熱し、そこに塩化水素ガスを導入しながら、副生する炭酸ガスと塩素化アルカンを系外に排出することで行うのが好ましい。使用する触媒の量は塩素化アセト酢酸エステル1モルに対し0.001〜0.1モルであり、好ましくは0.02〜0.05モルである。0.1モル以上を用いても技術的には特に問題はない。また、塩化水素ガスは塩素化アセト酢酸エステル1モルに対し1モル以上、通常1〜10モルを使用する。反応は液体と気体の反応であるので、相互の接触を促進する公知の装置、例えば、攪拌機、スパージャーなどを用いてもよい。塩化水素は反応の制御を容易にするために反応に不活性なガス、例えば、窒素、アルゴンなどとともに使用してもよい。反応は、塩素化アセト酢酸エステルの種類により異なるが50〜200℃で行い、80〜150℃で行うのが好ましく、100〜130℃程度で行うのが反応を制御し易くより好ましい。50℃未満では反応が実質的に起こらず、200℃を超えるのは生成物の分解が起こることがあり好ましくない。また、この反応は約1〜10kg/cm2で行うが、特に加圧下で実施することに利点はなく通常ほぼ大気圧下で行えばよい。本発明の方法により得られた副生成物を含む塩素化アセトンは反応後、水洗浄、塩基性水溶液洗浄、蒸留等の慣用の方法によって精製する。本発明の方法に使用する装置は、ステンレス鋼、耐熱性ニッケル合金、フッ素樹脂、ガラスなどの材質でできた装置かまたはこれらの材質でライニングされた材料で造られた装置であることが好ましい。
【0011】
本発明の方法は、溶媒の存在下においても行うことができる。溶媒としては塩素系溶媒、フッ素系溶媒などの塩素化に不活性なもので、原料の塩素化アセト酢酸エステルや生成物の塩素化アセトンと比べて充分に沸点の高いものが好ましい。例えば、四塩化炭素、四塩化エタン、1,1−ジクロロ−1−フルオロエタン、1、1、1−トリフルオロ−2,2−ジクロロエタン、1,1,1,2,2−ペンタフルオロ−3,3−ジクロロプロパン、1,1,2,2,3−ペンタフルオロ−1,3−ジクロロプロパン、2,4−ジクロロトリフルオロトルエン、1,4−ビストリフルオロメチルベンゼン、ヘキサクロロアセトンなどを挙げることができる。
【0012】
本発明の方法において使用する塩素化アセト酢酸エステルを得る方法は特に限定されないが、アセト酢酸エステルを触媒の存在下または非存在下で塩素により塩素化する方法が例示できる。アセト酢酸エステルの代わりに既に一部分塩素化された塩素化アセト酢酸エステルを使うこともできる。触媒としては、キノリン、トリフェニルフォスフィン、モルホリン、塩化第二鉄などが例示でき、特にキノリン、トリフェニルフォスフィンなどが好ましい。これらの触媒はアセト酢酸エステル1モルに対して0.001〜0.1モルを使用し、好ましくは0.03〜0.06モルを使用する。塩素ガスはアセト酢酸エステル1モルに対し5〜10モル程度を使用するが、反応を調節することで5〜7モル程度でも十分に良い結果を得ることができる。
【0013】
この塩素化反応は初期から触媒の存在下に行っても良いが、逐次反応であり、ジクロロ体までは無触媒下比較的低温で反応は進むので、最初、無触媒で低次塩素化物としてその後さらに高度に塩素化された塩素化アセト酢酸エステルとするのが好ましく、この方法について以下に説明する。塩素化反応は発熱反応であるので反応にあたって塩素ガスを吹き込む温度は任意でよく、吹き込むと同時に反応液の温度は上昇する。反応全体をスムーズに完結させるには室温(20〜30℃)から吹き込み、反応に伴う発熱による反応液の温度上昇を塩素供給量、窒素などの不活性ガスによる希釈度または装置を使った冷却または加熱により30〜60℃位の温度を維持するようにして反応をコントロールする。アセト酢酸エステル1モルに対して塩素ガス2モル程度を消費した頃から発熱は減少する。
【0014】
さらに、塩素化度を上げ例えばペンタクロロアセト酢酸エステルとするためには反応温度を高めても良いが、前記の触媒を加えて反応を続ける。触媒を加えることでさらに発熱するので、60〜100℃、好ましくは70〜90℃を維持するようにして反応を完結させペンタクロロアセト酢酸エステルとする。反応が激しすぎるときは外部から冷却し反応が遅いときは加熱してもかまわない。
【0015】
塩素化反応終了後、反応生成物は塩基性水溶液および/または水で洗浄し次いで乾燥し、蒸留などの操作を行って精製してもよいが、本発明の原料として使用するには、単に窒素ガス吹き込みにより未反応塩素、生成した塩化水素などのパージした粗塩素化アセト酢酸エステルで十分である。溶媒を使用した場合は蒸留などにより除去することが好ましい。
【0016】
また、その他の方法としてアセト酢酸エステルと塩素を光触媒照射により反応させる方法、アセト酢酸エステルと塩化スルフリルを加熱して反応させる方法などで塩素アセト酢酸エステルを製造することができる。
【0017】
以下に、本発明を実施例をもって説明するが、これらの実施態様に限られない。
【0018】
【実施例】
〔ペンタクロロアセト酢酸エステルの調製〕
ガス吹き込み管と還流冷却器を備えたガラス反応器にアセト酢酸メチル(1.16kg)を入れ室温で塩素ガスを徐々に吹き込んだ。反応器内の温度は上昇して約60℃に達した。その後、緩やかに加温し、65℃まで上げて反応を続けた。塩素ガス約1.42kgを消費したところで発熱が減少したのでトリフェニルフォスフィン(47g)を加えたところ、再び発熱したがさらに加熱して90℃として反応を続けた。反応器中の組成をガスクロマトグラフで追跡しながらペンタクロロアセト酢酸メチルが最大濃度となるまで反応を行い完結させた。塩素ガスの導入量は約4.0kgであった。その後、反応器に窒素ガスを吹き込み未反応の塩素、生成した塩化水素を追い出した。反応器中の粗ペンタクロロアセト酢酸メチルは2.81kgでペンタクロロアセト酢酸メチルの選択率は71%(面積%、以下同じ。)であった。
【0019】
〔実施例〕
得られた粗ペンタクロロアセト酢酸メチルエステルにトリフェニルフォスフィン(78g)を加え100〜130℃に加熱し、塩化水素ガスを連続的に導入しながら反応させた。反応終了後、反応器内に残留した有機物は2.38kgであり、ガスクロマトグラフ分析では、テトラクロロアセトン4.5%、ペンタクロロアセトン72.1%、ヘキサクロロアセトン18.7%、ペンタクロロアセト酢酸メチル4.7%であった。これを減圧下蒸留して純度96%のペンタクロロアセトン1.34kgを得た。
【0020】
〔参考例:従来技術に基づく製造例〕
ガス吹き込み管を備えたガラス反応器にアセトン(800g)および触媒としてキノリン(3.2g)を入れ室温で塩素ガス4.4kgを徐々に吹き込んだ。反応器内の温度は上昇し約60℃に達した。その後、緩やかに加温し、100℃まで上げて反応を続けた。反応器中の組成をガスクロマトグラフで追跡しながらペンタクロロアセトンが反応液中で最大量となったところで塩素ガスを止め未反応の塩素、生成した塩化水素を窒素ガスの吹き込みにより追い出した。残留した反応液は2.97kgであり、トリクロロアセトン25%、テトラクロロアセトン5%、ペンタクロロアセトン58%、ヘキサクロロアセトン12%であった。これを精密蒸留によって精製して純度95%のペンタクロロアセトン909gを得た。
【0021】
【発明の効果】
本発明の方法によると、塩素化アセト酢酸エステルを比較的低温で塩素化アセトンに転換できるという効果を奏する。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing chlorinated acetones useful as an intermediate for medicines and agricultural chemicals.
[0002]
[Prior art]
Known methods for producing chlorinated acetones include a method of chlorinating acetone with chlorine using light, a metal chloride, an acid, a metal organic acid salt, etc. as a catalyst, and a method by oxidation of a corresponding chlorinated alcohol. .
[0003]
It is also known that acetoacetic acid and acetoacetic acid ester can be decomposed using an acid or basic substance as a catalyst, and acetone can be obtained in any case.
[0004]
[Problems to be solved by the invention]
It is known that chlorinated acetone can be obtained by heating chlorinated acetoacetate in the presence of aqueous hydrochloric acid (Annales de Chimie et de Physique [6] 24, 82). However, unlike acetoacetate which is easily hydrolyzed with acid or base as a catalyst to produce acetone, chlorinated acetoacetate cannot be easily hydrolyzed with aqueous hydrochloric acid. The reaction is carried out in a sealed tube at ˜170 ° C.
[0005]
In this method, since the reaction temperature is high and water is used as a reactant, the reaction must be performed under high pressure. Therefore, the present invention provides a method for obtaining chlorinated acetone from chlorinated acetoacetate under milder conditions.
[0006]
[Specific means for solving the problem]
The inventors of the present invention have made extensive studies on a method for producing a corresponding chlorinated acetone from a chlorinated acetoacetate. As a result, the chlorinated acetoacetate and hydrogen chloride can be efficiently heated by heating them in the presence of a novel catalyst. The inventors have found that chlorinated acetone can be obtained, and have completed the present invention.
[0007]
That is, the present invention relates to the general formula (1),
CH n Cl 3-n COCH m Cl 2-m CO 2 R (1)
(In the formula, R represents an alkyl group or a chloroalkyl group which may have a C 1 to C 5 branch. N and m represent 0 or a positive integer, and 0 ≦ n ≦ 3, 0 ≦ m ≦. 2 except where n = 3 and m = 2 , and n or m may be 0 in either or both). In contact with hydrogen, general formula (2),
CH n Cl 3-n COCH m + 1 Cl 2-m (2)
In the method for producing chlorinated acetone represented by the formula (wherein n and m are the same as described above), this is a method for producing chlorinated acetone using triphenylphosphine as a catalyst.
[0008]
In the chlorinated acetoacetate ester of the general formula (1) according to the present invention, R in the formula is an alkyl group or chloroalkyl group which may have a C 1 to C 5 branch, and has a large number of carbon atoms. There are no advantages in using the compounds, specifically, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, tert-butyl group, and the like. Examples in which an arbitrary number of hydrogen atoms are substituted with chlorine atoms, for example, a dichloroethyl group, a trichloroethyl group, a tetrachloroethyl group and the like can be mentioned. Specific examples of the chlorinated acetoacetate of the general formula (1) include ethyl 2-chloroacetoacetate, methyl 2-chloroacetoacetate, ethyl 2,2-dichloroacetoacetate, methyl 2,2-dichloroacetoacetate, 4 -Ethyl chloroacetoacetate, methyl 4-chloroacetoacetate, ethyl 4,4-dichloroacetoacetate, methyl 4,4-dichloroacetoacetate, ethyl 2,2,4-trichloroacetoacetate, methyl 2,2,4-trichloroacetoacetate Ethyl 4,4,4-trichloroacetoacetate, methyl 4,4,4-trichloroacetoacetate, ethyl 2,2,4,4-tetrachloroacetoacetate, methyl 2,2,4,4-tetrachloroacetoacetate , Ethyl pentachloroacetoacetate, methyl pentachloroacetoacetate and the like are preferably used.
[0009]
The reaction according to the method of the present invention is represented by the following reaction formula (3),
CH n Cl 3-n COCH m Cl 2-m CO 2 R + HCl → CH n Cl 3-n COCH m + 1 Cl 2-m + CO 2 + RCl (3)
(Wherein R 1 , n and m are the same as above).
[0010]
The present invention is performed by heating chlorinated acetoacetate added with triphenylphosphine as a catalyst and discharging by-product carbon dioxide gas and chlorinated alkane out of the system while introducing hydrogen chloride gas therein. Is preferred. The amount of the catalyst used is 0.001 to 0.1 mol, preferably 0.02 to 0.05 mol, per 1 mol of chlorinated acetoacetate. There is no technical problem even if 0.1 mol or more is used. The hydrogen chloride gas is used in an amount of 1 mole or more, usually 1 to 10 moles per mole of chlorinated acetoacetate. Since the reaction is a reaction between a liquid and a gas, a known device that promotes mutual contact, such as a stirrer or a sparger, may be used. Hydrogen chloride may be used with a gas inert to the reaction, such as nitrogen, argon, etc. to facilitate control of the reaction. Although the reaction varies depending on the type of chlorinated acetoacetate, it is preferably carried out at 50 to 200 ° C., preferably at 80 to 150 ° C., and more preferably at about 100 to 130 ° C. because the reaction is easily controlled. If it is less than 50 degreeC, reaction does not occur substantially, and exceeding 200 degreeC may decompose | disassemble a product, and is unpreferable. Further, this reaction is carried out at about 1 to 10 kg / cm 2 , but there is no advantage in carrying out under pressure in particular, and it is usually carried out under almost atmospheric pressure. The chlorinated acetone containing the by-product obtained by the method of the present invention is purified by a conventional method such as water washing, basic aqueous solution washing and distillation after the reaction. The apparatus used in the method of the present invention is preferably an apparatus made of a material such as stainless steel, a heat-resistant nickel alloy, a fluororesin, or glass, or an apparatus made of a material lined with these materials.
[0011]
The method of the present invention can also be carried out in the presence of a solvent. As the solvent, a solvent which is inert to chlorination such as a chlorinated solvent or a fluorinated solvent and has a sufficiently high boiling point as compared with the chlorinated acetoacetate of the raw material or the chlorinated acetone of the product is preferable. For example, carbon tetrachloride, ethane tetrachloride, 1,1-dichloro-1-fluoroethane, 1,1,1-trifluoro-2,2-dichloroethane, 1,1,1,2,2-pentafluoro-3 , 3-dichloropropane, 1,1,2,2,3-pentafluoro-1,3-dichloropropane, 2,4-dichlorotrifluorotoluene, 1,4-bistrifluoromethylbenzene, hexachloroacetone, etc. Can do.
[0012]
The method for obtaining the chlorinated acetoacetate used in the method of the present invention is not particularly limited, and examples thereof include a method of chlorinating acetoacetate with chlorine in the presence or absence of a catalyst. Instead of acetoacetate, chlorinated acetoacetate which has already been partially chlorinated can be used. Examples of the catalyst include quinoline, triphenylphosphine, morpholine and ferric chloride, and quinoline, triphenylphosphine and the like are particularly preferable. These catalysts are used in an amount of 0.001 to 0.1 mol, preferably 0.03 to 0.06 mol, per mol of acetoacetate. Chlorine gas is used in an amount of about 5 to 10 moles per mole of acetoacetic acid ester, but sufficiently good results can be obtained even by about 5 to 7 moles by adjusting the reaction.
[0013]
This chlorination reaction may be performed in the presence of a catalyst from the beginning, but it is a sequential reaction, and the reaction proceeds to a dichloro compound at a relatively low temperature without a catalyst. Further, it is preferable to use a highly chlorinated chlorinated acetoacetate, and this method will be described below. Since the chlorination reaction is an exothermic reaction, the temperature at which chlorine gas is blown in the reaction may be arbitrary, and the temperature of the reaction solution rises as soon as it is blown. In order to complete the entire reaction smoothly, air is blown from room temperature (20-30 ° C.), and the temperature rise of the reaction solution due to heat generated by the reaction is reduced by chlorine supply, dilution with an inert gas such as nitrogen, or cooling using an apparatus. The reaction is controlled so as to maintain a temperature of about 30 to 60 ° C. by heating. The exotherm decreases when about 2 mol of chlorine gas is consumed per 1 mol of acetoacetate.
[0014]
Further, in order to increase the degree of chlorination, for example, pentachloroacetoacetate, the reaction temperature may be increased, but the reaction is continued by adding the above catalyst. Since heat is further generated by adding a catalyst, the reaction is completed by maintaining the temperature at 60 to 100 ° C., preferably 70 to 90 ° C., to obtain pentachloroacetoacetate. If the reaction is too intense, it may be cooled from the outside, and if the reaction is slow, it may be heated.
[0015]
After completion of the chlorination reaction, the reaction product may be washed with a basic aqueous solution and / or water, then dried and purified by an operation such as distillation. A crude chlorinated acetoacetate purged with unreacted chlorine and hydrogen chloride formed by gas blowing is sufficient. When a solvent is used, it is preferably removed by distillation or the like.
[0016]
As other methods, chloroacetoacetate can be produced by a method of reacting acetoacetate with chlorine by photocatalyst irradiation, a method of reacting acetoacetate with sulfuryl chloride by heating, or the like.
[0017]
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these embodiments.
[0018]
【Example】
[Preparation of pentachloroacetoacetate]
Methyl acetoacetate (1.16 kg) was placed in a glass reactor equipped with a gas blowing tube and a reflux condenser, and chlorine gas was gradually blown at room temperature. The temperature in the reactor rose to reach about 60 ° C. Then, it heated up gently and raised to 65 degreeC and continued reaction. When about 1.42 kg of chlorine gas was consumed, the exotherm decreased, so when triphenylphosphine (47 g) was added, the exotherm was generated again, but the reaction was continued by heating to 90 ° C. While tracing the composition in the reactor by gas chromatography, the reaction was completed until methylpentachloroacetoacetate reached the maximum concentration. The amount of chlorine gas introduced was about 4.0 kg. Thereafter, nitrogen gas was blown into the reactor to drive off unreacted chlorine and generated hydrogen chloride. The crude methyl pentachloroacetoacetate in the reactor was 2.81 kg, and the selectivity for methyl pentachloroacetoacetate was 71% (area%, the same applies hereinafter).
[0019]
〔Example〕
Triphenylphosphine (78 g) was added to the obtained crude pentachloroacetoacetic acid methyl ester and heated to 100 to 130 ° C., and reacted while continuously introducing hydrogen chloride gas. After completion of the reaction, the organic matter remaining in the reactor was 2.38 kg. According to gas chromatographic analysis, tetrachloroacetone 4.5%, pentachloroacetone 72.1%, hexachloroacetone 18.7%, pentachloroacetoacetate Methyl was 4.7%. This was distilled under reduced pressure to obtain 1.34 kg of pentachloroacetone having a purity of 96%.
[0020]
[Reference example: Manufacturing example based on conventional technology]
Acetone (800 g) and quinoline (3.2 g) as a catalyst were placed in a glass reactor equipped with a gas blowing tube, and 4.4 kg of chlorine gas was gradually blown at room temperature. The temperature in the reactor rose and reached about 60 ° C. Then, it heated gently and raised to 100 degreeC and continued reaction. While monitoring the composition in the reactor with a gas chromatograph, when the amount of pentachloroacetone reached the maximum in the reaction solution, the chlorine gas was stopped, unreacted chlorine, and generated hydrogen chloride were driven out by blowing nitrogen gas. The remaining reaction solution was 2.97 kg, 25% trichloroacetone, 5% tetrachloroacetone, 58% pentachloroacetone, and 12% hexachloroacetone. This was purified by precision distillation to obtain 909 g of pentachloroacetone having a purity of 95%.
[0021]
【The invention's effect】
According to the method of the present invention, there is an effect that chlorinated acetoacetate can be converted to chlorinated acetone at a relatively low temperature.

Claims (3)

一般式(1)、
CHnCl3-nCOCHmCl2-mCO2R (1)
(式中、RはC1〜C5の分岐を有することもあるアルキル基またはクロロアルキル基を表す。n、mは0または正の整数を表し、かつ0≦n≦3、0≦m≦2を満たす。ただし、 n =3かつ m =2の場合を除く。また、n、mは片方もしくは両方が0であっても良い)で表される塩素化アセト酢酸エステルを触媒の存在下塩化水素と接触させて一般式(2)、
CHnCl3-nCOCHm+1Cl2-m (2)
(式中、n、mは前記と同じ。)で表される塩素化アセトンを製造する方法において、触媒としてトリフェニルフォスフィンを用いる塩素化アセトンの製造法。
Formula (1),
CH n Cl 3-n COCH m Cl 2-m CO 2 R (1)
(In the formula, R represents an alkyl group or a chloroalkyl group which may have a C 1 to C 5 branch. N and m represent 0 or a positive integer, and 0 ≦ n ≦ 3, 0 ≦ m ≦. 2 except where n = 3 and m = 2 , and n or m may be 0 in either or both). General formula (2) in contact with hydrogen,
CH n Cl 3-n COCH m + 1 Cl 2-m (2)
(In the formula, n and m are the same as described above.) A method for producing chlorinated acetone, wherein triphenylphosphine is used as a catalyst.
塩素化アセト酢酸エステルがペンタクロロアセト酢酸エステルであり、塩素化アセトンがペンタクロロアセトンである請求項1記載の塩素化アセトンの製造法。  The method for producing chlorinated acetone according to claim 1, wherein the chlorinated acetoacetate is pentachloroacetoacetate and the chlorinated acetone is pentachloroacetone. 塩素化アセト酢酸エステル1モルに対しトリフェニルフォスフィン0.001〜0.1モルを使用する請求項1または2記載の塩素化アセトンの製造法。 The method for producing chlorinated acetone according to claim 1 or 2, wherein 0.001 to 0.1 mol of triphenylphosphine is used per 1 mol of chlorinated acetoacetate.
JP04778597A 1997-03-03 1997-03-03 Method for producing chlorinated acetone Expired - Fee Related JP3886198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04778597A JP3886198B2 (en) 1997-03-03 1997-03-03 Method for producing chlorinated acetone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04778597A JP3886198B2 (en) 1997-03-03 1997-03-03 Method for producing chlorinated acetone

Publications (2)

Publication Number Publication Date
JPH10245356A JPH10245356A (en) 1998-09-14
JP3886198B2 true JP3886198B2 (en) 2007-02-28

Family

ID=12785041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04778597A Expired - Fee Related JP3886198B2 (en) 1997-03-03 1997-03-03 Method for producing chlorinated acetone

Country Status (1)

Country Link
JP (1) JP3886198B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072449B (en) * 2021-03-18 2022-07-15 山东京博生物科技有限公司 Synthesis method of 4,4, 4-trifluoroacetylacetic acid ethyl ester

Also Published As

Publication number Publication date
JPH10245356A (en) 1998-09-14

Similar Documents

Publication Publication Date Title
WO2009040367A1 (en) Process for the preparation of fluorine containing organic compound
JP2956024B2 (en) Process for producing polyfluorochloride and perfluorocarboxylic acid chloride
JPS6346748B2 (en)
US5205914A (en) Synthesis of desflurane
JP4106520B2 (en) Method for producing fluorine-containing alkyl iodide
JP3886198B2 (en) Method for producing chlorinated acetone
JP5359052B2 (en) Method for producing fluorine-containing monomer
JP3777408B2 (en) Method for producing carboxylic acid derivative
JP3918883B2 (en) Method for producing benzoyl chlorides
JP2006298855A (en) Method for producing 3,3,3-trifluoropropionic acid
US4560794A (en) Process for preparing methoxytrifluoromethylnaphthoic acid from methylnaphthoic acid
JP3259893B2 (en) Method for producing 3,3-dichloro-1,1,1-trifluoropropan-2-one
US4739123A (en) Fluorine-containing compounds, and their preparation and use
JPH04257532A (en) Preparation of 1,1,1-trifluoro-2,2- dichloroethane
KR100220259B1 (en) Method for producing a hydrofluorocarbon
JP2897833B2 (en) Method for producing 2-chloro-4-fluorophenol
JPH0558955A (en) Production of beta-fluoro-alpha-keto acid equivalent substance
JP2008297234A (en) Method for producing bromotetrafluoroalkanol
JPH10287609A (en) Production of 3,3-dichloro-1,1,1-trifluoroacetone
JP2008184410A (en) Method for producing 2,2-difluoro-phenylacetoacetate
JP3777407B2 (en) Method for producing carboxylic acid derivative
JP2841110B2 (en) Production method of α-chloroketones
JPH06172237A (en) Production of 1-halogeno-3,3,3-trifluoro-2-propanol
JP3480806B2 (en) Method for producing chlorinated acetone
JPH05132446A (en) Preparation of beta-halogeno-tert-alkylcarboxy- lic acid chlorides

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees