JP3883811B2 - Device using active vibration isolator - Google Patents

Device using active vibration isolator Download PDF

Info

Publication number
JP3883811B2
JP3883811B2 JP2001005498A JP2001005498A JP3883811B2 JP 3883811 B2 JP3883811 B2 JP 3883811B2 JP 2001005498 A JP2001005498 A JP 2001005498A JP 2001005498 A JP2001005498 A JP 2001005498A JP 3883811 B2 JP3883811 B2 JP 3883811B2
Authority
JP
Japan
Prior art keywords
vibration
vibration isolation
displacement
rotating body
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001005498A
Other languages
Japanese (ja)
Other versions
JP2002213521A (en
Inventor
昌典 斎藤
一樹 佐藤
設治 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001005498A priority Critical patent/JP3883811B2/en
Publication of JP2002213521A publication Critical patent/JP2002213521A/en
Application granted granted Critical
Publication of JP3883811B2 publication Critical patent/JP3883811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は回転体の主軸の軸受に磁気軸受装置を用いた機械装置を除振台テーブルに搭載したアクティブ除振装置を用いる装置に関するものである。
【0002】
【従来の技術】
除振装置の除振台テーブルに搭載される機械装置には、高真空を必要とする電子顕微鏡半導体検査装置や半導体製造装置があり、これらの装置は半導体ウエハの加工処理や製造過程において真空ポンプで真空にし、且つ振動の除去を必要とする。高真空を発生するための手段として、例えば高速回転するロータ(回転翼)を回転体磁気軸受装置で浮上支持するターボ分子ポンプを使用している。
【0003】
上記回転体磁気軸受装置は低周波領域の剛性が弱い傾向があり、該回転体磁気軸受装置を除振台装置の除振台テーブルに搭載すると、除振装置の除振台テーブルを支持する弾性バネの固有振動数(1〜10Hz)と重なり、剛性が著しく低下するおそれがある。その結果、ロータが触れ廻ったり、接触し、振動を嫌う機械装置を加振する結果となり、非接触の浮上支持が特徴の磁気軸受としてのメリットがなくなるばかりか、このように振動を嫌う機械装置を加振することがあった。
【0004】
このため、図1に示すように、振動を減衰できるゴム製のベローズ1を介して高速回転するロータを磁気軸受装置で浮上支持するターボ分子ポンプ2を機台3に設置していたが、ターボ分子ポンプ2のロータが異常に振れ回った場合に発生する応力に耐え得る強度を確保しなければならないという問題がある。また、この問題に対処するためベローズ1の強度を増せばベローズ1の振動減衰作用が損なわれるという問題がある。
【0005】
振動を極度に嫌う電子顕微鏡、半導体製造装置等の機械装置は、空気バネ、又はゴムを用いた受動制御型の除振装置に代わり、除振台テーブルの重量の大部分を弾性バネで支持すると共に、電磁アクチュエータの制御で振動を除去するように構成されたアクティブ除振装置がある。図2はこの種のアクティブ除振装置の概略構成を示す図である。アクティブ除振装置10は、除振台ベース11と除振台テーブル12を具備し、除振台テーブル12は除振台ベース11上に設置された空気バネ等の弾性バネ13で支持されている。除振台ベース11と除振台テーブル12の間には電磁アクチュエータ14が配置され、該電磁アクチュエータ14をアクティブ除振制御装置15で制御して振動を除去するようになっている。なお、16は除振台テーブル12の振動を検出する振動センサである。
【0006】
図3はアクティブ除振制御装置15の構成例を示す図である。アクティブ除振制御装置15は振動検出手段15−1、位置検出手段15−2及び除振制御演算手段15−3を具備する。振動検出手段15−1は振動センサ16の出力を補償し、その出力を除振制御演算手段15−3に出力する。位置検出手段15−2は除振台テーブルの変位を検出する変位センサ17(電磁アクチュエータ14内に内蔵)の出力を補償し、その出力を除振制御演算手段15−3に出力する。
【0007】
除振制御演算手段15−3は振動検出手段15−1及び位置検出手段15−2の出力を加算演算し除振台テーブル12の振動を除去するための除振制御信号を得て、電磁アクチュエータ14に出力する。ここで振動センサ16及び振動検出手段15−1を通るループL1を絶対系フィードバックループといい、変位センサ17及び位置検出手段15−2を通るループL2を相対系フィードバックループという。
【0008】
図4は従来の回転体磁気軸受制御装置の構成例を示す図である。回転体磁気軸受制御装置20は回転体変位検出手段21、回転体位相補償回路22及び回転体磁気軸受制御出力手段23を具備する。回転体変位検出手段21は回転体磁気軸受30の回転体31の変位を検出する回転体変位センサ32の変位検出出力から回転体31の変位を検出する。該回転体変位センサ32の出力は回転体変位検出手段21に出力され、変位検出信号に変換される。該変位検出信号は回転体位相補償回路22で位相補償及び増幅され、回転体磁気軸受制御出力手段23に出力され、該回転体磁気軸受制御出力手段23から回転体磁気軸受30を構成する磁気コイル33に駆動電流を通電する。これを相対系フィードバックループLと言う。
【0009】
上記アクティブ除振装置の除振台テーブル上に回転体の軸受に磁気軸受装置を用いた機械装置を搭載する場合は、低周波数領域の剛性が弱い点と、除振台テーブル12を支持する弾性バネ13の固有振動数と重なり不安定制御になる。そこで、磁気軸受装置の低周波数領域の剛性を改善するために困難な開発を試みたり、別途にセンサと制御機器を設けて対応していた。
【0010】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたもので、アクティブ除振装置の振動センサ及び振動検出手段を通る絶対系の制御ループを流用することにより、磁気軸受装置を安価で安定して制御できるアクティブ除振装置を用いる装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するため請求項1に記載の発明は、回転体を具備し該回転体の主軸を磁気軸受装置で浮上支持する機械装置をアクティブ除振装置の除振台テーブルに搭載したアクティブ除振装置を用いる装置であって、磁気軸受装置は、相対系の変位制御ループで制御される磁気軸受装置であり、アクティブ除振装置は、除振台テーブルを除振ベースに支持する弾性バネと、該除振台テーブルと該除振ベースの間に配置され該除振台テーブルを電磁石によって除振制御する電磁アクチュエータと、除振台テーブルの振動を検出する振動センサと、該振動センサの出力を補償する除振検出手段と、除振台テーブルの変位を検出する変位センサと、該変位センサの出力を補償する位置検出手段と、除振検出手段の出力と位置検出手段の出力を加算演算し除振制御信号を得る除振制御演算手段を具備し、該除振制御演算手段からの除振制御信号で前記電磁アクチュエータと駆動するように構成し、除振検出手段の出力を磁気軸受装置の相対系の変位制御ループに加算手段を介して加算するように構成したことを特徴とする。
【0012】
上記のように除振検出手段の出力、即ちアクティブ除振装置の絶対系の制御ループ信号を磁気軸受装置の相対系の変位の制御ループに加算手段を介して加算することにより、安価で安定した制御が可能となる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態例を図面に基づいて説明する。図5及び図6は本発明に係るアクティブ除振装置を用いる装置の構成例を示す図で、図5は全体構成を、図6は一部構成をそれぞれ示す。10はアクティブ除振装置であり、該アクティブ除振装置10は除振台設置床41面上に設けられた機械装置架台42上に設置されている。アクティブ除振装置10上には機械装置43が搭載されている。該機械装置43は図6に示すように、例えばターボ分子ポンプ等の回転機械装置44を具備し、該回転機械装置44は後に詳述するような回転体主軸が磁気軸受で浮上支持されるようになっている。
【0014】
図7はアクティブ除振装置10の電磁アクチュエータ14の構成例を示す図で、電磁アクチュエータ14は可動部14−1と固定部14−2を具備し、固定部14−2には水平方向磁気コイル(ラジアル磁気コイル)14−3及び鉛直方向磁気コイル(アキシャル磁気コイル)14−4が設けられ、更に水平方向変位センサ17a及び鉛直方向変位センサ17bからなる変位センサ17が設けられている。可動部14−1は除振台テーブル12に固定され、固定部14−2は除振台ベース11に固定される。電磁アクチュエータ14の水平方向磁気コイル14−3及び鉛直方向磁気コイル14−4はアクティブ除振制御装置15により制御され、除振台テーブル12の振動を除去するようになっている。
【0015】
図8は回転機械装置(ここではターボ分子ポンプを示す)44の断面構成を示す図である。回転機械装置は回転体(回転翼)31を具備し、該回転体31の主軸31aは水平方向磁気コイル(アキシャル磁気コイル)33a及び鉛直方向磁気コイル(ラジアル磁気コイル)33bからなる磁気コイル33(図9参照)を具備する回転体磁気軸受30により浮上支持されている。水平方向磁気コイル33a及び鉛直方向磁気コイル33bが設けられた静止体35は図6に示すように除振台テーブル12に搭載された機械装置43のケーシング43aに固定されている。なお図8において、36は回転駆動用モータコイルである。
【0016】
また、静止体35には回転体31の変位を検出する水平方向変位センサ(ラジアル変位センサ)32a及び鉛直方向変位センサ(アキシャル変位センサ)32bを具備する回転体変位センサ32(図9参照)が設けられている。回転体磁気軸受30の水平方向磁気コイル33a及び鉛直方向磁気コイル33bからなる磁気コイル33は後に詳述するように回転体磁気軸受制御装置20’により駆動制御され、回転体31を所定位置に浮上支持するようになっている。
【0017】
図9は回転体磁気軸受制御装置20’及びアクティブ除振制御装置15の構成例を示す図である。回転体磁気軸受制御装置20’は、回転体変位検出手段21、回転体位相補償回路22及び回転体磁気軸受制御出力手段23を具備する相対系の変位制御ループLの回転体位相補償回路22と回転体磁気軸受制御出力手段23の間に加算手段24を設けている。回転体変位検出手段21は回転体磁気軸受30の回転体31の変位を検出する回転体変位センサ32(図8の水平方向変位センサ32a、鉛直方向変位センサ32b)の変位検出出力から回転体31の変位(水位方向変位、鉛直方向変位)を検出する。
【0018】
回転体変位センサ32の出力は回転体変位検出手段21で変位検出信号に変換され、該変位検出信号は回転体位相補償回路22で位相補償及び増幅され、加算手段24で後述するようにアクティブ除振制御装置15の出力、即ちアクティブ除振制御装置15の絶対系の制御ループ信号を加算し、回転体磁気軸受制御出力手段23に出力し、該回転体磁気軸受制御出力手段23から回転体磁気軸受30を構成する磁気コイル33に駆動電流を通電する。
【0019】
アクティブ除振制御装置15は、図3と同様、振動検出手段15−1、位置検出手段15−2及び除振制御演算手段15−3を具備する。振動検出手段15−1は振動センサ16の出力を補償し、その出力を除振制御演算手段15−3に出力する。位置検出手段15−2は除振台テーブルの変位を検出する変位センサ17(電磁アクチュエータ14内に内蔵)の出力を補償し、その出力を除振制御演算手段15−3に出力する。除振制御演算手段15−3は振動検出手段15−1及び位置検出手段15−2の検出信号から除振台テーブル12の振動を除去するための除振制御信号を得るための除振制御演算を行い、電磁アクチュエータ14の水平方向磁気コイル14−3及び鉛直方向磁気コイル14−4(図7参照)に駆動制御電流を通電し除振台テーブルの振動を除去する。
【0020】
図10は回転体磁気軸受制御装置20’の変位検出例を示す図である。回転体31が機械的中心に位置している場合は、X軸方向における回転体31と変位センサ32a(+X)との間隔Gap(+)及び回転体31と変位センサ32a(−X)との間隔Gap(−)が等しくなる。この時、回転体変位検出手段21のX軸方向検出出力は0電位となり、回転体31が変位センサ32a(+X)側に寄れば間隔Gap(+)と間隔Gap(−)の差に比例した変位検出信号が得られる。変位センサ32a(+Y)と変位センサ32a(−Y)を有するY軸方向も同様である。また、図示は省略するが鉛直方向の変位を検出する場合も同様である。
【0021】
図5に示すようにアクティブ除振装置10の除振台テーブル12上に磁気軸受装置を用いた回転機械装置44を搭載すると、磁気軸受の低周波領域の剛性が弱い点と、除振台テーブル12を支持する弾性バネ13の固有周波数とが重なり不安定な制御となるが、ここでは図9に示すようにアクティブ除振制御装置15の振動検出手段15−1の出力、即ちアクティブ除振装置15の絶対系の制御ループL1の信号を回転体磁気軸受制御装置20’の相対系の変位の制御ループLに加算手段24を介して加算することにより、別途センサや制御機器を設けることなく、回転体磁気軸受30の安定した制御が可能となる。
【0022】
【発明の効果】
以上説明したように請求項1に記載の発明によれば下記のような優れた効果が得られる。
【0023】
請求項1に記載の発明によれば、除振検出手段の出力、即ちアクティブ除振装置の絶対系の制御ループ信号を磁気軸受装置の相対系の変位の制御ループに加算手段を介して加算することにより、別途センサや制御機器を設けることなく、安価で安定した制御が可能となる。
【図面の簡単な説明】
【図1】従来のベローズを用いてターボ分子ポンプを取り付ける装置の構成例を示す図である。
【図2】従来のアクティブ除振装置の概略構成例を示す図である。
【図3】従来のアクティブ除振制御装置の構成を示す図である。
【図4】従来の回転体磁気軸受制御装置の構成例を示す図である。
【図5】本発明に係るアクティブ除振装置を用いる装置構成例を示す図である。
【図6】図5に示す装置の一部構成を示す図である。
【図7】本発明に係るアクティブ除振装置の電磁アクチュエータの構成例を示す図である。
【図8】本発明に係るアクティブ除振装置に搭載する回転機械装置の構成例を示す図である。
【図9】本発明に係るアクティブ除振装置の制御装置の構成例を示す図である。
【図10】回転体磁気軸受制御装置の回転体の変位検出例を示す図である。
【符号の説明】
10 アクティブ除振装置
11 除振台ベース
12 除振台テーブル
13 弾性バネ
14 電磁アクチュエータ
14−1 可動部
14−2 固定部
14−3 水平方向磁気コイル
14−4 鉛直方向磁気コイル
15 アクティブ除振制御装置
15−1 振動検出手段
15−2 位置検出手段
15−3 除振制御演算手段
16 振動センサ
17 変位センサ
20’ 回転体磁気軸受制御装置
21 回転体変位検出手段
22 回転体位相補償回路
23 回転体磁気軸受制御出力手段
24 加算手段
30 回転体磁気軸受
31 回転体
32 回転体変位センサ
33 磁気コイル
35 静止体
36 回転駆動用モータコイル
41 除振台設置床
42 機械装置架台
43 機械装置
44 回転機械装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus using an active anti-vibration apparatus equipped with a mechanical apparatus using a magnetic bearing device on the bearing of the main shaft of the rotating body vibration isolation table table.
[0002]
[Prior art]
The mechanical devices mounted on the vibration isolation table of the vibration isolation device include an electron microscope , a semiconductor inspection device, and a semiconductor manufacturing device that require a high vacuum, and these devices are vacuum in the processing and manufacturing processes of semiconductor wafers. The pump is evacuated and vibrations need to be removed. As a means for generating a high vacuum, for example, a turbo molecular pump is used in which a rotor (rotary blade) that rotates at high speed is levitated and supported by a rotating magnetic bearing device.
[0003]
The rotating body magnetic bearing device tends to have low rigidity in the low frequency region, and when the rotating body magnetic bearing device is mounted on the vibration isolation table of the vibration isolation table device, the elastic body supporting the vibration isolation table of the vibration isolation device is supported. It may overlap with the natural frequency (1-10 Hz) of the spring, and the rigidity may be significantly reduced. As a result, the rotor touches and touches and vibrates a mechanical device that dislikes vibration, which not only eliminates the merit as a magnetic bearing characterized by non-contact floating support, but also dislikes vibration in this way. Was sometimes shaken.
[0004]
For this reason, as shown in FIG. 1, a turbo molecular pump 2 that floats and supports a rotor that rotates at high speed via a rubber bellows 1 capable of damping vibrations is installed in a machine base 3. There is a problem that it is necessary to secure a strength capable of withstanding the stress generated when the rotor of the molecular pump 2 swings abnormally. In addition, if the strength of the bellows 1 is increased to cope with this problem, the vibration damping action of the bellows 1 is impaired.
[0005]
Mechanical devices such as electron microscopes and semiconductor manufacturing devices that are extremely hated of vibration support most of the weight of the vibration isolation table with elastic springs instead of passive control type vibration isolation devices using air springs or rubber. In addition, there is an active vibration isolator configured to remove vibration by controlling an electromagnetic actuator. FIG. 2 is a diagram showing a schematic configuration of this type of active vibration isolator. The active vibration isolation device 10 includes a vibration isolation table base 11 and a vibration isolation table 12, and the vibration isolation table 12 is supported by an elastic spring 13 such as an air spring installed on the vibration isolation table base 11. . An electromagnetic actuator 14 is disposed between the vibration isolation table base 11 and the vibration isolation table 12. The electromagnetic actuator 14 is controlled by an active vibration isolation control device 15 so as to remove vibration. Reference numeral 16 denotes a vibration sensor that detects vibration of the vibration isolation table 12.
[0006]
FIG. 3 is a diagram illustrating a configuration example of the active vibration isolation control device 15. The active vibration isolation control device 15 includes vibration detection means 15-1, position detection means 15-2, and vibration isolation control calculation means 15-3. The vibration detection means 15-1 compensates the output of the vibration sensor 16, and outputs the output to the vibration isolation control calculation means 15-3. The position detection means 15-2 compensates the output of the displacement sensor 17 (built in the electromagnetic actuator 14) for detecting the displacement of the vibration isolation table and outputs the output to the vibration isolation control calculation means 15-3.
[0007]
The anti-vibration control calculating means 15-3 adds the outputs of the vibration detecting means 15-1 and the position detecting means 15-2 and obtains an anti-vibration control signal for removing the vibration of the anti-vibration table 12, and the electromagnetic actuator 14 for output. Here, the loop L1 passing through the vibration sensor 16 and the vibration detection means 15-1 is referred to as an absolute system feedback loop, and the loop L2 passing through the displacement sensor 17 and the position detection means 15-2 is referred to as a relative system feedback loop.
[0008]
FIG. 4 is a diagram showing a configuration example of a conventional rotating body magnetic bearing control device. The rotating body magnetic bearing control device 20 includes a rotating body displacement detecting means 21, a rotating body phase compensation circuit 22, and a rotating body magnetic bearing control output means 23. The rotating body displacement detecting means 21 detects the displacement of the rotating body 31 from the displacement detection output of the rotating body displacement sensor 32 that detects the displacement of the rotating body 31 of the rotating body magnetic bearing 30. The output of the rotating body displacement sensor 32 is output to the rotating body displacement detection means 21 and converted into a displacement detection signal. The displacement detection signal is phase compensated and amplified by the rotating body phase compensation circuit 22, and is output to the rotating body magnetic bearing control output means 23. The magnetic coil constituting the rotating body magnetic bearing 30 from the rotating body magnetic bearing control output means 23. A drive current is applied to 33. This is called a relative feedback loop L.
[0009]
When a mechanical device using a magnetic bearing device as a bearing of a rotating body is mounted on the vibration isolation table of the active vibration isolation device, the rigidity in the low frequency region is weak and the elasticity that supports the vibration isolation table 12 Overlap with the natural frequency of the spring 13 results in unstable control. Therefore, it has been difficult to try to improve the rigidity of the magnetic bearing device in the low frequency region, or a separate sensor and control device have been provided.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and by utilizing an absolute control loop passing through the vibration sensor and vibration detection means of the active vibration isolator, the active magnetic bearing device can be controlled stably at low cost. An object of the present invention is to provide an apparatus using a vibration isolation device.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, an invention according to claim 1 is directed to an active vibration removal device in which a mechanical device that includes a rotating body and levitates and supports a main shaft of the rotating body by a magnetic bearing device is mounted on a vibration isolation table of an active vibration isolation device. A magnetic bearing device is a magnetic bearing device controlled by a relative displacement control loop , and an active vibration isolation device includes an elastic spring that supports a vibration isolation table on a vibration isolation base. an electromagnetic actuator for controlling vibration damping by 該除vibration table table and該除vibration base arranged between the electromagnets the anti-vibration table table, a vibration sensor for detecting vibration of the vibration isolation table table of the vibration sensors An anti-vibration detecting means for compensating the output, a displacement sensor for detecting the displacement of the anti-vibration table, a position detecting means for compensating the output of the displacement sensor, an output of the anti-vibration detecting means, and an output of the position detecting means are added. Calculated equipped with anti-vibration control operation unit to obtain a vibration isolation control signal, and configured to drive said electromagnetic actuator in the vibration isolation control signal from該除vibration control operation unit, a magnetic bearing and the output of the vibration isolation detection means The present invention is characterized in that the addition is made via an adding means to the displacement control loop of the relative system of the apparatus.
[0012]
As described above, the output of the vibration isolation detection means, that is, the control loop signal of the absolute system of the active vibration isolation device is added to the control loop of the relative system displacement of the magnetic bearing device through the addition means, thereby being inexpensive and stable. Control becomes possible.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 5 and 6 are diagrams showing a configuration example of an apparatus using the active vibration isolator according to the present invention. FIG. 5 shows an overall configuration, and FIG. 6 shows a partial configuration. Reference numeral 10 denotes an active vibration isolator, and the active vibration isolator 10 is installed on a mechanical device stand 42 provided on the surface of a vibration isolator mounting floor 41. A mechanical device 43 is mounted on the active vibration isolator 10. As shown in FIG. 6, the mechanical device 43 includes a rotating mechanical device 44 such as a turbo molecular pump, and the rotating mechanical device 44 is configured such that the rotating body main shaft is levitated and supported by a magnetic bearing as described in detail later. It has become.
[0014]
FIG. 7 is a diagram illustrating a configuration example of the electromagnetic actuator 14 of the active vibration isolator 10. The electromagnetic actuator 14 includes a movable portion 14-1 and a fixed portion 14-2, and the fixed portion 14-2 includes a horizontal magnetic coil. A (radial magnetic coil) 14-3 and a vertical magnetic coil (axial magnetic coil) 14-4 are provided, and a displacement sensor 17 including a horizontal displacement sensor 17a and a vertical displacement sensor 17b is further provided. The movable part 14-1 is fixed to the vibration isolation table 12 and the fixed part 14-2 is fixed to the vibration isolation base 11. The horizontal direction magnetic coil 14-3 and the vertical direction magnetic coil 14-4 of the electromagnetic actuator 14 are controlled by the active vibration isolation control device 15 so as to remove the vibration of the vibration isolation table 12.
[0015]
FIG. 8 is a view showing a cross-sectional configuration of a rotating machine device (here, a turbo molecular pump is shown) 44. The rotating machine device includes a rotating body (rotating blade) 31, and a main shaft 31 a of the rotating body 31 is a magnetic coil 33 (a horizontal magnetic coil (axial magnetic coil) 33 a and a vertical magnetic coil (radial magnetic coil) 33 b. It is levitated and supported by a rotating magnetic bearing 30 having a structure shown in FIG. The stationary body 35 provided with the horizontal magnetic coil 33a and the vertical magnetic coil 33b is fixed to the casing 43a of the mechanical device 43 mounted on the vibration isolation table 12 as shown in FIG. In FIG. 8, reference numeral 36 denotes a rotational drive motor coil.
[0016]
Further, the stationary body 35 includes a rotating body displacement sensor 32 (see FIG. 9) having a horizontal direction displacement sensor (radial displacement sensor) 32a for detecting the displacement of the rotating body 31 and a vertical direction displacement sensor (axial displacement sensor) 32b. Is provided. The magnetic coil 33 including the horizontal magnetic coil 33a and the vertical magnetic coil 33b of the rotary magnetic bearing 30 is driven and controlled by the rotary magnetic bearing control device 20 'as described later in detail, and the rotary body 31 is floated to a predetermined position. It comes to support.
[0017]
FIG. 9 is a diagram illustrating a configuration example of the rotating body magnetic bearing control device 20 ′ and the active vibration isolation control device 15. The rotating body magnetic bearing control device 20 ′ includes a rotating body phase compensation circuit 22 of a relative system displacement control loop L including a rotating body displacement detection means 21, a rotating body phase compensation circuit 22, and a rotating body magnetic bearing control output means 23; An adding means 24 is provided between the rotating body magnetic bearing control output means 23. The rotator displacement detection means 21 detects the displacement of the rotator 31 from the displacement detection output of the rotator displacement sensor 32 (horizontal displacement sensor 32a and vertical displacement sensor 32b in FIG. 8) that detects the displacement of the rotator 31 of the rotator magnetic bearing 30. Displacement (water level direction displacement, vertical direction displacement) is detected.
[0018]
The output of the rotator displacement sensor 32 is converted into a displacement detection signal by the rotator displacement detector 21, and the displacement detection signal is phase compensated and amplified by the rotator phase compensation circuit 22, and is added by the adder 24 as described later. The output of the vibration control device 15, that is, the control loop signal of the absolute system of the active vibration isolation control device 15 is added and output to the rotating body magnetic bearing control output means 23, and the rotating body magnetic bearing control output means 23 outputs the rotating body magnetism. A drive current is applied to the magnetic coil 33 constituting the bearing 30.
[0019]
As in FIG. 3, the active vibration isolation control device 15 includes vibration detection means 15-1, position detection means 15-2, and vibration isolation control calculation means 15-3. The vibration detection means 15-1 compensates the output of the vibration sensor 16, and outputs the output to the vibration isolation control calculation means 15-3. The position detection means 15-2 compensates the output of the displacement sensor 17 (built in the electromagnetic actuator 14) for detecting the displacement of the vibration isolation table and outputs the output to the vibration isolation control calculation means 15-3. The vibration isolation control calculation means 15-3 is a vibration isolation control calculation for obtaining a vibration isolation control signal for removing the vibration of the vibration isolation table 12 from the detection signals of the vibration detection means 15-1 and the position detection means 15-2. Then, a drive control current is applied to the horizontal magnetic coil 14-3 and the vertical magnetic coil 14-4 (see FIG. 7) of the electromagnetic actuator 14 to remove the vibration of the vibration isolation table.
[0020]
FIG. 10 is a diagram showing an example of displacement detection of the rotating body magnetic bearing control device 20 ′. When the rotator 31 is located at the mechanical center, the gap Gap (+) between the rotator 31 and the displacement sensor 32a (+ X) in the X-axis direction and between the rotator 31 and the displacement sensor 32a (−X). The gap Gap (−) becomes equal. At this time, the X-axis direction detection output of the rotating body displacement detecting means 21 becomes 0 potential, and is proportional to the difference between the gap Gap (+) and the gap Gap (−) when the rotating body 31 is moved to the displacement sensor 32a (+ X) side. A displacement detection signal is obtained. The same applies to the Y-axis direction having the displacement sensor 32a (+ Y) and the displacement sensor 32a (-Y). Although not shown, the same applies to the case of detecting the displacement in the vertical direction.
[0021]
As shown in FIG. 5, when a rotary machine device 44 using a magnetic bearing device is mounted on the vibration isolation table 12 of the active vibration isolation device 10, the low-frequency region rigidity of the magnetic bearing is weak, and the vibration isolation table The natural frequency of the elastic spring 13 that supports 12 overlaps and becomes unstable control. Here, as shown in FIG. 9, the output of the vibration detecting means 15-1 of the active vibration isolation control device 15, that is, the active vibration isolation device By adding the signal of the 15 absolute control loop L1 to the relative control displacement control loop L of the rotating body magnetic bearing control device 20 ′ via the adding means 24, a separate sensor or control device is not provided. Stable control of the rotating body magnetic bearing 30 is possible.
[0022]
【The invention's effect】
As described above, according to the first aspect of the invention, the following excellent effects can be obtained.
[0023]
According to the first aspect of the present invention, the output of the vibration isolation detecting means, that is, the control loop signal of the absolute system of the active vibration isolation device is added to the control loop of the relative system displacement of the magnetic bearing device via the adding means. Thus, inexpensive and stable control is possible without providing a separate sensor or control device.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration example of an apparatus for attaching a turbo molecular pump using a conventional bellows.
FIG. 2 is a diagram illustrating a schematic configuration example of a conventional active vibration isolator.
FIG. 3 is a diagram showing a configuration of a conventional active vibration isolation control device.
FIG. 4 is a diagram showing a configuration example of a conventional rotating body magnetic bearing control device.
FIG. 5 is a diagram showing an apparatus configuration example using the active vibration isolator according to the present invention.
6 is a diagram showing a partial configuration of the apparatus shown in FIG. 5;
FIG. 7 is a diagram showing a configuration example of an electromagnetic actuator of the active vibration isolator according to the present invention.
FIG. 8 is a diagram showing a configuration example of a rotary machine device mounted on an active vibration isolator according to the present invention.
FIG. 9 is a diagram illustrating a configuration example of a control device of an active vibration isolator according to the present invention.
FIG. 10 is a diagram showing an example of displacement detection of a rotating body of the rotating body magnetic bearing control device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Active vibration isolator 11 Vibration isolation base 12 Vibration isolation table 13 Elastic spring 14 Electromagnetic actuator 14-1 Movable part 14-2 Fixed part 14-3 Horizontal direction magnetic coil 14-4 Vertical direction magnetic coil 15 Active vibration isolation control Device 15-1 Vibration detection means 15-2 Position detection means 15-3 Anti-vibration control calculation means 16 Vibration sensor 17 Displacement sensor 20 'Rotating body magnetic bearing control device 21 Rotating body displacement detection means 22 Rotating body phase compensation circuit 23 Rotating body Magnetic bearing control output means 24 Addition means 30 Rotating body magnetic bearing 31 Rotating body 32 Rotating body displacement sensor 33 Magnetic coil 35 Stationary body 36 Motor coil 41 for rotational drive Vibration isolator installation floor 42 Mechanical device mount 43 Mechanical device 44 Rotating mechanical device

Claims (1)

回転体を具備し該回転体の主軸を磁気軸受装置で浮上支持する機械装置をアクティブ除振装置の除振台テーブルに搭載したアクティブ除振装置を用いる装置であって、
前記磁気軸受装置は、相対系の変位制御ループで制御される磁気軸受装置であり、
前記アクティブ除振装置は、前記除振台テーブルを除振ベースに支持する弾性バネと、該除振台テーブルと該除振ベースの間に配置され該除振台テーブルを電磁石によって除振制御する電磁アクチュエータと、除振台テーブルの振動を検出する振動センサと、該振動センサの出力を補償する除振検出手段と、前記除振台テーブルの変位を検出する変位センサと、該変位センサの出力を補償する位置検出手段と、前記除振検出手段の出力と前記位置検出手段の出力を加算演算し除振制御信号を得る除振制御演算手段を具備し、該除振制御演算手段からの除振制御信号で前記電磁アクチュエータと駆動するように構成し、
前記除振検出手段の出力を前記磁気軸受装置の相対系の変位制御ループに加算手段を介して加算するように構成したことを特徴とするアクティブ除振装置を用いる装置。
An apparatus using an active vibration isolator having a rotating body and mounting a mechanical device that floats and supports the main shaft of the rotating body with a magnetic bearing device on a vibration isolation table of the active vibration isolator,
The magnetic bearing device is a magnetic bearing device controlled by a relative displacement control loop ,
The active anti-vibration apparatus includes a resilient spring which supports the vibration isolation based on the anti-vibration table table, is disposed between the該除vibration base and該除isolation base tables vibration damping control by the electromagnet the anti-vibration table table an electromagnetic actuator, a vibration sensor for detecting vibration of the vibration isolating stand table, a vibration isolation detection means for compensating the output of said vibration sensor, a displacement sensor for detecting the displacement of the anti-vibration table table, of the displacement sensor A position detecting means for compensating the output; and an anti-vibration control calculating means for adding and calculating an output of the anti-vibration detecting means and an output of the position detecting means to obtain an anti-vibration control signal, from the anti-vibration control calculating means It is configured to drive with the electromagnetic actuator by a vibration isolation control signal ,
An apparatus using an active vibration isolation device , wherein the output of the vibration isolation detection means is added to a displacement control loop of a relative system of the magnetic bearing device via an addition means .
JP2001005498A 2001-01-12 2001-01-12 Device using active vibration isolator Expired - Fee Related JP3883811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001005498A JP3883811B2 (en) 2001-01-12 2001-01-12 Device using active vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001005498A JP3883811B2 (en) 2001-01-12 2001-01-12 Device using active vibration isolator

Publications (2)

Publication Number Publication Date
JP2002213521A JP2002213521A (en) 2002-07-31
JP3883811B2 true JP3883811B2 (en) 2007-02-21

Family

ID=18873543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001005498A Expired - Fee Related JP3883811B2 (en) 2001-01-12 2001-01-12 Device using active vibration isolator

Country Status (1)

Country Link
JP (1) JP3883811B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502006008131D1 (en) * 2006-06-23 2010-12-02 Integrated Dynamics Eng Gmbh Active vibration isolation system with improved sensor / actuator tuning
KR101584700B1 (en) * 2014-08-26 2016-01-15 주식회사 대일시스템 Active vibration control apparatus

Also Published As

Publication number Publication date
JP2002213521A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
USRE41035E1 (en) Magnetic bearing device with vibration restraining function, magnetic bearing device with vibration estimating function, and pump device with the magnetic bearing devices mounted thereto
EP0767320B1 (en) Vibration damping apparatus
JP3046533B2 (en) Bearing unit
JP4165903B2 (en) Integrated magnetic levitation and rotation device
JP2539906B2 (en) Magnetic anti-vibration device
JP2002122138A (en) Magnetic bearing device
JPH1089403A (en) Vibration control device
KR100644852B1 (en) Magnetic bearing protective device and turbomolecular pump
JPH02118225A (en) Method of actively controlling vibration generated in fixing section of rotary machine and magnetic controller for structure vibration
EP1574719A2 (en) Method and apparatus to reduce vibrations in a pumping arrangement
KR20180116222A (en) A method for operating an apparatus for at least one of holding, positioning, and moving an apparatus and an object for at least one of holding, positioning, and moving an object
CN106877588A (en) Rotor orientation device for reducing vibration and noise
JP3883811B2 (en) Device using active vibration isolator
JP2007120646A (en) Damping device and exposure device having the same
JP3789750B2 (en) Active vibration isolator
JP4914165B2 (en) Damping device and damping method
JP2014196693A (en) Vacuum pump connecting device connecting vacuum pump to lens barrel of electronic beam application device and method for installing vacuum pump connecting device
JP2001214934A (en) Magnetic bearing device
JPH0674297A (en) Electromagnetic actuator
JP2522736B2 (en) Vibration isolation device
JP4152121B2 (en) Vacuum exhaust system using turbo molecular pump
JPH0974061A (en) Damper and exposer
JP2951488B2 (en) Anti-vibration device
JP3625904B2 (en) Magnetic bearing device
JPH07113394B2 (en) Vibration isolation device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060616

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees