JP3883916B2 - Method for estimating damage of structural members - Google Patents

Method for estimating damage of structural members Download PDF

Info

Publication number
JP3883916B2
JP3883916B2 JP2002197014A JP2002197014A JP3883916B2 JP 3883916 B2 JP3883916 B2 JP 3883916B2 JP 2002197014 A JP2002197014 A JP 2002197014A JP 2002197014 A JP2002197014 A JP 2002197014A JP 3883916 B2 JP3883916 B2 JP 3883916B2
Authority
JP
Japan
Prior art keywords
damage
detection piece
steel beam
plastic strain
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002197014A
Other languages
Japanese (ja)
Other versions
JP2004037351A (en
Inventor
賢二 吉松
貴昭 宮原
利雄 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2002197014A priority Critical patent/JP3883916B2/en
Publication of JP2004037351A publication Critical patent/JP2004037351A/en
Application granted granted Critical
Publication of JP3883916B2 publication Critical patent/JP3883916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建造物や橋梁などの構造物に地震などが作用したときの、梁や柱あるいは橋脚等の、構造物の部材の損傷度を推定する方法に関するものである。
【0002】
【従来の技術】
従来、地震の発生により、建造物の梁や柱、あるいは、橋脚等の構造物の部材がどの程度損傷したかを調べる方法としては、上記部材の外観を調べて、亀裂や歪みが見られるなど損傷度が大きいと思われる部材を実際に取り出して試験する方法がある。しかし、この方法では、試験に大きな費用がかかるだけでなく、当該部材を試験するために、構造物を補強する作業が必要なため、通常は、大きな損傷が起こった場合のみしか行われていない。
そこで、構造物の部材を取り出すことなく地震による損傷を調べる方法として、例えば、構造物が建造物である場合には、建造物内に地震計を設置して、得られた地震波形を用いて建造物の部材の損傷度を解析的に類推する方法がある。また、構造物の部材に直接変位計等の計器を取付けて常時モニタリングし、地震時の時刻履歴等から地震時における当該部材の変形の大きさを計測して上記部材の損傷度を類推する方法なども行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記方法では、常時モニタリングしている計器、地震を感知してそれを記録する機器等が必要であり、また、データを取り出す手間も大きいといった問題点があった。
【0004】
本発明は、従来の問題点に鑑みてなされたもので、構造物の部材を取り出すことなく、構造物の部材の地震による損傷度を容易に調べることのできる方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、梁や柱、あるいは、橋脚などのような、構造物の部材に板片から成る損傷検知片を予め取付けておき、この検知片の損傷度から当該部材の損傷度を推定する構造物の部材の損傷度推定方法であって、上記部材と検知片とにそれぞれ繰り返し応力を作用させて上記部材及び検知片が破壊したときのそれぞれの累積塑性歪エネルギーを予め求めておき、構造物に繰り返し応力が作用した場合には、上記部材から上記検知片を取り外し、この取り外した検知片に新たに繰り返し応力を作用させて当該検知片を破壊し、上記検知片の破壊時における累積塑性歪エネルギーを求め、この求められた累積塑性歪エネルギーに基づいて、上記部材の吸収可能な塑性歪エネルギーを算出して上記部材の損傷度を推定するようにしたことを特徴とする。これにより、上記検知片のみを取り出して試験するだけで当該部材の地震による損傷度を容易に推定することが可能となるとともに、構造部材の損傷度を数値的評価することができるので、当該部材の地震による損傷度を正確に推定することが可能となる。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
図1は、本発明の一実施の形態を示す図で、本例では、建造物の壁1,1間にわたされたH鋼から成る鉄骨梁2の上フランジ2a側と下面フランジ2b側のそれぞれの端部(壁1,1側)に、金属製の板片からなる損傷検知片3を、上記損傷検知片3の両端部をそれぞれ支持する支持部材4を用いて予め取付けておき、上記鉄骨梁2が繰り返し応力を受けて変形する際に、上記損傷検知片3を上記鉄骨梁2と同時に変形させ、上記繰り返し応力の作用後に、上記損傷検知片3を上記鉄骨梁2から取り外してその損傷度を調べることにより、上記鉄骨梁2の損傷度を類推する。このとき、損傷度を調べる鉄骨梁2には、鉄骨梁2の損傷が想定した部分に集中するように、上,下のフランジ2a,2bの端部(壁1,1側)に切り欠き部2kを設け、この切り欠き部2kの近傍に損傷検知片3を取付けるようにすると、鉄骨梁2にかかる最大の塑性歪を確実に上記損傷検知片3に反映させることができる。また、切り欠き部2kを設けることにより、損傷検知片3の取付け位置の選定が容易となる。なお、同図において、2cは鉄骨梁2のウェブ部である。
上記鉄骨梁2に、例えば、地震時のような繰り返し応力が作用すると、上記損傷検知片3は、図2に示すように、上記鉄骨梁2の変形に追従して変形するので、繰り返し応力を受けた鉄骨梁2の損傷度が大きいほど、上記損傷検知片3の損傷度も大きくなる。したがって、損傷検知片3の損傷度と、それを取付ける鉄骨梁2の損傷度との関係を予め実験により求めておけば、損傷検知片3の損傷度を調べることで、上記損傷検知片3を取付けた鉄骨梁2の損傷度を推定することができる。
【0007】
本例では、上記損傷度の評価として、繰り返し応力が作用したときの当該部材の累積塑性歪エネルギーの大きさを用いた。具体的には、図3(a),(b)に示すように、鉄骨梁2または、損傷検知片3を取付けた鉄骨梁2に繰り返し応力を作用させて、鉄骨梁2の疲労特性を測定する。上記鉄骨梁2の歪量εは、はじめは外力である繰り返し応力に追従して変化するが、鉄骨梁2は徐々に疲労していくため、ついには上記応力に追従しきれず疲労破壊する。そこで、繰り返し応力の作用時から鉄骨梁2の疲労破壊時までの上記鉄骨梁2の累積塑性歪エネルギーEbeamを測定するとともに、疲労破壊時までの上記応力の繰り返し回数nをチェックしておく。
一方、図4(a),(b)に示すように、損傷検知片3のみでも同様の実験を行い、繰り返し応力の作用時から損傷検知片3の疲労破壊時までの上記損傷検知片3の累積塑性歪エネルギーpEmonitorを測定するとともに、疲労破壊時までの上記応力の繰り返し回数pをチェックする。このとき、上記損傷検知片3としては、損傷度を推定する鉄骨梁2よりも疲労破壊時の繰り返し回数の多い(累積塑性歪エネルギーが大きい)ものを用いる必要がある。なお、図4(c)に示すように、損傷度を推定する鉄骨梁2及び取付ける損傷検知片3よりも疲労破壊時の累積塑性歪エネルギーが大きい鉄骨梁2Tに、上記損傷検知片3を取付けて上記累積塑性歪エネルギーpEmonitorと繰り返し回数pを測定するようにしてもよい。
【0008】
図5は、建造物10の鉄骨梁21に損傷検知片31を取付けた図で、地震経験後には、上記鉄骨梁21から損傷検知片31を取り外し、その損傷度を調べる。なお、上記鉄骨梁21及び損傷検知片31は、上記実験で使用した鉄骨梁2及び損傷検知片3と同一特性のものである。
詳細には、図6(a),(b)に示すように、取り外した損傷検知片31に、上記実験と同様に、繰り返し応力を作用させて上記損傷検知片31を疲労破壊し、上記損傷検知片31の疲労破壊時の累積塑性歪エネルギーmEmonitorを測定する。なお、この場合も、図6(c)に示すように、上記損傷検知片31を、上記鉄骨梁21及び取付ける損傷検知片31よりも疲労破壊時の累積塑性歪エネルギーが大きい鉄骨梁21Tに取付けて累積塑性歪エネルギーmEmonitorを測定するようにしてもよい。
上記損傷検知片31は地震により既に損傷しているので、疲労破壊時の繰り返し回数mは上記実験での疲労破壊時の繰り返し回数pよりも少ない。また、鉄骨梁21は疲労破壊していないので、鉄骨梁21の受けた累積塑性歪エネルギーをE’とすると、鉄骨梁21の残りの累積塑性歪エネルギーEは、以下の式で表わせる。
E=Ebeam−E’={1−(E’/Ebeam)}Ebeam
上記式において、鉄骨梁21の受けた累積塑性歪エネルギーE’と疲労破壊時の累積塑性歪エネルギーEbeamとの比(E’/Ebeam)は、上記損傷検知片31の受けた累積塑性歪エネルギーと疲労破壊時の累積塑性歪エネルギーとの比に等しいので、鉄骨梁21の残りの累積塑性歪エネルギーEは、鉄骨梁2の疲労破壊時の累積塑性歪エネルギーEbeamと、損傷検知片3の疲労破壊時の累積塑性歪エネルギーpEmonitorと、上記測定した損傷検知片31の疲労破壊時の累積塑性歪エネルギーmEmonitor、及び、鉄骨梁2が疲労破壊した時点での損傷検知片3の累積塑性歪エネルギーnEmonitorを用いて、以下の式から求めることができる。

Figure 0003883916
したがって、上記鉄骨梁21の残りの累積塑性歪エネルギーEを用いて、地震による鉄骨梁21の損傷度を類推することができる。
繰り返し応力を受けた鉄骨梁21は、累積塑性歪エネルギーEが小さいほど損傷度は大きく、累積塑性歪エネルギーEの値がEbeamに近づくほど損傷度が小さいので、鉄骨梁21の損傷度Pとしては、例えば、以下のような式を用いて評価することができる。
損傷度P(%)={1−(E/Ebeam)}×100
【0009】
このように、本実施の形態では、建造物10の鉄骨梁21に板片から成る損傷検知片31を取付けておき、地震経験後には、上記検知片31を取り出して繰り返し応力を作用させて疲労破壊してそのときの累積塑性歪エネルギーmEmonitorを測定し、予め実験により求めた鉄骨梁2の疲労破壊時の累積塑性歪エネルギーEbeamと、予め測定しておいた損傷検知片3の疲労破壊時の累積塑性歪エネルギーpEmonitor、鉄骨梁2の疲労破壊時の上記検知片3の累積塑性歪エネルギーnEmonitorとから、鉄骨梁21の残りの累積塑性歪エネルギーEを算出して、上記鉄骨梁21の損傷度を推定するようにしたので、鉄骨梁21を取り出すことなく、上記検知片31のみを取り出して試験するだけで建造物10の鉄骨梁21の地震による損傷度を容易に調べることができる。
【0010】
なお、上記実施の形態では、H鋼から成る鉄骨梁21の上フランジ側と下フランジ側とに損傷検知片31を取付けた場合について説明したが、取付け箇所としては上フランジ側のみ、または、下フランジ側のみでもよい。あるいは、鉄骨梁21のウェブ部の面に取付けてもよい。
また、上記例では、鉄骨梁21の残りの累積塑性歪エネルギーEから上記鉄骨梁21の損傷度を推定するようにしたが、累積塑性歪エネルギーEに代えて、累積塑性変形を用いてもよい。また、鉄骨梁2及び損傷検知片3にそれぞれ繰り返し応力を作用させ、所定回数繰り返し応力を作用させたときの鉄骨梁2及び損傷検知片3をそれぞれ観察して繰り返し回数毎の亀裂の発生状態を記録しておき、地震経験後に損傷検知片31を取り出してその状態を観察し、鉄骨梁21の損傷度を推定するようにしてもよい。
また、損傷検知片31を取付ける部材としては、上記建造物10の鉄骨梁21に限るものではなく、柱、間柱、壁のような構造部材であればよい。特に、図7(a),(b)に示すような、損傷度が測定し易い連層耐震壁50の連結部材51や、ブレース(筋違い)52等の構造物の構造部材を補強するエネルギー吸収部材や、図7(c)に示すような、柱53と梁54との接合部Sに上記損傷検知片31を取付けて上記部材51,52、あるいは、上記接合部Sの損傷度を推定するようにすれば、繰り返し応力が構造物に及ぼした損傷度を正確に推定することが可能となる。
また、本発明は、建造物10の部材だけでなく、橋梁の脚部などのような建造物以外の構造物の部材の損傷度の調査にも適応可能である。
【0011】
【発明の効果】
以上説明したように、本発明によれば、構造物の部材に板片から成る損傷検知片を取付けておき、構造物に繰り返し応力が作用した場合には、上記部材から上記検知片を取り外してその損傷度を調べ、予め実験により求めた繰り返し応力付加時における上記検知片の損傷度と当該構造物の部材の損傷度との関係から、上記部材の損傷度を推定するようにしたので、構造部材を取り出すことなく、構造部材の地震等による損傷度を容易に、かつ、簡便に調べることができる。
また、本発明では、構造部材の損傷度を数値的に評価することができるので、当該部材の地震による損傷度を正確に推定することができる。
また、本発明の繰り返し応力付加時における上記検知片の損傷度と構造物の部材の損傷度との関係を求める実験は、構造物の部材の性能実験も兼ねるので、構造物の部材の評価を同時に行うことができるという利点を有する。
【図面の簡単な説明】
【図1】 本発明の一実施の形態を示す図である。
【図2】 鉄骨梁の変形状態を示す模式図である。
【図3】 鉄骨梁の疲労特性を示す図である。
【図4】 損傷検知片の疲労特性を示す図である。
【図5】 損傷検知片の設置状態を説明するための図である。
【図6】 損傷検知片の疲労破壊試験を説明するための図である。
【図7】 本発明の損傷検知片の他の取付け箇所を示す図である。
【符号の説明】
1 壁、2,21 鉄骨梁、3,31 損傷検知片、4 支持部材、
10 建造物。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for estimating the degree of damage of structural members such as beams, columns, and piers when an earthquake or the like acts on a structure such as a building or a bridge.
[0002]
[Prior art]
Conventionally, as a method of examining how much damage has been caused to structural members such as beams and columns of buildings or piers due to the occurrence of earthquakes, the appearance of the above members is examined, and cracks and distortions are seen. There is a method of actually taking out and testing a member that seems to be highly damaged. However, this method is not only costly to test, but also requires work to reinforce the structure in order to test the part, so it is usually only done when major damage has occurred .
Therefore, as a method of examining damage due to an earthquake without taking out the members of the structure, for example, when the structure is a building, a seismometer is installed in the building, and the obtained seismic waveform is used. There is a method for analytically inferring the degree of damage of building members. In addition, a method such as attaching a gauge such as a displacement meter directly to a member of the structure and constantly monitoring it, and measuring the degree of deformation of the member at the time of the earthquake from the time history at the time of the earthquake, etc. And so on.
[0003]
[Problems to be solved by the invention]
However, the above-described method requires a meter that is constantly monitored, a device that senses and records an earthquake, and has a problem that it takes a lot of time to retrieve data.
[0004]
The present invention has been made in view of the conventional problems, and an object of the present invention is to provide a method capable of easily examining the degree of damage of a structural member due to an earthquake without taking out the structural member. .
[0005]
[Means for Solving the Problems]
According to the first aspect of the present invention, a damage detection piece made of a plate piece is attached in advance to a structural member such as a beam, a column, or a bridge pier, and the damage level of the detection piece A method for estimating a damage level of a member of a structure for estimating a damage level of the member, wherein each of the accumulated plastic strain energies when the member and the detection piece are broken by repeatedly applying stress to the member and the detection piece. When the stress is repeatedly applied to the structure, the detection piece is removed from the member, the detection piece is newly applied to the removed detection piece to destroy the detection piece, and the detection obtains the accumulated plastic strain energy at the time of destruction of pieces, based on the thus determined cumulative plastic strain energy, to estimate the damage degree of the member is calculated absorbable plastic strain energy of the member Characterized in that it was. Thus, can be evaluated the detection strip only tested removed can easily estimate the damage degree only by the earthquake of the member and Do Rutotomoni, the degree of damage of the structural member numerically Therefore , it is possible to accurately estimate the degree of damage caused by the earthquake of the member.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
FIG. 1 is a diagram showing an embodiment of the present invention. In this example, the upper flange 2a side and the lower flange 2b side of a steel beam 2 made of H steel passed between walls 1 and 1 of a building are shown. A damage detection piece 3 made of a metal plate piece is attached to each end (wall 1, 1 side) in advance using a support member 4 that supports both ends of the damage detection piece 3. When the steel beam 2 undergoes repeated stress and deforms, the damage detection piece 3 is deformed simultaneously with the steel beam 2, and after the action of the repeated stress, the damage detection piece 3 is detached from the steel beam 2 and By examining the degree of damage, the degree of damage of the steel beam 2 is estimated. At this time, the steel beam 2 whose degree of damage is to be examined is notched at the ends (walls 1 and 1 side) of the upper and lower flanges 2a and 2b so that the damage of the steel beam 2 is concentrated on the assumed portion. By providing 2k and attaching the damage detection piece 3 in the vicinity of the notch 2k, the maximum plastic strain applied to the steel beam 2 can be reliably reflected in the damage detection piece 3. Further, by providing the notch portion 2k, the attachment position of the damage detection piece 3 can be easily selected. In the figure, reference numeral 2c denotes a web portion of the steel beam 2.
When a repeated stress such as during an earthquake acts on the steel beam 2, for example, the damage detection piece 3 is deformed following the deformation of the steel beam 2 as shown in FIG. The greater the degree of damage of the received steel beam 2, the greater the degree of damage of the damage detection piece 3. Therefore, if the relationship between the damage level of the damage detection piece 3 and the damage level of the steel beam 2 to which the damage detection piece 3 is attached is obtained in advance by experiments, the damage detection piece 3 is determined by examining the damage level of the damage detection piece 3. The damage degree of the attached steel beam 2 can be estimated.
[0007]
In this example, as the evaluation of the degree of damage, the magnitude of the cumulative plastic strain energy of the member when repeated stress is applied is used. Specifically, as shown in FIGS. 3A and 3B, the fatigue characteristics of the steel beam 2 are measured by applying repeated stress to the steel beam 2 or the steel beam 2 to which the damage detection piece 3 is attached. To do. The amount of strain ε of the steel beam 2 changes following the repeated stress, which is an external force, at first. However, since the steel beam 2 gradually fatigues, it eventually fails to follow the stress and eventually undergoes fatigue failure. Therefore, the cumulative plastic strain energy E beam of the steel beam 2 from the time of the repeated stress to the time of fatigue failure of the steel beam 2 is measured, and the number n of repetitions of the stress until the fatigue failure is checked.
On the other hand, as shown in FIGS. 4 (a) and 4 (b), the same experiment is performed only on the damage detection piece 3 and the damage detection piece 3 is repeatedly tested from the time of repeated stress to the time of fatigue failure of the damage detection piece 3. The cumulative plastic strain energy pE monitor is measured, and the number of repetitions p of the stress until fatigue failure is checked. At this time, as the damage detection piece 3, it is necessary to use a damage detection piece 3 having a larger number of repetitions at the time of fatigue fracture than the steel beam 2 for estimating the degree of damage (the cumulative plastic strain energy is larger). As shown in FIG. 4 (c), the damage detection piece 3 is attached to the steel beam 2T having a larger accumulated plastic strain energy at the time of fatigue failure than the steel beam 2 for estimating the degree of damage and the damage detection piece 3 to be attached. Thus, the cumulative plastic strain energy pE monitor and the number of repetitions p may be measured.
[0008]
FIG. 5 is a diagram in which the damage detection piece 31 is attached to the steel beam 21 of the building 10. After the earthquake experience, the damage detection piece 31 is removed from the steel beam 21 and the degree of damage is examined. The steel beam 21 and the damage detection piece 31 have the same characteristics as the steel beam 2 and the damage detection piece 3 used in the experiment.
More specifically, as shown in FIGS. 6A and 6B, the damage detection piece 31 is subjected to repeated stress to cause the fatigue detection of the damage detection piece 31 in the same manner as in the above-described experiment. The accumulated plastic strain energy mE monitor at the time of fatigue failure of the detection piece 31 is measured. Also in this case, as shown in FIG. 6C, the damage detection piece 31 is attached to the steel beam 21T having a larger cumulative plastic strain energy at the time of fatigue fracture than the steel beam 21 and the damage detection piece 31 to be attached. Thus, the accumulated plastic strain energy mE monitor may be measured.
Since the damage detection piece 31 has already been damaged by an earthquake, the number of repetitions m at the time of fatigue failure is smaller than the number of repetitions p at the time of fatigue failure in the experiment. Further, since the steel beam 21 has not undergone fatigue failure, assuming that the accumulated plastic strain energy received by the steel beam 21 is E ′, the remaining accumulated plastic strain energy E of the steel beam 21 can be expressed by the following equation.
E = E beam −E ′ = {1− (E ′ / E beam )} E beam
In the above equation, the ratio (E ′ / E beam ) between the cumulative plastic strain energy E ′ received by the steel beam 21 and the cumulative plastic strain energy E beam at the time of fatigue failure is the cumulative plastic strain received by the damage detection piece 31. The remaining cumulative plastic strain energy E of the steel beam 21 is equal to the ratio of the energy and the cumulative plastic strain energy at the time of fatigue fracture, so that the cumulative plastic strain energy E beam at the time of fatigue fracture of the steel beam 2 and the damage detection piece 3 Cumulative plastic strain energy pE monitor at the time of fatigue fracture, cumulative plastic strain energy mE monitor at the time of fatigue fracture of the measured damage detection piece 31, and accumulation of the damage detection piece 3 at the time when the steel beam 2 undergoes fatigue fracture Using plastic strain energy nE monitor , it can be obtained from the following equation.
Figure 0003883916
Therefore, the damage degree of the steel beam 21 due to the earthquake can be estimated by using the remaining accumulated plastic strain energy E of the steel beam 21.
The steel beam 21 subjected to repeated stress has a greater degree of damage as the cumulative plastic strain energy E is smaller, and the degree of damage is smaller as the value of the cumulative plastic strain energy E approaches E beam. Can be evaluated using, for example, the following equation.
Degree of damage P (%) = {1− (E / E beam )} × 100
[0009]
Thus, in the present embodiment, the damage detection piece 31 made of a plate piece is attached to the steel beam 21 of the building 10, and after the earthquake experience, the detection piece 31 is taken out and repeatedly subjected to stress to cause fatigue. The cumulative plastic strain energy mE monitor at the time of fracture is measured, and the cumulative plastic strain energy E beam at the time of fatigue fracture of the steel beam 2 obtained by experiments in advance and the fatigue fracture of the damage detection piece 3 measured in advance. The remaining accumulated plastic strain energy E of the steel beam 21 is calculated from the accumulated plastic strain energy pE monitor at the time and the accumulated plastic strain energy nE monitor of the detection piece 3 at the time of fatigue fracture of the steel beam 2. Since the degree of damage of the steel beam 21 is estimated, the degree of damage caused by the earthquake of the steel beam 21 of the building 10 can be easily achieved by taking out only the detection piece 31 and testing it without taking out the steel beam 21. Can bell.
[0010]
In the above-described embodiment, the case where the damage detection piece 31 is attached to the upper flange side and the lower flange side of the steel beam 21 made of H steel has been described. Only the flange side may be used. Or you may attach to the surface of the web part of the steel beam 21. FIG.
In the above example, the damage degree of the steel beam 21 is estimated from the remaining accumulated plastic strain energy E of the steel beam 21. However, instead of the cumulative plastic strain energy E, cumulative plastic deformation may be used. . In addition, the stress is repeatedly applied to the steel beam 2 and the damage detection piece 3, respectively, and the steel beam 2 and the damage detection piece 3 when the stress is applied a predetermined number of times are observed, and the occurrence of cracks at each repetition number of times is observed. It may be recorded and the damage detection piece 31 may be taken out after experiencing the earthquake and the state thereof may be observed to estimate the damage degree of the steel beam 21.
Moreover, as a member which attaches the damage detection piece 31, it is not restricted to the steel beam 21 of the said building 10, What is necessary is just a structural member like a pillar, a stud, and a wall. In particular, as shown in FIGS. 7A and 7B, energy absorption that reinforces structural members such as the connecting member 51 of the multi-layer earthquake-resistant wall 50 and the brace 52 which are easy to measure the degree of damage. The damage detection piece 31 is attached to a member or a joint S between a column 53 and a beam 54 as shown in FIG. 7C, and the damage degree of the members 51 and 52 or the joint S is estimated. By doing so, it is possible to accurately estimate the degree of damage that the repeated stress has exerted on the structure.
Further, the present invention can be applied not only to the member of the building 10 but also to the investigation of the damage degree of the member of the structure other than the building such as the leg portion of the bridge.
[0011]
【The invention's effect】
As described above, according to the present invention, a damage detection piece made of a plate piece is attached to a member of a structure, and when the stress is repeatedly applied to the structure, the detection piece is removed from the member. The degree of damage was examined, and the degree of damage of the member was estimated from the relationship between the degree of damage of the detection piece and the degree of damage of the member of the structure at the time of repeated stress application obtained in advance by experiments. Without removing the member, the degree of damage of the structural member due to an earthquake or the like can be easily and simply investigated.
Moreover, in this invention, since the damage degree of a structural member can be evaluated numerically, the damage degree by the earthquake of the said member can be estimated correctly.
In addition, since the experiment for obtaining the relationship between the damage degree of the detection piece and the damage degree of the structural member when the repeated stress is applied according to the present invention also serves as a performance experiment of the structural member, the evaluation of the structural member is performed. It has the advantage that it can be done simultaneously.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a deformation state of a steel beam.
FIG. 3 is a diagram showing fatigue characteristics of a steel beam.
FIG. 4 is a diagram showing fatigue characteristics of a damage detection piece.
FIG. 5 is a diagram for explaining an installation state of a damage detection piece.
FIG. 6 is a diagram for explaining a fatigue fracture test of a damage detection piece.
FIG. 7 is a view showing another attachment location of the damage detection piece of the present invention.
[Explanation of symbols]
1 wall, 2,21 steel beam, 3,31 damage detection piece, 4 support member,
10 Building.

Claims (1)

構造物の部材に板片から成る損傷検知片を予め取付けておき、この検知片の損傷度から当該部材の損傷度を推定する構造物の部材の損傷度推定方法において、上記部材と検知片とにそれぞれ繰り返し応力を作用させて上記部材及び検知片が破壊したときのそれぞれの累積塑性歪エネルギーを予め求めておき、構造物に繰り返し応力が作用した場合には、上記部材から上記検知片を取り外し、この取り外した検知片に新たに繰り返し応力を作用させて当該検知片を破壊し、上記検知片の破壊時における累積塑性歪エネルギーを求め、この求められた累積塑性歪エネルギーに基づいて、上記部材の吸収可能な塑性歪エネルギーを算出して上記部材の損傷度を推定するようにしたことを特徴とする構造物の部材の損傷度推定方法 In the method of estimating the damage level of a member of a structure in which a damage detection piece made of a plate piece is attached in advance to a member of the structure and the damage level of the member is estimated from the damage level of the detection piece. The accumulated plastic strain energy obtained when each of the members and the detection piece is broken by repeatedly applying stress to each of them is obtained in advance, and when the stress is repeatedly applied to the structure, the detection piece is removed from the member. Then, a new repeated stress is applied to the removed detection piece to destroy the detection piece, and the accumulated plastic strain energy at the time of breaking of the detection piece is obtained. Based on the obtained accumulated plastic strain energy, the member The damage degree estimation method of the member of the structure characterized by calculating the plastic strain energy which can be absorbed and estimating the damage degree of the said member .
JP2002197014A 2002-07-05 2002-07-05 Method for estimating damage of structural members Expired - Fee Related JP3883916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002197014A JP3883916B2 (en) 2002-07-05 2002-07-05 Method for estimating damage of structural members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002197014A JP3883916B2 (en) 2002-07-05 2002-07-05 Method for estimating damage of structural members

Publications (2)

Publication Number Publication Date
JP2004037351A JP2004037351A (en) 2004-02-05
JP3883916B2 true JP3883916B2 (en) 2007-02-21

Family

ID=31704889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002197014A Expired - Fee Related JP3883916B2 (en) 2002-07-05 2002-07-05 Method for estimating damage of structural members

Country Status (1)

Country Link
JP (1) JP3883916B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060401A (en) * 2008-09-03 2010-03-18 Sekisui House Ltd Method for checking damage state of brace
JP5705431B2 (en) * 2009-11-25 2015-04-22 トヨタホーム株式会社 Building and seismic element selection method
CN115183965B (en) * 2022-05-17 2023-08-08 中铁西北科学研究院有限公司 Tunnel lining earthquake accumulated damage evaluation method suitable for vibrating table test

Also Published As

Publication number Publication date
JP2004037351A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
US8640544B2 (en) Method for analyzing structure safety
US11187681B2 (en) Method for evaluating state of member
US20080059086A1 (en) System and method for determining and detecting stability loss in structures
Koo et al. Damage detection of shear buildings using deflections obtained by modal flexibility
Wang et al. A story damage index of seismically-excited buildings based on modal frequency and mode shape
Gentile Modal and structural identification of a RC arch bridge
US20080201089A1 (en) System and method for determining neutral temperature of a metal
Masciotta et al. Damage identification and seismic vulnerability assessment of a historic masonry chimney
JP2011247700A (en) Soundness diagnosing method, soundness diagnosing apparatus and soundness diagnosing program of concrete member
JP3810705B2 (en) Seismic damage evaluation method for structures using vibration measurement
Dackermann et al. A dynamic-based method for the assessment of connection systems of timber composite structures
JP3883916B2 (en) Method for estimating damage of structural members
JP3571968B2 (en) Ground anchor diagnosis method
Xu et al. Distributed strain damage identification technique for long-span bridges under ambient excitation
Goggins et al. Investigation of the seismic response of braced frames using wavelet analysis
JP2006010595A (en) Method for determining degree of structure damage due to traffic load through the use of acoustic emission sound of secondary causes
JP5897199B1 (en) Anchor bolt soundness evaluation judgment method
JP4366467B2 (en) AE sensor, structure abnormality detection method using AE sensor, and safety evaluation method
US10451399B2 (en) Methods and systems for non-destructive estimation of a length of a member
Iyama et al. Detection of beam-end fractures in steel members based on local stiffness calculated by strain response
Rytter et al. Experimental and numerical study of damaged cantilever
JP4799062B2 (en) Vibration control device
Abarkane et al. Diagnosis of hysteretic dampers used for seismic protection of structures by means ultrasonic measurements
JP2003106931A (en) Soundness degree diagnosis device
JP2013002979A (en) Method and apparatus for diagnosing deformation amount or durability of structure receiving strong external force

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3883916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees