JP3884499B2 - Treatment method for waste water containing colored substances - Google Patents

Treatment method for waste water containing colored substances Download PDF

Info

Publication number
JP3884499B2
JP3884499B2 JP35242795A JP35242795A JP3884499B2 JP 3884499 B2 JP3884499 B2 JP 3884499B2 JP 35242795 A JP35242795 A JP 35242795A JP 35242795 A JP35242795 A JP 35242795A JP 3884499 B2 JP3884499 B2 JP 3884499B2
Authority
JP
Japan
Prior art keywords
dye
wastewater
aqueous solution
treatment
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35242795A
Other languages
Japanese (ja)
Other versions
JPH09174061A (en
Inventor
伯英 赤池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP35242795A priority Critical patent/JP3884499B2/en
Publication of JPH09174061A publication Critical patent/JPH09174061A/en
Application granted granted Critical
Publication of JP3884499B2 publication Critical patent/JP3884499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
本発明は、染料工業廃水や染色工業廃水のように、着色物質を含有する廃水の脱色処理を中心とした処理方法に関するものである。
【0002】
【従来の技術】
染料工業廃水や染色工業廃水のように着色物質を含有する廃水は、廃水のBOD、CODおよび色度を低減させるため、一般には凝集沈澱処理または加圧浮上処理と、活性汚泥処理とを組み合わせた処理がなされている。しかしこれらの処理ではどうしても色度の低減が不十分なことが多い。そこで廃水の色度を低減させるために、活性炭を使用したり、オゾン、フェントン試薬、次亜塩素酸塩等の酸化剤を使用しての3次処理を組み合わせる方法も行われている。しかし、これらの3次処理は処理費用が高価になるという問題点を有している。
【0003】
凝集沈澱処理は一般に、無機凝集剤と高分子凝集剤を組み合わせて凝集する方法が行われている。ここで無機凝集剤に2価および3価の鉄塩を使用し、高分子凝集剤を混合してpHを7以上にして、生じた沈澱を除去すれば脱色効果も有するので、脱色のための3次処理を必要としないという処理方法(特開平6−165993号公報)が開示されている。また、高分子凝集剤よりも分子量が小さく数万以下であるカチオン性オリゴマーを脱色剤として、高分子凝集剤に加えて添加する方法(「着色排水の脱色技術と最近の動向」化成品工業協会平成6年度秋季講演会資料1994.11.22)も紹介されている。
【0004】
染色工業廃水の一種である硫化染料染色廃水では、硫化染料が本来水に不溶であるため、中和のみでも脱色可能であるが、廃水中に多量の硫化ナトリウム等の硫化物を含有しているので、その処理の一手段として第1鉄イオンを加えて硫化物を硫化第1鉄として固形物化し、凝集剤を添加して分離する方法(特開昭48−33662号公報)が開示されている。この場合、硫化染料は本来の性質に戻って水に不溶となっているので、固形物と一緒に分離される。
【0005】
【発明が解決しようとする課題】
活性炭を使用したり、オゾン、フェントン試薬、次亜塩素酸塩等の酸化剤を使用しての3次処理を組み合わせる処理方法は処理費用が高価になるという問題点を有している。処理費用低減のために3次処理を必要としない処理方法も行われているが、染料の種類によっては除去されなかったり、廃棄物のpHが高くなるという制約がある。廃水中の多量の硫化物を硫化第1鉄として固形物化する処理方法は、硫化染料も良好に除去されるが硫化染料染色廃水のみに適用される特殊な処理技術であるという制約がある。
【0006】
本発明は、処理費用が高価な活性炭や酸化剤を用いる3次処理を必要とせず、染料の種類による制約がなく、廃水中の着色物質を確実に除去し、処理後の廃水中に鉄イオンやSSの残存しない、脱水ケーキの含水率が低く、ケーキのろ布からの剥離性が良く、ケーキのpHが7近辺となるような、着色物質を含有する廃水の脱色処理を中心とした処理方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために脱色方法を中心に種々の処理方法を検討した結果、硫化鉄が脱色兼凝集剤に適していることを見い出し、本発明を完成するに至った。 すなわち本発明は、第1鉄塩、第2鉄塩のどちらか一方または両者を含む水溶液と、硫化ナトリウム、水硫化ナトリウムのどちらか一方または両者を含む水溶液との反応によって生成した硫化鉄を脱色兼凝集剤に使用し、pH6〜8で処理する、染料の種類が酸性染料、塩基性染料、直接染料、含金染料、分散染料、反応染料、建染染料である染料工業廃水または染色工業廃水の処理方法である。
【0008】
また、硫化鉄を脱色兼凝集剤に使用し、高分子凝集剤を併用しても良い。
【0009】
本発明においては、第1鉄塩、第2鉄塩のどちらか一方または両者を含む水溶液と、硫化ナトリウム、水硫化ナトリウムのどちらか一方または両者を含む水溶液との反応によって生成した硫化鉄を使用する。この硫化鉄の粒子径は当初1〜5μmであり極めて吸着性が良い。しかも、粒子径は大きさを増しやすく、フロックの生成、凝集、沈澱の面で優れている。従って、除去することの難しい廃水中の着色物質を確実に凝集沈澱させることができ、しかも処理後の廃水中に鉄イオンやSSの残存を防止できるすぐれた凝集剤となるのである。また、高分子凝集剤を併用することによって着色物質含有廃水の処理能力をさらに向上させることができる。
【0010】
本発明においては、第1鉄塩、第2鉄塩のどちらか一方または両者を含む水溶液と、硫化ナトリウム、水硫化ナトリウムのどちらか一方または両者を含む水溶液との反応を連続的に行い、さらに生成した硫化鉄の廃水への添加も連続的に行うことができるので、連続的に廃水を処理することができる。また、硫化ナトリウム、水硫化ナトリウムのどちらか一方もしくは両者を含む水溶液や廃水を連続的に処理対象の廃水に添加し、次に第1鉄塩、第2鉄塩のどちらか一方または両者を含む水溶液を連続的に処理対象の廃水に添加して、硫化鉄を生成させることもできるので、この方法によっても連続的に廃水を処理することができる。
【0011】
本発明では、硫化ナトリウム、水硫化ナトリウムのどちらか一方または両者を含む廃水をイオウイオン源として利用できる。この場合、廃水という形態でなくても、イオウイオン源を含むものであれば、種々の工程における処理水という形態のものも利用できる。従って、硫化染料染色廃水、石炭・重質油のガス化により得られるガスもしくは天然ガス等に含まれる硫化水素を吸収・処理して得られる廃水や処理水、石油脱硫装置や排煙脱硫装置から得られる廃水や処理水、または下水処理場の処理水を、本発明の着色物質含有廃水の処理方法に有効に活用することができる。
【0012】
硫化鉄はpH7付近においても、フロックの生成、凝集、沈澱の面で優れた凝集剤としての性能を有するので、ろ過後の脱水ケーキの含水率が低く、ケーキのろ布からの剥離性が良く、また、ケーキのpHを7近辺とすることができる。
【0013】
本発明の着色物質含有廃水の処理方法によれば、処理費用が高価な活性炭や酸化剤を用いる3次処理を必要とせず、染料の種類による制約を受けずに、着色物質を効率的に除去できることから、染料工業廃水や染色工業廃水に対して特に効力を発揮することができるものである。
【0014】
【発明の実施の形態】
本発明の着色物質含有廃水の処理方法は、次のようにして実施をすることができる。まず硫化鉄の生成方法であるが、第1鉄塩、第2鉄塩のどちらか一方または両者を含む水溶液と、硫化ナトリウム、水硫化ナトリウムのどちらか一方または両者を含む水溶液との反応によって達成することができる。次に生成した硫化鉄を廃水に添加し、続いて廃水の処理を行う。この場合の生成反応、廃水への添加および廃水処理は、それぞれバッチ式で行っても良いし連続的に行っても良い。
【0015】
連続的に廃水を処理する場合、硫化ナトリウム、水硫化ナトリウムのどちらか一方もしくは両者を含む水溶液を連続的に廃水に添加し、次に第1鉄塩、第2鉄塩のどちらか一方または両者を含む水溶液を連続的に廃水に添加して硫化鉄を生成させ、連続的に廃水を処理することができる。また、第1鉄塩、第2鉄塩のどちらか一方または両者を含む水溶液と、硫化ナトリウム、水硫化ナトリウムのどちらか一方または両者を含む水溶液との反応によって生成した硫化鉄をろ過し、得られたケーキをそのままかまたは保存して、使用時に廃水に再分散させて廃水を処理することもできる。
【0016】
硫化鉄のろ過には工業的に使用されている一般的なろ過装置が使用可能である。特にプレコートフィルターがケーキのろ布からの剥離性の良さ、ろ過後の脱水ケーキの含水率の点から適している。
【0017】
硫化ナトリウム、水硫化ナトリウムのどちらか一方または両者を含む水溶液としては、水もしくは廃水に硫化ナトリウムもしくは水硫化ナトリウムを溶解させたもの、硫化染料染色廃水、石炭・重質油のガス化により得られるガスもしくは天然ガス等に含まれる硫化水素を吸収・処理して得られた廃水や処理水、石油脱硫装置や排煙脱硫装置から得られた廃水や処理水、または下水処理場の処理水を使用することができる。
【0018】
第1鉄塩、第2鉄塩のどちらか一方または両者を含む水溶液としては、水または廃水に硫酸第1鉄、硫酸第2鉄、塩化第1鉄または塩化第2鉄を溶解させたものを使用することができる。中でも塩化第2鉄が最適である。
【0019】
第1鉄塩、第2鉄塩のどちらか一方または両者を含む水溶液と、硫化ナトリウム、水硫化ナトリウムのどちらか一方または両者を含む水溶液とは等モルを反応させて硫化鉄を生成させる。硫化鉄の廃水への添加量は10〜1000mg/lであり、好ましい添加量は50〜300mg/lである。また処理時の廃水のpHは6〜8が好ましい。
【0020】
本発明の脱色兼凝集剤である硫化鉄と併用して使用する高分子凝集剤として、陽イオン性高分子凝集剤、陰イオン性高分子凝集剤、非イオン性高分子凝集剤、両性高分子凝集剤が挙げられる。これらは1種類または2種類以上を混合して使用する。
【0021】
本発明の着色物質含有廃水の処理方法は染料工業廃水や染色工業廃水に対して特に効力を発揮し酸性染料、塩基性染料、直接染料、含金染料、分散染料、反応染料、建染染料含有する廃水を処理することができる。
【0022】
本発明の着色物質含有廃水の処理方法は、さらに廃水の種類や処理目的に対応して、次亜塩素酸法、フェントン試薬法、オゾン法、電気分解法、活性炭吸着法、活性汚泥法等の3次処理方法を組み合わせて、着色物質含有廃水の処理能力を向上させることもできる。
【0023】
【実施例】
[実施例1]硫化鉄の製造方法
化学薬品製造設備において発生した水硫化ナトリウム廃水(NaHSとして約3.2%含有、pH11)50mlをかく拌しながら10%鉄塩水溶液を等量添加した。終点は酢酸鉛紙で硫化鉛の黒色が認められない点とした。希硫酸を加えてpHを7.5に調節し、24時間静置後沈澱物(泥状)を分取して脱色兼凝集剤とした。この脱色兼凝集剤中の硫化鉄含有量は、上澄水と沈澱物の蒸発残分を測定して計算によって求めた。処理対象廃水への硫化鉄添加量は、脱色兼凝集剤の廃水への添加量とこの硫化鉄含有量とから算出した。
【0024】
[実施例2]「染料工場廃水A」の脱色処理
保土谷化学工業株式会社東京工場(東京都北区神谷)の着色廃水を、1994年10月24日〜10月31日の連続7日間採水し、等量ずつ混合したものを「染料工場廃水A」とした。染料工場廃水AのpHは6であった。染料工場廃水Aの可視部吸光度分析結果を[表1]に示した。また、TLC分析した結果、次の6つのスポットを有していたので(P1:紫、P2:赤、P3:青、P4:黄、P5:赤、P6:赤)(Rf値の大きいものから順にP1→P6と命名)、この廃水は6種類以上の染料を含有していることが判明した。
染料工場廃水Aをかく拌しながら、実施例1で製造した脱色兼凝集剤を注射器で添加した。脱色の判定はろ紙スポット、可視部吸光度分析によって行った。ろ紙スポットの評価基準は次の通りとした。○…完全脱色、△…不完全脱色、×…脱色せず。吸光度分析の結果は、次の計算式に従って「可視スペクトル除去率」として表示した。
可視スペクトル除去率(%)=(未処理廃水の吸光度−処理後廃水の吸光度)
÷未処理廃水の吸光度×100
結果を[表1]に示す。
【0025】
【表1】

Figure 0003884499
【0026】
[実施例3]「染料工場廃水B」の脱色処理
実施例2と同一の工場の着色廃水を、1995年6月27日、7月7日、7月14日、7月21日の4回採水し、等量ずつ混合したものを「染料工場廃水B」とした。染料工場廃水BのpHは7であった。染料工場廃水Bの可視部吸光度分析結果を[表2]に示した。また、廃水採水日の当工場の製造染料品目から推定して、染料工場廃水Bは次の染料等を含有している。アゾ系酸性染料、アゾ系塩基性染料、メチン系塩基性染料、ジアザメチン系塩基性染料、ジフェニルメタン系塩基性染料、トリフェニルメタン系塩基性染料、アゾ系クロム含金赤色染料、アゾ系クロム含金黒色染料、アゾ系鉄含金染料、銅フタロシアニン系染料。アゾ系分散染料、メタノール、メチルイソブチルケトン。
染料工場廃水Bをかく拌しながら、実施例1で製造した脱色兼凝集剤を注射器で添加した。脱色の判定はろ紙スポット、可視部吸光度分析によって行った。ろ紙スポットの評価基準および可視スペクトル除去率は実施例2と同様にして使用した。結果を[表2]に示す。
【0027】
【表2】
Figure 0003884499
【0028】
[実施例4]酸性染料溶液の脱色処理
酸性染料水溶液としてアシッドブリリアントミーリンググリーンBの100mg/l水溶液を選んだ。酸性染料水溶液をかく拌しながら、実施例1で製造した脱色兼凝集剤を注射器で添加した。脱色の判定はろ紙スポットによって行った。ろ紙スポットの評価基準は実施例2と同様とした。結果を[表3]に示す。
【0029】
【表3】
Figure 0003884499
【0030】
[実施例5]塩基性染料溶液の脱色処理
塩基性染料溶液として、オーラミン100mg/l水溶液、メチルバイオレット100mg/l水溶液を選んだ。塩基性染料水溶液をかく拌しながら、実施例1で製造した脱色兼凝集剤を注射器で添加した。脱色の判定はろ紙スポットによって行った。ろ紙スポットの評価基準は実施例2と同様とした。結果を[表3]に示す。
【0031】
[実施例6]直接染料溶液の脱色処理
直接染料溶液として、ダイレクトローズリンレッドBHの100mg/l水溶液、ダイレクトファーストイエローGCの100mg/l水溶液を選んだ。直接染料水溶液をかく拌しながら、実施例1で製造した脱色兼凝集剤を注射器で添加した。脱色の判定はろ紙スポットによって行った。ろ紙スポットの評価基準は実施例2と同様とした。結果を[表3]に示す。
【0032】
[実施例7]食用染料溶液の脱色処理
食用染料溶液として、食染赤2号100mg/l水溶液、食染青1号100mg/l水溶液、食染黄5号100mg/l水溶液を選んだ。食用染料水溶液をかく拌しながら、実施例1で製造した脱色兼凝集剤を注射器で添加した。脱色の判定はろ紙スポットによって行った。ろ紙スポットの評価基準は実施例2と同様とした。結果を[表3]に示す。
【0033】
[参考例1]染料を含有する着色廃水の連続的脱色処理 硫化ナトリウム、水硫化ナトリウムのどちらか一方もしくは両者を30000mg/l含む工場内の廃水を5.0ml/分の量で連続的に処理対象の染料を含有する着色廃水1.0l/分に添加した。次に第1鉄塩、第2鉄塩のどちらか一方または両者を含む水溶液を3.0ml/分の量で連続的に添加して硫化鉄を生成させた。次に高分子凝集剤を連続的に添加し,大きな粒子に凝集成長させ、連続的に凝集沈澱分離をした。この方法によって染料を含有する着色廃水を連続的に処理し、無着色排水とすることができた。
【0034】
[比較例1]硫化鉄以外の鉄塩による脱色処理
染料工場廃水Aを使用して、硫化鉄無しでpHを変化させた場合および硫化鉄の代わりに硫化鉄以外の鉄塩を添加した場合について脱色処理を行った。脱色の判定はろ紙スポットによって行った。ろ紙スポットの評価基準は実施例2と同様とした。結果を[表1]に示す。硫化鉄無しおよび硫化鉄以外の鉄塩では廃水の脱色が不十分であることが分かる。
【0035】
[比較例2]硫化鉄以外の鉄塩による脱色処理
染料工場廃水Bを使用して、硫化鉄の代わりに硫化鉄以外の鉄塩を添加し、pHを変化させた場合について脱色処理を行った。脱色の判定はろ紙スポットによって行った。ろ紙スポットの評価基準は実施例2と同様とした。結果を[表2]に示す。硫化鉄以外の鉄塩では廃水の脱色が不十分であることが分かる。
【0036】
[比較例3]硫化鉄以外の金属硫化物による脱色処理
染料工場廃水Bを使用して、硫化鉄の代わりに硫化鉄以外の金属硫化物を添加した。脱色の判定はろ紙スポットによって行った。ろ紙スポットの評価基準は実施例2と同様とした。結果を[表2]に示す。硫化鉄以外の金属硫化物の場合は硫化鉄よりも廃水の脱色効果が弱いことが分かる。
【0037】
【発明の効果】
本発明によれば、処理費用が高価な活性炭や酸化剤を用いる3次処理を必要とせず、染料の種類による制約がなく、廃水中の着色物質を確実に除去し、処理後の廃水中に鉄イオンやSSの残存しない、脱水ケーキの含水率が低く、ケーキのろ布からの剥離性が良く、ケーキのpHが7近辺となるような、着色物質を含有する廃水の脱色処理を中心とした処理方法を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a treatment method centering on decolorization treatment of wastewater containing coloring substances such as dye industry wastewater and dyeing industry wastewater.
[0002]
[Prior art]
Wastewater containing coloring substances such as dye industry wastewater and dyeing industry wastewater generally combines coagulation sedimentation treatment or pressurized flotation treatment with activated sludge treatment to reduce wastewater BOD, COD and chromaticity. Processing has been done. However, the chromaticity is often insufficiently reduced by these processes. Therefore, in order to reduce the chromaticity of the wastewater, a method of combining the tertiary treatment using activated carbon or using an oxidizing agent such as ozone, Fenton reagent, hypochlorite or the like is also performed. However, these tertiary processes have a problem that the processing cost becomes expensive.
[0003]
In general, the coagulation-precipitation treatment is performed by a combination of an inorganic coagulant and a polymer coagulant. Here, if divalent and trivalent iron salts are used as the inorganic flocculant, and the polymer flocculant is mixed to bring the pH to 7 or more and the resulting precipitate is removed, it also has a decoloring effect. A processing method (Japanese Patent Laid-Open No. 6-165993) that does not require tertiary processing is disclosed. In addition, a method of adding a cationic oligomer having a molecular weight smaller than that of the polymer flocculant and having a molecular weight of tens of thousands or less as a decolorizer in addition to the polymer flocculant (“Colored Wastewater Decolorization Technology and Recent Trends”, Chemical Industry Association 1994 Fall Lecture Material 1994.11.22) is also introduced.
[0004]
Sulfuric dye dyeing wastewater, which is a type of dyeing industrial wastewater, can be decolorized only by neutralization because sulfur dyes are inherently insoluble in water, but the wastewater contains a large amount of sulfides such as sodium sulfide. Therefore, as one means of the treatment, a method is disclosed in which ferrous ions are added to solidify sulfides as ferrous sulfide, and a flocculant is added to separate them (Japanese Patent Laid-Open No. 48-33662). Yes. In this case, since the sulfur dye returns to its original property and is insoluble in water, it is separated together with the solid matter.
[0005]
[Problems to be solved by the invention]
A treatment method that uses activated carbon or a tertiary treatment using an oxidizing agent such as ozone, Fenton reagent, or hypochlorite has a problem that the treatment cost becomes expensive. A treatment method that does not require a tertiary treatment is also carried out to reduce the treatment cost, but depending on the type of dye, there is a restriction that it is not removed or the pH of the waste becomes high. The treatment method for solidifying a large amount of sulfide in wastewater as ferrous sulfide is a special treatment technique that can be applied only to sulfur dye dyeing wastewater, although the sulfide dye is also well removed.
[0006]
The present invention does not require a tertiary treatment using activated carbon or an oxidizing agent, which is expensive in treatment cost, is not restricted by the type of dye, reliably removes colored substances in wastewater, and iron ions are contained in the treated wastewater. Treatment with a focus on decolorization treatment of wastewater containing coloring substances, such that the moisture content of the dehydrated cake is low, the cake has good peelability from the filter cloth, and the pH of the cake is around 7. It aims to provide a method.
[0007]
[Means for Solving the Problems]
As a result of studying various treatment methods centering on the decolorization method in order to achieve the above object, the present inventors have found that iron sulfide is suitable as a decolorization and flocculant, and completed the present invention. That is, the present invention decolorizes iron sulfide produced by a reaction between an aqueous solution containing one or both of a ferrous salt and a ferric salt and an aqueous solution containing either or both of sodium sulfide and sodium hydrosulfide. Used as a coagulant and treated at pH 6-8, dye industrial wastewater or dyeing industrial wastewater whose types of dyes are acid dyes, basic dyes, direct dyes, gold-containing dyes, disperse dyes, reactive dyes, vat dyes It is a processing method.
[0008]
Further, iron sulfide may be used as a decoloring and flocculant, and a polymer flocculant may be used in combination.
[0009]
In the present invention, iron sulfide produced by a reaction between an aqueous solution containing one or both of a ferrous salt and a ferric salt and an aqueous solution containing either or both of sodium sulfide and sodium hydrosulfide is used. To do. The iron sulfide has a particle diameter of 1 to 5 μm at the beginning and is very adsorbable. Moreover, the particle size is easy to increase in size, and is excellent in terms of floc formation, aggregation and precipitation. Therefore, it is possible to reliably coagulate and precipitate colored substances in wastewater that are difficult to remove, and to be an excellent flocculant that can prevent iron ions and SS from remaining in the wastewater after treatment. Further, the combined use of the polymer flocculant can further improve the treatment capacity of the colored substance-containing wastewater.
[0010]
In the present invention, a reaction between an aqueous solution containing one or both of a ferrous salt and a ferric salt and an aqueous solution containing either or both of sodium sulfide and sodium hydrosulfide is continuously performed, Since the produced iron sulfide can be continuously added to the wastewater, the wastewater can be treated continuously. Further, an aqueous solution or waste water containing either or both of sodium sulfide and sodium hydrosulfide is continuously added to the waste water to be treated, and then either or both of the ferrous salt and the ferric salt are contained. Since an aqueous solution can be continuously added to the wastewater to be treated to produce iron sulfide, the wastewater can also be treated continuously by this method.
[0011]
In the present invention, waste water containing either or both of sodium sulfide and sodium hydrosulfide can be used as a sulfur ion source. In this case, even if it is not the form of waste water, the thing of the form of the treated water in various processes can also be utilized if it contains a sulfur ion source. Therefore, from sulfur dye dyeing waste water, gas obtained by gasification of coal / heavy oil or hydrogen sulfide contained in natural gas, etc., waste water and treated water, petroleum desulfurization equipment and flue gas desulfurization equipment The obtained waste water, treated water, or treated water from a sewage treatment plant can be effectively used in the method for treating colored material-containing waste water of the present invention.
[0012]
Iron sulfide has excellent flocculant performance in terms of floc formation, aggregation and precipitation even at a pH of around 7, so that the moisture content of the dehydrated cake after filtration is low and the peelability of the cake from the filter cloth is good. Moreover, the pH of the cake can be around 7.
[0013]
According to the method for treating colored material-containing wastewater of the present invention, it is not necessary to perform a tertiary treatment using activated carbon or an oxidizing agent, which is expensive, and the colored material is efficiently removed without being restricted by the type of dye. Therefore, it is particularly effective for dye industrial wastewater and dyeing industrial wastewater.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The method for treating colored material-containing wastewater of the present invention can be carried out as follows. First, iron sulfide is produced by a reaction between an aqueous solution containing one or both of a ferrous salt and a ferric salt and an aqueous solution containing either or both of sodium sulfide and sodium hydrosulfide. can do. Next, the produced iron sulfide is added to the wastewater, and then the wastewater is treated. In this case, the production reaction, the addition to the wastewater, and the wastewater treatment may be performed batchwise or continuously.
[0015]
When treating wastewater continuously, an aqueous solution containing either sodium sulfide or sodium hydrosulfide or both is continuously added to the wastewater, and then either one or both of ferrous salt and ferric salt An aqueous solution containing can be continuously added to the wastewater to produce iron sulfide, and the wastewater can be treated continuously. Moreover, the iron sulfide produced | generated by reaction with the aqueous solution containing either one or both of a ferrous salt and a ferric salt, and the aqueous solution containing either one or both of sodium sulfide and sodium hydrosulfide is filtered, and obtained. The obtained cake can be left as it is or stored, and can be redispersed in waste water at the time of use to treat the waste water.
[0016]
For filtration of iron sulfide, a general filtration device used in industry can be used. In particular, the precoat filter is suitable in terms of good peelability of the cake from the filter cloth and the moisture content of the dehydrated cake after filtration.
[0017]
Aqueous solutions containing either or both sodium sulfide and sodium hydrosulfide are obtained by dissolving sodium sulfide or sodium hydrosulfide in water or wastewater, sulfur dye dye wastewater, or gasification of coal / heavy oil Uses wastewater and treated water obtained by absorbing and treating hydrogen sulfide contained in gas or natural gas, wastewater and treated water obtained from petroleum desulfurization equipment and flue gas desulfurization equipment, or treated water from sewage treatment plants can do.
[0018]
As an aqueous solution containing either or both of a ferrous salt and a ferric salt, a solution in which ferrous sulfate, ferric sulfate, ferrous chloride or ferric chloride is dissolved in water or waste water is used. Can be used. Of these, ferric chloride is most suitable.
[0019]
An aqueous solution containing either one or both of the ferrous salt and the ferric salt and an aqueous solution containing either or both of sodium sulfide and sodium hydrosulfide react with each other in an equimolar amount to produce iron sulfide. The amount of iron sulfide added to the wastewater is 10 to 1000 mg / l, and the preferred amount is 50 to 300 mg / l. Moreover, 6-8 are preferable for the pH of the wastewater at the time of a process.
[0020]
As the polymer flocculant used in combination with iron sulfide which is the decolorizing and flocculant of the present invention, cationic polymer flocculant, anionic polymer flocculant, nonionic polymer flocculant, amphoteric polymer A flocculant is mentioned. These are used alone or in combination of two or more.
[0021]
The method for treating colored material-containing wastewater according to the present invention is particularly effective for dye industrial wastewater and dyeing industrial wastewater, and includes acid dyes, basic dyes, direct dyes, metallized dyes, disperse dyes, reactive dyes, vat dyes. it can process wastewater containing.
[0022]
The treatment method for waste water containing colored substances according to the present invention further corresponds to the type and treatment purpose of the wastewater, such as hypochlorous acid method, Fenton reagent method, ozone method, electrolysis method, activated carbon adsorption method, activated sludge method, etc. It is also possible to improve the treatment capacity of colored substance-containing wastewater by combining tertiary treatment methods.
[0023]
【Example】
[Example 1] Method for producing iron sulfide An equivalent amount of 10% iron salt aqueous solution was added while stirring 50 ml of sodium hydrosulfide wastewater (containing about 3.2% as NaHS, pH 11) generated in a chemical production facility. The end point was defined as the point where no black lead sulfide was observed on lead acetate paper. Diluted sulfuric acid was added to adjust the pH to 7.5, and the mixture was allowed to stand for 24 hours, and the precipitate (mud) was collected to obtain a decoloring and flocculant. The iron sulfide content in the decolorization and flocculant was determined by calculation by measuring the evaporation residue of the supernatant water and the precipitate. The amount of iron sulfide added to the wastewater to be treated was calculated from the amount of decolorization and flocculant added to the wastewater and the content of this iron sulfide.
[0024]
[Example 2] Decolorization treatment of "dye factory wastewater A" Colored wastewater from Hodogaya Chemical Co., Ltd. Tokyo Factory (Kamiya, Kita-ku, Tokyo) was collected for 7 consecutive days from October 24 to October 31, 1994. Water and mixed in equal amounts were designated as “Dye Factory Wastewater A”. The pH of the dye factory wastewater A was 6. The results of the absorbance analysis of the visible part of the dye factory waste water A are shown in [Table 1]. Further, as a result of TLC analysis, the following six spots were found (P1: purple, P2: red, P3: blue, P4: yellow, P5: red, P6: red) (from the largest Rf value) It was found that this wastewater contains 6 or more kinds of dyes.
While stirring the dye factory wastewater A, the decolorizing and aggregating agent produced in Example 1 was added with a syringe. Judgment of decolorization was performed by filter paper spot and visible region absorbance analysis. The evaluation criteria of the filter paper spot were as follows. ○: Completely decolored, △: Incompletely decolored, ×: Not decolorized. The result of absorbance analysis was displayed as “visible spectrum removal rate” according to the following calculation formula.
Visible spectrum removal rate (%) = (absorbance of untreated wastewater-absorbance of treated wastewater)
÷ Absorbance of untreated wastewater x 100
The results are shown in [Table 1].
[0025]
[Table 1]
Figure 0003884499
[0026]
[Example 3] Decolorization treatment of "dye factory waste water B" Colored waste water from the same factory as in Example 2 was collected four times on June 27, July 7, July 14, 1995. Water and mixed in equal amounts were designated as “Dye Factory Wastewater B”. The pH of the dye factory wastewater B was 7. The results of the absorbance analysis of the visible part of the dye factory waste water B are shown in [Table 2]. In addition, the dye factory waste water B contains the following dyes, etc., estimated from the manufactured dye items of this factory on the date of waste water sampling. Azo-based acid dyes, azo-based basic dyes, methine-based basic dyes, diazamethine-based basic dyes, diphenylmethane-based basic dyes, triphenylmethane-based basic dyes, azo-based chromium-containing red dyes, azo-based chromium-containing metals Black dye, azo iron-containing metal dye, copper phthalocyanine dye. Azo-based disperse dyes, methanol, methyl isobutyl ketone.
While stirring the dye factory waste water B, the decolorizing and aggregating agent produced in Example 1 was added with a syringe. Judgment of decolorization was performed by filter paper spot and visible region absorbance analysis. The evaluation criteria for the filter paper spot and the visible spectrum removal rate were used in the same manner as in Example 2. The results are shown in [Table 2].
[0027]
[Table 2]
Figure 0003884499
[0028]
[Example 4] Decolorization treatment of acid dye solution A 100 mg / l aqueous solution of Acid Brilliant Milling Green B was selected as the acid dye aqueous solution. While stirring the acidic dye aqueous solution, the decolorizing and aggregating agent produced in Example 1 was added with a syringe. Judgment of decolorization was performed by a filter paper spot. The evaluation criteria for the filter paper spot were the same as in Example 2. The results are shown in [Table 3].
[0029]
[Table 3]
Figure 0003884499
[0030]
[Example 5] Decolorization treatment of basic dye solution As basic dye solutions, auramin 100 mg / l aqueous solution and methyl violet 100 mg / l aqueous solution were selected. While stirring the basic dye aqueous solution, the decolorizing and aggregating agent produced in Example 1 was added with a syringe. Judgment of decolorization was performed by a filter paper spot. The evaluation criteria for the filter paper spot were the same as in Example 2. The results are shown in [Table 3].
[0031]
[Example 6] Decolorization treatment of direct dye solution As direct dye solutions, 100 mg / l aqueous solution of direct rose phosphorus red BH and 100 mg / l aqueous solution of direct fast yellow GC were selected. While directly stirring the aqueous dye solution, the decolorizing and aggregating agent produced in Example 1 was added with a syringe. Judgment of decolorization was performed by a filter paper spot. The evaluation criteria for the filter paper spot were the same as in Example 2. The results are shown in [Table 3].
[0032]
[Example 7] Decolorization treatment of food dye solution Food dye red No. 2 100 mg / l aqueous solution, food dye blue No. 1 100 mg / l aqueous solution and food dye yellow No. 5 100 mg / l aqueous solution were selected. While stirring the food dye aqueous solution, the decolorizing and aggregating agent produced in Example 1 was added with a syringe. Judgment of decolorization was performed by a filter paper spot. The evaluation criteria for the filter paper spot were the same as in Example 2. The results are shown in [Table 3].
[0033]
[Reference Example 1] Continuous decoloring treatment of colored wastewater containing dye Continuously treating wastewater in a factory containing 30000 mg / l of sodium sulfide, sodium hydrosulfide or both in an amount of 5.0 ml / min Added to 1.0 l / min of colored wastewater containing the dye of interest. Next, an aqueous solution containing one or both of the ferrous salt and the ferric salt was continuously added at an amount of 3.0 ml / min to produce iron sulfide. Next, a polymer flocculant was continuously added to cause agglomeration and growth into large particles, and then agglomerated precipitates were separated. By this method, the colored wastewater containing the dye was continuously treated to obtain an uncolored wastewater.
[0034]
[Comparative Example 1] Decolorization treatment with dye salts other than iron sulfide Using dye factory wastewater A, when pH was changed without iron sulfide, and when iron salt other than iron sulfide was added instead of iron sulfide Decolorization treatment was performed. Judgment of decolorization was performed by a filter paper spot. The evaluation criteria for the filter paper spot were the same as in Example 2. The results are shown in [Table 1]. It can be seen that there is insufficient decolorization of wastewater with no iron sulfide and iron salts other than iron sulfide.
[0035]
[Comparative Example 2] Decolorization treatment with iron salt other than iron sulfide Using dye factory waste water B, an iron salt other than iron sulfide was added instead of iron sulfide, and decolorization treatment was performed when the pH was changed. . Judgment of decolorization was made by filter paper spots. The evaluation criteria for the filter paper spot were the same as in Example 2. The results are shown in [Table 2]. It can be seen that the iron salt other than iron sulfide is insufficiently decolorized.
[0036]
[Comparative Example 3] Decolorization treatment dye factory waste water B with metal sulfide other than iron sulfide was used, and metal sulfide other than iron sulfide was added instead of iron sulfide. Judgment of decolorization was performed by a filter paper spot. The evaluation criteria for the filter paper spot were the same as in Example 2. The results are shown in [Table 2]. In the case of metal sulfides other than iron sulfide, it can be seen that the decolorization effect of waste water is weaker than iron sulfide.
[0037]
【The invention's effect】
According to the present invention, there is no need for a tertiary treatment using activated carbon or an oxidizing agent, which is expensive in treatment costs, there is no restriction due to the type of dye, and the colored substances in the wastewater are reliably removed, so that the treated wastewater Focusing on the decolorization treatment of wastewater containing colored substances, such that iron ions and SS do not remain, the moisture content of the dehydrated cake is low, the peelability of the cake from the filter cloth is good, and the pH of the cake is around 7. Can be provided.

Claims (3)

第1鉄塩、第2鉄塩のどちらか一方または両者を含む水溶液と、硫化ナトリウム、水硫化ナトリウムのどちらか一方または両者を含む水溶液との反応によって生成した硫化鉄を脱色兼凝集剤に使用し、pH6〜8で処理する、染料の種類が酸性染料、塩基性染料、直接染料、含金染料、分散染料、反応染料、建染染料である染料工業廃水または染色工業廃水の処理方法。Iron sulfide produced by the reaction between an aqueous solution containing either or both of ferrous salt and ferric salt and an aqueous solution containing either or both of sodium sulfide and sodium hydrosulfide is used as a decolorization and flocculant. The dye industrial wastewater or dyeing industrial wastewater is treated at a pH of 6 to 8, wherein the dye type is an acid dye, basic dye, direct dye, gold-containing dye, disperse dye, reactive dye, or vat dye . 第1鉄塩、第2鉄塩のどちらか一方または両者を含む水溶液の主成分が塩化第2鉄である請求項に記載の染料工業廃水または染色工業廃水の処理方法。The method for treating dye industrial wastewater or dyeing industrial wastewater according to claim 1 , wherein the main component of the aqueous solution containing one or both of the ferrous salt and the ferric salt is ferric chloride. 第1鉄塩、第2鉄塩のどちらか一方または両者を含む水溶液と、硫化ナトリウム、水硫化ナトリウムのどちらか一方または両者を含む水溶液との反応によって生成した硫化鉄をろ過し、得られたケーキをそのままかまたは保存して使用時に廃水に再分散させて使用することを特徴とする請求項記載の染料工業廃水または染色工業廃水の処理方法。Obtained by filtering iron sulfide produced by the reaction of an aqueous solution containing either or both of ferrous salt and ferric salt with an aqueous solution containing either or both of sodium sulfide and sodium hydrosulfide either neat or Save and dye industry wastewater or treatment method of dyeing industry wastewater according to claim 1, wherein the use redispersed wastewater during use cake.
JP35242795A 1995-12-28 1995-12-28 Treatment method for waste water containing colored substances Expired - Fee Related JP3884499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35242795A JP3884499B2 (en) 1995-12-28 1995-12-28 Treatment method for waste water containing colored substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35242795A JP3884499B2 (en) 1995-12-28 1995-12-28 Treatment method for waste water containing colored substances

Publications (2)

Publication Number Publication Date
JPH09174061A JPH09174061A (en) 1997-07-08
JP3884499B2 true JP3884499B2 (en) 2007-02-21

Family

ID=18424010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35242795A Expired - Fee Related JP3884499B2 (en) 1995-12-28 1995-12-28 Treatment method for waste water containing colored substances

Country Status (1)

Country Link
JP (1) JP3884499B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647083B2 (en) * 2000-11-17 2011-03-09 大王製紙株式会社 Method for producing deinked pulp and method for producing recycled paper
JP4523786B2 (en) * 2004-03-29 2010-08-11 コスモ石油株式会社 How to remove nitrogen from wastewater
CN103112989B (en) * 2012-11-09 2013-11-13 浙江大学 Treatment device and treatment method for dyeing and printing auxiliary wastewater
CN104445550B (en) * 2014-11-13 2016-04-13 南京新美汇电子科技有限公司 A kind of preparation method of heavy metal-polluted water treatment agent
CN110803754B (en) * 2019-10-25 2022-03-29 南昌大学 Fenton reagent capable of efficiently degrading organic pollutants in alkaline environment and application thereof
WO2024075518A1 (en) * 2022-10-06 2024-04-11 中国環境株式会社 Method for decolorizing industrial waste liquid

Also Published As

Publication number Publication date
JPH09174061A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
US4332687A (en) Removal of complexed heavy metals from waste effluents
EP0527148B1 (en) Composition for treating water contaminated with metallic ions, process for producing the same and its use
CN109292933A (en) It is a kind of for have in sewage treatment oxidation and flocculate complex function COD remover
US6110379A (en) Method for treating water containing sulfate
DE3840323A1 (en) PROCESS FOR REMOVING ORGANIC COMPOUNDS FROM WATER
JP3884499B2 (en) Treatment method for waste water containing colored substances
DE3212681C2 (en)
DE1642395A1 (en) Process for the treatment of waters containing waste or impurities
DE3917412C2 (en) Process for the preparation of a composition for treating contaminated water
DE102010020105B4 (en) Recycling of Iron in the Photo-Fenton Process
CN106957099B (en) Method for rapidly reducing and degrading triphenylmethane dye crystal violet wastewater
JP4145431B2 (en) Treatment of selenium-containing wastewater
CN1276880C (en) Multicomponent compound agent for waste water treatment in textile printing and finishing and treatment process thereof
EP0394541A1 (en) Process for removing copper from waste water
DE4408302A1 (en) Process for the manufacture and use of a solid composite product for water treatment
KR20030090547A (en) purificatory chemicals using red mud and manufacturing method thereof
KR102005199B1 (en) Waste water purification and odor removal composition
CA1160370A (en) Waste water treatment system for elemental phosphorus removal
JPS61141995A (en) Treatment of waste water containing water-soluble dye
US4253958A (en) Method of treating polluted aqueous media
EP0419842A1 (en) Method for removing halogenated organic contaminants with at least 5 C-atoms from water
DE3347385A1 (en) Process for the treatment of metal-containing effluent
DD205876A1 (en) METHOD FOR REMOVING BLEAKERS AND / OR SUSPENDED ORGANIC DYES FROM WASTEWATERS
JPS5990689A (en) Treatment of colored waste water
JP3748649B2 (en) Treatment of cacodylic acid or cacodylate-containing effluent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees