JP3883461B2 - Iridium-hafnium-coated nickel-base superalloy - Google Patents

Iridium-hafnium-coated nickel-base superalloy Download PDF

Info

Publication number
JP3883461B2
JP3883461B2 JP2002086825A JP2002086825A JP3883461B2 JP 3883461 B2 JP3883461 B2 JP 3883461B2 JP 2002086825 A JP2002086825 A JP 2002086825A JP 2002086825 A JP2002086825 A JP 2002086825A JP 3883461 B2 JP3883461 B2 JP 3883461B2
Authority
JP
Japan
Prior art keywords
iridium
hafnium
base superalloy
coated nickel
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002086825A
Other languages
Japanese (ja)
Other versions
JP2003277953A (en
Inventor
秀之 村上
豊 呉
彩 鈴木
洋明 吉岡
一秀 松本
武久 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
National Institute for Materials Science
Original Assignee
Toshiba Corp
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, National Institute for Materials Science filed Critical Toshiba Corp
Priority to JP2002086825A priority Critical patent/JP3883461B2/en
Publication of JP2003277953A publication Critical patent/JP2003277953A/en
Application granted granted Critical
Publication of JP3883461B2 publication Critical patent/JP3883461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、イリジウム−ハフニウム被覆ニッケル基超合金に関するものである。さらに詳しくは、この出願の発明は、ニッケル基超合金により形成される部材の耐高温酸化性、耐高温腐食性及び母材の組織安定性の向上、そして、母材の長寿命化が見込まれるイリジウム−ハフニウム被覆ニッケル基超合金に関するものである。
【0002】
【従来の技術とその課題】
ニッケル基超合金(Ni基超合金)は、高温、高応力下に曝されるジェットエンジンやガスタービンのタービンブレード、タービンベーンなど用の材料に用いられている。炭酸ガス削減のための有力な手段の一つに上記内燃機関の高効率化が考えられており、運転温度の上昇にともない、母材に要求される耐高温酸化性及び耐高温腐食性は厳しくなっている。
【0003】
これまで耐酸化性の向上には、母材表面に、アルミニウム(Al)、クロム(Cr)に富んだ合金を被覆し、アルミナ(Al23)、クロミア(Cr23)といった酸化物不動態を形成する、若しくはAl、Crを母材表面中に拡散浸透させるのが一般的であった。
【0004】
しかしながら、上記の表面改質方法で対処することが難しくなってきているのが現状である。
【0005】
それというのも、温度が上昇するにつれて、被膜中のAl、Crが母材中のNiに拡散し、被膜の耐酸化性が弱まるとともに、母材中に有害相が析出し、これにより母材が劣化するからである。
【0006】
この出願の発明は、このような事情に鑑みてなされたものであり、ニッケル基超合金により形成される部材の耐高温酸化性、耐高温腐食性及び母材の組織安定性の向上、そして、母材の長寿命化が見込まれるイリジウム−ハフニウム被覆ニッケル基超合金を提供することを解決すべき課題としている。
【0007】
【課題を解決するための手段】
この出願の発明は、以上の課題を解決するものとして、ニッケル基超合金の表面にイリジウム−ハフニウム合金被膜が形成され、イリジウム−ハフニウム合金被膜の表面にアルミニウム被膜が形成されたイリジウム−ハフニウム被覆ニッケル基超合金にアルミニウムが拡散浸透されていることを特徴とするイリジウム−ハフニウム被覆ニッケル基超合(請求項1)を提供する。
【0008】
またこの出願の発明は、イリジウム−ハフニウム合金被膜の厚みが5μm〜100μmであること(請求項2)、イリジウム−ハフニウム合金被膜中のイリジウムの含有量が50原子%〜98原子%であること(請求項3)、イリジウム−ハフニウム合金被膜中のイリジウムの含有量が75原子%であり、ハフニウムの含有量が25原子%であること(請求項4)をそれぞれ一態様として提供する。
【0009】
以下、実施例を示しつつ、この出願の発明のイリジウム−ハフニウム被覆ニッケル基超合金についてさらに詳しく説明する。
【0010】
【発明の実施の形態】
この出願の発明のイリジウム−ハフニウム被覆ニッケル基超合金では、前記の通り、ニッケル基超合金の表面にイリジウム−ハフニウム合金被膜が形成されている。
【0011】
イリジウム(Ir)とハフニウム(Hf)は、金属間化合物相Ir3Hfを形成する。この金属間化合物相Ir3Hfは、アルミニウム(Al)、クロム(Cr)で問題となっている、ニッケル基超合金から形成された母材中への拡散を抑制することができ、Ir−Hf合金被膜は、それらAl、Crの拡散バリア層として機能する。また、Ir、Hfはともに、その酸化物は安定しており、ニッケル基超合金の耐酸化性が向上する。したがって、母材中への有害相の析出が抑制され、母材の組織が安定化する。しかも、Irは、耐腐食性に優れており、耐腐食性の向上も実現可能とする。
【0012】
なお、Ir−Hf合金被膜は、厚みが5μm未満では、拡散バリア層としてその性能を十分に発揮しにくく、100μmを超えると、Ir−Hf合金被膜の熱膨張率はNi基超合金のそれよりも小さいため、熱膨張率の差に起因して生ずる熱疲労によりIr−Hf合金被膜が剥離しやすくなり、母材の寿命に影響を及ぼすようになる。したがって、Ir−Hf合金被膜の厚みは、5μm〜100μmが好ましい。
【0013】
また、前述の通り、金属間化合物相Ir3HfをIr−Hf合金被膜中に析出させるためには、Ir−Hf合金被膜中のIrの含有量は50原子%以上98原子%以下とするのが好ましい。
【0014】
この出願の発明のイリジウム−ハフニウム被覆ニッケル基超合金は、Ir−Hf合金被膜形成後に、その表面へのAlの複層コーティングをはじめ、さらに、Alの拡散浸透処理を適用することにより、耐高温酸化性、耐高温腐食性及び母材の組織安定性の向上、そして、母材の長寿命化が可能となる。
【0015】
【実施例】
Ni基超合金としてTMS−75(Ni−12.6Co−3.5Cr−1.3Mo−2W−13.7Al−2Ta−0.04Hf−1.67Re、数字は原子%を示す)を選択し、これを用いて母材を形成し、母材表面に、アーク溶解法により作製したIr75原子%−Hf25原子%合金(原料の純度は、Ir、Hfともに99.99%)の厚み約5μmの被膜、厚み約2μmのAl被膜を、順次、電子ビーム物理蒸着法により形成した。この時、神港精機(株)製AMF−1050SB型蒸着装置を用い、製膜条件は、真空度1.2〜3.5×10-3Pa、電子ビーム電圧10kVとした。
【0016】
この後、試料をアセトンで洗浄し、次いで、Al、Al23、鉄(Fe)及び塩化アンモニウム(NH4Cl)の混合粉末中に入れ、Ar雰囲気中で1000℃、5時間のAlの拡散浸透処理を行った。
【0017】
そして、作製した試料の耐酸化性について評価した。具体的には、試料を1100℃で20時間大気中に保持した後、室温まで冷却するプロセスを1サイクルとし、これを6回繰り返す繰り返し酸化試験を行った。
【0018】
得られた結果を、Hf単体を母材表面に被覆した後、Alを被覆し、さらにAlの拡散浸透処理を行ったもの、Ir−Hf合金被膜を形成せず、直接母材にAlの拡散浸透処理を行ったものについて同様の試験を行った結果と比較した。
【0019】
図1は、繰り返し酸化試験の結果を示したグラフである。
【0020】
酸化試験中、試料は、酸化にともない重量が増加し、その後、揮発若しくは剥離により重量の減少が起こる。したがって、重量変化量の小さいものが最も耐酸化性に優れていると結論される。図1に示した結果から、Ir−Hf合金被膜を母材に形成し、Al被膜を複層コーティングした後にAlの拡散浸透処理を行ったものが最も耐酸化性に優れていることが確認される。IrとHfの合金化により耐酸化性が向上し、これは、Ir−Hf合金被膜の拡散バリア層としての機能の実証ともいえる。
【0021】
このような拡散バリア層としての機能に加え、前述の通り、Irは耐腐食性にも優れていることから、イリジウム−ハフニウム被覆ニッケル基超合金は、耐腐食性の向上に有効であると合理的に考えられる。
【0022】
もちろん、この出願の発明は、以上の実施形態によって限定されるものではない。母材を形成するNi基超合金の種類、組成、Ir−Hf合金被膜の組成、形成方法、厚みなどの細部については様々な態様が可能であることはいうまでもない。
【0023】
【発明の効果】
以上詳しく説明した通り、この出願の発明によって、ニッケル基超合金により形成される部材の耐高温酸化性、耐高温腐食性及び母材の組織安定性の向上、そして、母材の長寿命化が見込まれる。
【図面の簡単な説明】
【図1】繰り返し酸化試験の結果を示したグラフである。
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to an iridium-hafnium-coated nickel-base superalloy. More specifically, the invention of this application is expected to improve the high-temperature oxidation resistance, high-temperature corrosion resistance and base metal structure stability of a member formed of a nickel-base superalloy, and extend the base material life. It relates to an iridium-hafnium-coated nickel-base superalloy.
[0002]
[Prior art and its problems]
Nickel-based superalloys (Ni-based superalloys) are used as materials for jet engines, gas turbine turbine blades, and turbine vanes that are exposed to high temperatures and high stresses. One of the effective means for reducing carbon dioxide gas is to increase the efficiency of the internal combustion engine. As the operating temperature rises, the high temperature oxidation resistance and high temperature corrosion resistance required for the base metal are severe. It has become.
[0003]
To improve oxidation resistance, the base metal surface is coated with an alloy rich in aluminum (Al) and chromium (Cr), and oxides such as alumina (Al 2 O 3 ) and chromia (Cr 2 O 3 ). In general, a passive state is formed or Al and Cr are diffused and penetrated into the surface of the base material.
[0004]
However, the current situation is that it is difficult to cope with the surface modification method.
[0005]
This is because as the temperature rises, Al and Cr in the coating diffuse into Ni in the base material, and the oxidation resistance of the coating is weakened, and a harmful phase is precipitated in the base material. This is because it deteriorates.
[0006]
The invention of this application was made in view of such circumstances, and the high-temperature oxidation resistance of members formed of a nickel-base superalloy, high-temperature corrosion resistance, and improvement in the structural stability of the base material, and An object to be solved is to provide an iridium-hafnium-coated nickel-base superalloy whose lifetime of the base material is expected to be extended.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the invention of this application is directed to an iridium-hafnium-coated nickel in which an iridium- hafnium alloy film is formed on the surface of a nickel-base superalloy and an aluminum film is formed on the surface of the iridium-hafnium alloy film. iridium aluminum-based superalloys is characterized by being diffused and penetrated - providing hafnium coated nickel-base super alloys and (claim 1).
[0008]
In the invention of this application, the thickness of the iridium-hafnium alloy film is 5 μm to 100 μm (Claim 2), and the iridium content in the iridium-hafnium alloy film is 50 atomic% to 98 atomic% ( According to a third aspect of the present invention, the iridium content in the iridium-hafnium alloy film is 75 atomic%, and the hafnium content is 25 atomic% (claim 4 ), respectively.
[0009]
Hereinafter, the iridium-hafnium-coated nickel-base superalloy according to the present invention will be described in more detail with reference to examples.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the iridium-hafnium-coated nickel-base superalloy of the invention of this application, as described above, the iridium-hafnium alloy film is formed on the surface of the nickel-base superalloy.
[0011]
Iridium (Ir) and hafnium (Hf) form an intermetallic compound phase Ir 3 Hf. This intermetallic compound phase Ir 3 Hf can suppress diffusion into a base material formed from a nickel-base superalloy, which is a problem with aluminum (Al) and chromium (Cr), and Ir—Hf The alloy coating functions as a diffusion barrier layer of these Al and Cr. In addition, both Ir and Hf have stable oxides, which improves the oxidation resistance of the nickel-base superalloy. Therefore, precipitation of a harmful phase in the base material is suppressed, and the structure of the base material is stabilized. Moreover, Ir is excellent in corrosion resistance, and it is possible to improve the corrosion resistance.
[0012]
The Ir—Hf alloy coating is less likely to exhibit its performance as a diffusion barrier layer when the thickness is less than 5 μm. When the thickness exceeds 100 μm, the thermal expansion coefficient of the Ir—Hf alloy coating is higher than that of the Ni-base superalloy. Therefore, the Ir—Hf alloy coating is easily peeled off due to thermal fatigue caused by the difference in thermal expansion coefficient, which affects the life of the base material. Therefore, the thickness of the Ir—Hf alloy coating is preferably 5 μm to 100 μm.
[0013]
Further, as described above, in order to precipitate the intermetallic compound phase Ir 3 Hf in the Ir—Hf alloy coating, the Ir content in the Ir—Hf alloy coating is 50 atomic% or more and 98 atomic% or less. Is preferred.
[0014]
Iridium of the invention of this application - hafnium coated nickel-base superalloy, after Ir-Hf alloy coating formed, including multi-layer coating of Al to its surface, further, by applying the diffusion penetration treatment of Al, resistance It is possible to improve the high temperature oxidation resistance, the high temperature corrosion resistance, the structural stability of the base material, and extend the life of the base material.
[0015]
【Example】
TMS-75 (Ni-12.6Co-3.5Cr-1.3Mo-2W-13.7Al-2Ta-0.04Hf-1.67Re, the number indicates atomic%) is selected as the Ni-base superalloy and used as a base material. An Ir 75 atomic% -Hf 25 atomic% alloy (purity of raw materials is 99.99% for both Ir and Hf) and a thickness of about 2 μm and an Al film of about 2 μm are formed on the surface of the base material. The layers were sequentially formed by electron beam physical vapor deposition. At this time, an AMF-1050SB type vapor deposition apparatus manufactured by Shinko Seiki Co., Ltd. was used, and the film forming conditions were a vacuum degree of 1.2 to 3.5 × 10 −3 Pa and an electron beam voltage of 10 kV.
[0016]
After this, the sample was washed with acetone, and then placed in a mixed powder of Al, Al 2 O 3 , iron (Fe), and ammonium chloride (NH 4 Cl). Diffusion penetration treatment was performed.
[0017]
And the oxidation resistance of the produced sample was evaluated. Specifically, the process of holding the sample in the atmosphere at 1100 ° C. for 20 hours and then cooling to room temperature was defined as one cycle, and the oxidation test was repeated 6 times.
[0018]
The obtained results were obtained by coating Hf alone on the surface of the base material, then coating Al, and further performing Al diffusion and permeation treatment, without directly forming the Ir-Hf alloy film, and diffusing Al directly into the base material. It compared with the result of having done the same test about what performed the osmosis | permeation process.
[0019]
FIG. 1 is a graph showing the results of repeated oxidation tests.
[0020]
During the oxidation test, the sample increases in weight as it oxidizes, and then loses weight due to volatilization or delamination. Therefore, it is concluded that the one with the smallest amount of weight change has the best oxidation resistance. From the results shown in FIG. 1, it was confirmed that an Ir—Hf alloy film formed on a base material and Al film was coated with multiple layers and then Al diffusion diffusion treatment was most excellent in oxidation resistance. The The oxidation resistance is improved by alloying Ir and Hf, which can be said to be a demonstration of the function of the Ir—Hf alloy coating as a diffusion barrier layer.
[0021]
In addition to such a function as a diffusion barrier layer, as described above, Ir is also excellent in corrosion resistance. Therefore, it is reasonable that iridium-hafnium-coated nickel-base superalloys are effective in improving corrosion resistance. Can be considered.
[0022]
Of course, the invention of this application is not limited by the above embodiments. It goes without saying that various modes are possible for details such as the type and composition of the Ni-base superalloy forming the base material, the composition of the Ir—Hf alloy coating, the forming method, and the thickness.
[0023]
【The invention's effect】
As described above in detail, the invention of this application can improve the high-temperature oxidation resistance, high-temperature corrosion resistance and structural stability of the base material formed of the nickel-base superalloy, and extend the life of the base material. Expected.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of a repeated oxidation test.

Claims (4)

ニッケル基超合金の表面にイリジウム−ハフニウム合金被膜が形成され、イリジウム−ハフニウム合金被膜の表面にアルミニウム被膜が形成されたイリジウム−ハフニウム被覆ニッケル基超合金にアルミニウムが拡散浸透されていることを特徴とするイリジウム−ハフニウム被覆ニッケル基超合金。The iridium-hafnium alloy film is formed on the surface of the nickel-base superalloy, and aluminum is diffused and penetrated into the iridium-hafnium-coated nickel-base superalloy in which the aluminum film is formed on the surface of the iridium-hafnium alloy film. Iridium-hafnium-coated nickel-base superalloy. イリジウム−ハフニウム合金被膜の厚みが5μm〜100μmである請求項1記載のイリジウム−ハフニウム被覆ニッケル基超合金。  The iridium-hafnium-coated nickel-base superalloy according to claim 1, wherein the thickness of the iridium-hafnium alloy coating is 5 µm to 100 µm. イリジウム−ハフニウム合金被膜中のイリジウムの含有量が50原子%〜98原子%である請求項1又は2記載のイリジウム−ハフニウム被覆ニッケル基超合金。  The iridium-hafnium-coated nickel-base superalloy according to claim 1 or 2, wherein the iridium content in the iridium-hafnium alloy film is 50 atomic percent to 98 atomic percent. イリジウム−ハフニウム合金被膜中のイリジウムの含有量が75原子%であり、ハフニウムの含有量が25原子%である請求項記載のイリジウム−ハフニウム被覆ニッケル基超合金。 The iridium- hafnium-coated nickel-base superalloy according to claim 3 , wherein the iridium-hafnium alloy film has an iridium content of 75 atomic% and a hafnium content of 25 atomic% .
JP2002086825A 2002-03-26 2002-03-26 Iridium-hafnium-coated nickel-base superalloy Expired - Lifetime JP3883461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002086825A JP3883461B2 (en) 2002-03-26 2002-03-26 Iridium-hafnium-coated nickel-base superalloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002086825A JP3883461B2 (en) 2002-03-26 2002-03-26 Iridium-hafnium-coated nickel-base superalloy

Publications (2)

Publication Number Publication Date
JP2003277953A JP2003277953A (en) 2003-10-02
JP3883461B2 true JP3883461B2 (en) 2007-02-21

Family

ID=29233287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086825A Expired - Lifetime JP3883461B2 (en) 2002-03-26 2002-03-26 Iridium-hafnium-coated nickel-base superalloy

Country Status (1)

Country Link
JP (1) JP3883461B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060040129A1 (en) * 2004-08-20 2006-02-23 General Electric Company Article protected by a strong local coating
US20060121304A1 (en) * 2004-12-03 2006-06-08 General Electric Company Article protected by a diffusion-barrier layer and a plantium-group protective layer
US7544424B2 (en) * 2006-11-30 2009-06-09 General Electric Company Ni-base superalloy having a coating system containing a stabilizing layer
EP2697408B1 (en) * 2011-04-13 2018-09-12 Rolls-Royce Corporation Interfacial diffusion barrier layer including iridium on a metallic substrate
EP2918705B1 (en) 2014-03-12 2017-05-03 Rolls-Royce Corporation Coating including diffusion barrier layer including iridium and oxide layer and method of coating
US10533255B2 (en) * 2015-08-27 2020-01-14 Praxair S.T. Technology, Inc. Slurry formulations for formation of reactive element-doped aluminide coatings and methods of forming the same
FR3052463B1 (en) * 2016-06-10 2020-05-08 Safran METHOD FOR MANUFACTURING A NICKEL-BASED SUPERALLOY PART BASED ON HAFNIUM
CN114086111B (en) * 2021-09-23 2024-04-19 中国科学院上海应用物理研究所 High-temperature-resistant iridium-hafnium oxide composite material and preparation method thereof

Also Published As

Publication number Publication date
JP2003277953A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
JP3996978B2 (en) Platinum aluminized single crystal superalloy
US6283714B1 (en) Protection of internal and external surfaces of gas turbine airfoils
US6273678B1 (en) Modified diffusion aluminide coating for internal surfaces of gas turbine components
JP4535059B2 (en) Aluminum diffusion coating construction method
JP5645093B2 (en) Ni-base superalloy member provided with heat-resistant bond coat layer
EP1652965A1 (en) Method for applying chromium-containing coating to metal substrate and coated article thereof
US20080070061A1 (en) High-temperature coatings and bulk alloys with pt metal modified gamma-ni +gamma'-ni3al alloys having hot-corrosion resistance
JPH0578860A (en) Alloy-coated gas turbine blade and its manufacture
JP2003253472A (en) Ni-ALLOY HEAT-RESISTANT MATERIAL WITH EXCELLENT HIGH- TEMPERATURE OXIDATION RESISTANCE
JP3881489B2 (en) Superalloy turbine part repair method and superalloy turbine part
JP2009150387A (en) Turbine engine component with environmental protection for internal passage
JP2008169473A (en) Ni-BASE SUPERALLOY HAVING COATING SYSTEM CONTAINING STABILIZING LAYER
JP3883461B2 (en) Iridium-hafnium-coated nickel-base superalloy
EP1666629A2 (en) Article protected by a diffusion-barrier layer and a platinum-group protective layer
RU2301284C2 (en) High-temperature protective layer
JP2001303270A (en) Repairable diffusion aluminide coating
EP1524328A1 (en) Method of selective region vapor phase aluminizing
JP2009074174A (en) Bilayer protectiive coating and related method
US7531220B2 (en) Method for forming thick quasi-single phase and single phase platinum nickel aluminide coatings
JP2007146299A (en) Method for applying bonding coat and heat insulating coating over an aluminided surface
US20220065111A1 (en) Turbine part made of superalloy comprising rhenium and/or ruthenium and associated manufacturing method
JP6083710B2 (en) Method for producing heat-resistant alloy member
JP2021502478A (en) Turbine components made from superalloys containing rhenium and related manufacturing methods
US6372321B1 (en) Coated article with internal stabilizing portion and method for making
JP2003277860A (en) Iridium-tantalum coated nickel superalloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3883461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term