JP3882724B2 - Optical fiber discrimination device and discrimination method - Google Patents

Optical fiber discrimination device and discrimination method Download PDF

Info

Publication number
JP3882724B2
JP3882724B2 JP2002270841A JP2002270841A JP3882724B2 JP 3882724 B2 JP3882724 B2 JP 3882724B2 JP 2002270841 A JP2002270841 A JP 2002270841A JP 2002270841 A JP2002270841 A JP 2002270841A JP 3882724 B2 JP3882724 B2 JP 3882724B2
Authority
JP
Japan
Prior art keywords
light
optical
light receiving
optical fiber
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002270841A
Other languages
Japanese (ja)
Other versions
JP2004109401A (en
Inventor
将孝 石塚
賢一 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002270841A priority Critical patent/JP3882724B2/en
Publication of JP2004109401A publication Critical patent/JP2004109401A/en
Application granted granted Critical
Publication of JP3882724B2 publication Critical patent/JP3882724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Electric Cable Installation (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光伝送線路の心線対照、活線判定等を行なうのに用いられる光心線判別装置及び光心線判別方法に関する。
【0002】
【従来の技術】
光ケーブルの敷設等において、ケーブル内に収納されている複数の光ファイバ心線の光損失をそれぞれ測定するために、光ファイバ心線を判別して特定する必要がある。光ファイバ心線の判別には、通常、光ケーブルの一方の端部から特別の光信号(例えば、270Hzの周波数に変調された光信号)を送出し、他方の端部側で受光素子により受光検出し、検出回路により判別している。受光素子による光信号の検出には、光ファイバを部分的に曲げ、曲げによる生じる漏洩光を受光検出している(例えば、特許文献1参照)。
【0003】
また、光ファイバ心線を判別する装置として、ハンドタイプのものが知られている(例えば、特許文献2参照)。図1は、前記特許文献2に記載されたものとは形状が異なるが、光心線判別装置の一例を示す図である。図1(A)は光ファイバ心線をセットするときの状態を示す図、図1(B)は判定中の動作状態を示す図である。図中、1は光ファイバ、2は本体部、3はヘッド部、4は半円状の凸出部、5は案内溝、6は可動部、7は操作つまみ、8は表示部、9はリセット釦を示す。
【0004】
図1に例示した光心線判別装置は、本体部2の先端側にヘッド部3を有し、ヘッド部3に対向して可動部6をスライド可能に配して構成されている。ヘッド部3は、可動部6側に突出する半円状の凸出部4を有し、凸出部4には光ファイバ1を湾曲させて収納する案内溝5が設けられている。可動部6は、表面に表示ランプ等を配した表示部8及びリセット釦9等を有し、一体に設けた操作つまみ7を前方に押出すことにより、図1(A)の非動作状態から図1(B)の動作状態にすることができる。
【0005】
可動部6の先端部は、凸状部4に適合する形状の凹部で形成され、凹部には1つの受光素子又は2つの受光素子(図示されず)が配設されている。図1(A)の状態で、光ファイバ1を凸出部4の案内溝5に沿わせて収納し、光ファイバ1に曲げを付与する。次いで、操作つまみ7を押出して、図1(B)の動作状態とし、外部光を遮光し、ヘッド部3で曲げを付与された光ファイバ1からの漏洩光を受光素子で受光検出する。検出された漏洩光は、本体部2及び可動部6内に設けられた検出回路(図示せず)により増幅、判別され、表示部8あるいはブザー(図示せず)により、光ファイバ内を伝送する光信号の有無が表示される。
【0006】
【特許文献1】
特開平09−178945号公報
【特許文献2】
特開平08−110416号公報
【0007】
【発明が解決しようとする課題】
上述した従来の心線判別装置を用いて、図3で示すようなPDS(Passive Double Star)通信、又は、PON(Passive Optical Network)通信と称されている光伝送線路の活線状態を検出しようとする。PDS(PON)通信では、OLT(電話局 Optical Line Terminal)からの下りの光信号λ1は、スプリッタにより分岐され、複数のONU(ユーザ宅 Optical Network Unit)に送信される。各ONU1〜ONU4では、自分宛にきた光信号のみを選択し取得する。この、下りの光信号λ1には、各ONU1〜ONU4からの上りの光信号λ2の送出タイミングを制御する信号も含まれている。
【0008】
各ONU1〜ONU4からは、OLTが指定した送出タイミングで上りの光信号λ2を送出する。各ONU1〜ONU4から送出された各光信号λ2は、スプリッタで結合されOLTが指定したタイミングの信号列Tで、OLTに入る。OLTでは、上りの光信号λ2の信号列TをONU1〜ONU4毎の光信号に分けられる。
【0009】
ここで、例えば、OUN1の廃止申請があり、スプリッタ〜OUN1間の回線を撤去しようとする。この場合、スプリッタのどのポートにOUN1がつながっているかの判別は、通常、スプリッタ出口側のX点で行なわれる。実際は、光ケーブルの接続、分岐等を行なうクロージャを開けて行なわれる。この回線の判別に上述した光心線判別装置を使用すると、OUN1の電源を切って光信号λ2が送出されないようにしても、OLT側からの上りの光信号λ1が送出されているため、この光信号λ1の漏洩光を検出して活線状態と見なされ、OUN1の回線を特定することができない。
【0010】
また、OUN1側から光信号λ1,λ2とは異なる特別な光信号(例えば、270Hzの周波数に変調された光信号)を回線内に入れ、X点でその漏洩光を検出して回線を対照することは可能である。しかし、OUN1側に特別な波長の変調光を送出する高価な光源装置を準備する必要があり、また、その変調光がOLTに入って悪影響を及ぼす可能性があり実用的でない。更に、左右に設けた2つの受光素子で受光する漏洩光のレベルを比較し、その光信号の方向を検出して、OUN1側からの光信号λ1であるか、OLT側からの光信号λ2であるかを判定する方法も考えられるが、外乱光等に左右されやすく精度のよい判定は望むことができない。
【0011】
本発明は、上述した実情に鑑みてなされたもので、特別な波長の光源装置を用いることなく、光伝送線路中の光信号の有無を検出して特定の心線を判別することができ、また、PDS(PON)通信で現用回線の光伝送状態に影響を与えることなく特定の光信号の有無を判別できる光心線判別装置及び判別方法を提供することを課題とする。
【0012】
【課題を解決するための手段】
本発明による光心線判別装置は、光ファイバを部分的に曲げて光信号を漏洩させる曲げ付与部と、漏洩光を検出する受光素子と、受光した漏洩光を増幅し判別する検出回路を備えた光心線判別装置であって、前記受光素子を少なくとも2個有し、それぞれの受光面側に波長範囲の異なる波長選択フィルタを備える構成としたものである。
【0013】
また、本発明による光心線判別方法は、光ファイバを曲げ付与部により部分的に曲げて光信号を漏洩させ、漏洩光を受光素子により検出し、検出した漏洩光を検出回路により増幅し判別する光心線判別方法であって、少なくとも2個の受光素子のそれぞれの受光面側に配した波長範囲の異なる波長選択フィルタを介して前記漏洩光を前記受光素子により光信号の波長ごとに検出するようにしたものである。
【0014】
【発明の実施の形態】
図1及び図2により本発明の実施の形態を説明する。図1は従来技術の説明で用いた光心線判別装置の一例を示す図、図2(A)は本発明の一例を示す図、図2(B)は本発明の他の例を示す図である。図中、1は光ファイバ、10は曲げ付与部、11は受光素子、12、12a,12bは波長選択フィルタ、13は検出回路を示す。
【0015】
本発明による光心線判別装置は、従来技術の項で説明したのと同様に、図1に示すような形状で構成することができる。すなわち、光心線判別装置は、本体部2の先端側にヘッド部3を有し、ヘッド部3に対向して可動部6をスライド可能に配して構成される。ヘッド部3は、可動部6側に突出する半円状の凸出部4を有し、凸出部4には光ファイバ1を曲げて収納する案内溝5が設けられている。
【0016】
可動部6は、表面に表示部8及びリセット釦9等を有し、一体に設けた操作つまみ3を前方に押出すことにより、図1(A)の非動作状態から図1(B)の動作状態にすることができる。動作状態とされたとき、外部光を遮光し、ヘッド部3の案内溝5内への収納によって曲げを付与された光ファイバ1からの漏洩光を受光素子11(図2参照)により検出する。検出された漏洩光は、本体部2及び可動部6内に設けられた検出回路13(図2参照)により増幅、判別し、その結果を表示部8あるいはブザー(図示せず)により表示される。
【0017】
可動部6の先端部は、凸状部4に適合する形状の凹部で形成され、図2(A)に示すように光ファイバ1の曲げ付与部10を形成している。可動部6側の凹部には、例えば、2つの受光素子11が左右に配設されていて、曲げ付与部10で曲げられた光ファイバ1に接近して、光ファイバ1からの漏洩光を受光検出する。なお、受光素子11は、2つの受光素子11を用いることにより、信号光の方向判別も可能となる。すなわち、曲げ付与部10では、最初の曲りで検出される漏洩光は、次の曲りで検出される漏洩光より大きく、2つの受光素子11で検出できる漏洩光のレベルの大小を比較することにより光信号方向の判別ができる。
【0018】
本発明においては、受光素子11の受光面側に波長選択フィルタ12を介して光ファイバ1の漏洩光を受光するようにしている。波長選択フィルタ12は、例えば、誘電体多層膜等の各種のフィルタを用いることができる。この波長選択フィルタ12を受光素子11の受光面側に貼付ける等の方法で配置することにより、曲げ付与部10の部分で漏洩する特定波長の光信号のみを検出することが可能となる。すなわち、波長多重通信においては、特定波長帯の光信号の有無を検出することができる。
【0019】
また、本発明においては、図2(B)に示すように、少なくとも2つの受光素子11を設け、それぞれの受光素子の受光面側に、波長の異なる波長選択フィルタ12a,12bを配置することができる。これにより、例えば、図の側の受光素子11では波長λaのみを検出受光でき、側の受光素子11では波長λbのみを検出受光できるようにすることができる。なお、いずれか一方の受光素子に波長選択フィルタを配置しない構成とすることもできる
【0020】
検出回路13では、波長λaと、波長λbの検出の切替を行なう切替手段を備え、2つの異なる波長の光信号を判別し、また、その光信号の有無を調べることも可能である。なお、受光素子11は、2つに限らず3つ以上設けてもよく、それぞれの受光素子に選択波長の異なる波長選択フィルタを配置し、検出の切替えを行なうことにより、波長多重された光伝送線路の中から特定の波長帯の光信号を選択し、その光信号の有無を調べることも可能である。
【0021】
以上のように構成された図2の光心線判別装置を、図3のPDS(PON)通信回線で現況の通信状態のままで、スプリッタの出口側のX点で心線判別を行なうのに使用したとする。そして、波長選択フィルタ12は、上りの光信号λ2の波長帯を選択できるものを用いるとする。例えば、OUN1の廃止申請があり、スプリッタ〜OUN1の回線を撤去するため、スプリッタの出口側のX点でOUN1の心線の判別を行なうものとする。
【0022】
この場合、ONU1の電源が切られ不使用状態にあり、OLT及びONU2〜ONU4が通常の使用状態にあるものとする。波長選択フィルタ12が上りの光信号λ2の波長のみを透過させるように選定されているため、OLTからの下りの光信号λ1は検出されない。また、ONU1からも上りの光信号λ2が送出されていないため、X点で上りの光信号λ2も検出されない。この結果、X点では光信号の検出は無しとなり、ONU1回線の心線であると特定することができる。他のONU2〜ONU4では、上りの光信号λ2が検出され、活線状態にあると判定される。なお、安全を期すためには、ONU1側の電源を入れたときにX点で上り信号λ2が検出され、再びONU1側の電源を切った時に、X点で上りの光信号λ2が検出されないことを確認するとよい。
【0023】
また、図2(B)のように構成された光心線判別装置を、図3のPDS(PON)通信回線で現況の通信状態のままで、スプリッタの出口X点で心線判別を行なうのに使用したとする。そして、例えば、一方の波長選択フィルタ12aを上りの光信号λ2の検出が可能なものとし、他方の波長選択フィルタ12bを下りの光信号λ1の検出が可能なものとする。前記と同様に、OUN1の廃止申請があり、スプリッタ〜OUN1の回線を撤去するため、スプリッタの出口部のX点でOUN1の心線の判別を行なうものとする。
【0024】
この場合、ONU1の電源が切られ不使用状態にあり、OLT及び他のONU2〜ONU4が通常の使用状態にあるものとする。OLTからの下りの光信号λ1は、ONU1回線のX点においては波長選択フィルタ12b側により検出され、通信回線が活線状態と判定される。しかし、ONU1からは上りの光信号λ2が送出されていないため、波長選択フィルタ12a側では光信号λ2は検出されず、ONU1回線の心線であると特定することができる。他のONU2〜ONU4は、下り光信号λ1及び上り光信号λ2のいずれも検出され、活線状態にあると判定される。
【0025】
【発明の効果】
上述したとおり、本発明によれば、特定波長帯の光信号の有無を調べることができ、心線の特定を容易に行なうことができる。また、波長多重通信における特定波長帯の光信号の有無を判定することができ、さらに、PDN(PON)回線において、現用回線の通信状態に影響を与えずにONUの有無及び回線の対照を、スプリッタ部分で確実に判定することができる。
【図面の簡単な説明】
【図1】光心線判別装置の一例を示す図である。
【図2】本発明の実施の形態を説明する図である。
【図3】PDS(PON)通信線路を説明する図である。
【符号の説明】
1…光ファイバ、2…本体部、3…ヘッド部、4…半円状の凸出部、5…案内溝、6…可動部、7…操作つまみ、8…表示部、9…リセット釦、10…曲げ付与部、11…受光素子、12、12a,12b…波長選択フィルタ、13…検出回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical core discriminating apparatus and an optical core discriminating method used for performing optical fiber line contrast, live line determination, and the like.
[0002]
[Prior art]
In laying an optical cable or the like, in order to measure the optical loss of a plurality of optical fiber cores housed in the cable, it is necessary to identify and identify the optical fiber core wires. Usually, optical fiber cores are identified by sending a special optical signal (for example, an optical signal modulated to a frequency of 270 Hz) from one end of the optical cable, and detecting the received light by the light receiving element at the other end. The determination is made by the detection circuit. In the detection of the optical signal by the light receiving element, the optical fiber is partially bent, and leaked light generated by the bending is received and detected (for example, see Patent Document 1).
[0003]
Moreover, a hand-type device is known as a device for discriminating an optical fiber core wire (see, for example, Patent Document 2). FIG. 1 is a diagram showing an example of an optical core discriminating apparatus, although the shape is different from that described in Patent Document 2. FIG. 1A is a diagram showing a state when an optical fiber core wire is set, and FIG. 1B is a diagram showing an operating state during determination. In the figure, 1 is an optical fiber, 2 is a body portion, 3 is a head portion, 4 is a semicircular protruding portion, 5 is a guide groove, 6 is a movable portion, 7 is an operation knob, 8 is a display portion, and 9 is a display portion. A reset button is shown.
[0004]
The optical fiber identification device illustrated in FIG. 1 has a head portion 3 on the distal end side of the main body portion 2 and is configured to be slidable with a movable portion 6 facing the head portion 3. The head portion 3 has a semicircular protruding portion 4 protruding toward the movable portion 6, and the protruding portion 4 is provided with a guide groove 5 for storing the optical fiber 1 by bending it. The movable portion 6 includes a display portion 8 having a display lamp or the like disposed on the surface, a reset button 9 and the like, and pushes the integrally provided operation knob 7 forward so that the non-operating state of FIG. The operating state shown in FIG.
[0005]
The distal end portion of the movable portion 6 is formed as a concave portion having a shape that fits the convex portion 4, and one light receiving element or two light receiving elements (not shown) are disposed in the concave portion. In the state of FIG. 1A, the optical fiber 1 is accommodated along the guide groove 5 of the protruding portion 4, and the optical fiber 1 is bent. Next, the operation knob 7 is pushed out to be in the operation state shown in FIG. 1B, the external light is blocked, and the leaked light from the optical fiber 1 bent by the head portion 3 is received and detected by the light receiving element. The detected leaked light is amplified and discriminated by a detection circuit (not shown) provided in the main body 2 and the movable part 6 and transmitted through the optical fiber by the display unit 8 or a buzzer (not shown). The presence or absence of an optical signal is displayed.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 09-178945 [Patent Document 2]
Japanese Patent Laid-Open No. 08-110416
[Problems to be solved by the invention]
Let's detect the live state of the optical transmission line called PDS (Passive Double Star) communication or PON (Passive Optical Network) communication as shown in FIG. And In PDS (PON) communication, a downstream optical signal λ1 from an OLT (telephone optical line terminal) is branched by a splitter and transmitted to a plurality of ONUs (user home optical network units). Each ONU 1 to ONU 4 selects and acquires only the optical signal addressed to itself. The downstream optical signal λ1 includes a signal for controlling the transmission timing of the upstream optical signal λ2 from each of the ONU1 to ONU4.
[0008]
From each of the ONU1 to ONU4, an upstream optical signal λ2 is transmitted at a transmission timing designated by the OLT. Each optical signal λ2 sent from each of the ONU1 to ONU4 enters the OLT with a signal string T that is coupled by a splitter and has a timing specified by the OLT. In the OLT, the signal sequence T of the upstream optical signal λ2 is divided into optical signals for the ONU1 to ONU4.
[0009]
Here, for example, there is an application for abolition of OUN1, and an attempt is made to remove the line between the splitter and OUN1. In this case, the determination of which port of the splitter is connected to OUN1 is normally made at point X on the splitter exit side. In practice, this is done by opening a closure for connecting and branching optical cables. If the above-described optical fiber identification device is used for this line determination, the upstream optical signal λ1 from the OLT side is transmitted even if the optical signal λ2 is not transmitted after the power of OUN1 is turned off. The leakage light of the optical signal λ1 is detected and regarded as a live line state, and the line of OUN1 cannot be specified.
[0010]
Also, a special optical signal (for example, an optical signal modulated to a frequency of 270 Hz) different from the optical signals λ1 and λ2 is placed in the line from the OUN1 side, and the leaked light is detected at point X to contrast the lines. It is possible. However, it is necessary to prepare an expensive light source device that transmits modulated light having a special wavelength to the OUN1 side, and the modulated light may enter the OLT and have an adverse effect, which is not practical. Further, the level of leakage light received by the two light receiving elements provided on the left and right sides is compared, the direction of the optical signal is detected, and the optical signal λ1 from the OUN1 side or the optical signal λ2 from the OLT side Although a method for determining whether or not there is a possibility is considered, it is easily influenced by disturbance light or the like, and an accurate determination cannot be desired.
[0011]
The present invention has been made in view of the above-described circumstances, and can detect the presence or absence of an optical signal in an optical transmission line without using a light source device having a special wavelength, and can determine a specific core wire. It is another object of the present invention to provide an optical core discriminating apparatus and a discriminating method capable of discriminating the presence or absence of a specific optical signal without affecting the optical transmission state of the working line in PDS (PON) communication.
[0012]
[Means for Solving the Problems]
An optical fiber core discriminating device according to the present invention includes a bend imparting unit that partially leaks an optical fiber to leak an optical signal, a light receiving element that detects leaked light, and a detection circuit that amplifies and discriminates the received leaked light. Further, the optical fiber identification device has at least two light receiving elements, and includes a wavelength selection filter having a different wavelength range on each light receiving surface side.
[0013]
In addition, the optical fiber identification method according to the present invention is such that an optical fiber is partially bent by a bend applying unit to leak an optical signal, the leaked light is detected by a light receiving element, and the detected leaked light is amplified by a detection circuit. an optical cord determination method of, at least two detected for each wavelength of the optical signal by the light receiving element the leakage light through the different wavelength selective filters wavelength range arranged on each of the light-receiving surface side of the light-receiving element It is what you do.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing an example of an optical core discriminating apparatus used in the description of the prior art, FIG. 2 (A) is a diagram showing an example of the present invention, and FIG. 2 (B) is a diagram showing another example of the present invention. It is. In the figure, 1 is an optical fiber, 10 is a bending portion, 11 is a light receiving element, 12, 12a and 12b are wavelength selection filters, and 13 is a detection circuit.
[0015]
The optical-core-line discriminating device according to the present invention can be configured in a shape as shown in FIG. That is, the optical fiber identification device has a head portion 3 on the distal end side of the main body portion 2 and is configured to be slidable with the movable portion 6 facing the head portion 3. The head portion 3 has a semicircular protruding portion 4 protruding toward the movable portion 6, and the protruding portion 4 is provided with a guide groove 5 for bending and storing the optical fiber 1.
[0016]
The movable portion 6 has a display portion 8, a reset button 9, and the like on the surface, and pushes the operation knob 3 that is integrally provided forward so that the non-operating state of FIG. It can be in an operating state. When in the operating state, external light is shielded, and light leaked from the optical fiber 1 that is bent by being housed in the guide groove 5 of the head portion 3 is detected by the light receiving element 11 (see FIG. 2). The detected leaked light is amplified and discriminated by a detection circuit 13 (see FIG. 2) provided in the main body 2 and the movable unit 6, and the result is displayed by the display unit 8 or a buzzer (not shown). .
[0017]
The distal end portion of the movable portion 6 is formed as a concave portion having a shape that fits the convex portion 4, and forms a bend imparting portion 10 of the optical fiber 1 as shown in FIG. For example, two light receiving elements 11 are arranged on the left and right sides of the concave portion on the movable portion 6 side, and approach the optical fiber 1 bent by the bending applying portion 10 to receive the leaked light from the optical fiber 1. To detect. The light receiving element 11, by using two light receiving elements 11, it becomes possible direction discrimination signal light. That is, in the bending imparting unit 10, the leakage light detected in the first bend is larger than the leakage light detected in the next bend, and by comparing the level of the leakage light that can be detected by the two light receiving elements 11. The optical signal direction can be determined.
[0018]
In the present invention, leakage light of the optical fiber 1 is received through the wavelength selection filter 12 on the light receiving surface side of the light receiving element 11. As the wavelength selection filter 12, for example, various filters such as a dielectric multilayer film can be used. By disposing the wavelength selection filter 12 on the light receiving surface side of the light receiving element 11 or the like, it becomes possible to detect only an optical signal having a specific wavelength that leaks at the bending portion 10. That is, in wavelength multiplexing communication, it is possible to detect the presence or absence of an optical signal in a specific wavelength band.
[0019]
In the present invention, as shown in FIG. 2B, at least two light receiving elements 11 are provided, and wavelength selection filters 12 a and 12 b having different wavelengths are disposed on the light receiving surface side of each light receiving element. be able to. Thus, for example, can only detect light right side of the wavelength λa the light receiving element 11 of FIG., It is possible to make only able to detect light receiving element 11, the wavelength λb of the left side. In addition, it can also be set as the structure which does not arrange | position a wavelength selection filter in any one light receiving element.
[0020]
The detection circuit 13 includes switching means for switching the detection of the wavelength λa and the wavelength λb, and can discriminate between optical signals of two different wavelengths, and can also check the presence or absence of the optical signal. The number of light receiving elements 11 is not limited to two, and three or more light receiving elements 11 may be provided, and wavelength-multiplexed optical transmission is performed by switching the detection by disposing wavelength selection filters having different selection wavelengths in each light receiving element. It is also possible to select an optical signal in a specific wavelength band from the line and examine the presence or absence of the optical signal.
[0021]
2 is used to perform the core line discrimination at the X point on the exit side of the splitter while maintaining the current communication state on the PDS (PON) communication line of FIG. Suppose you use it. The wavelength selection filter 12 is assumed to be capable of selecting the wavelength band of the upstream optical signal λ2. For example, there is an application for abolition of OUN1, and the core wire of OUN1 is determined at the point X on the exit side of the splitter in order to remove the splitter-OUN1 line.
[0022]
In this case, it is assumed that the ONU 1 is powered off and is not in use, and the OLT and ONU2 to ONU4 are in normal use. Since the wavelength selection filter 12 is selected so as to transmit only the wavelength of the upstream optical signal λ2, the downstream optical signal λ1 from the OLT is not detected. Further, since the upstream optical signal λ2 is not transmitted from the ONU 1, the upstream optical signal λ2 is not detected at the point X. As a result, no optical signal is detected at the point X, and it can be specified that it is the core of the ONU1 line. In the other ONU2 to ONU4, the upstream optical signal λ2 is detected and determined to be in the live state. For safety reasons, the upstream signal λ2 is detected at point X when the ONU1 side is turned on, and the upstream optical signal λ2 is not detected at point X when the ONU1 side is turned off again. It is good to confirm.
[0023]
Further, the optical fiber identification device configured as shown in FIG. 2B performs the optical fiber identification at the exit X point of the splitter while maintaining the current communication state with the PDS (PON) communication line of FIG. Suppose it was used for For example, one wavelength selection filter 12a can detect the upstream optical signal λ2, and the other wavelength selection filter 12b can detect the downstream optical signal λ1. Similarly to the above, there is an application for abolition of OUN1, and in order to remove the line from splitter to OUN1, the core wire of OUN1 is determined at point X at the exit of the splitter.
[0024]
In this case, it is assumed that the ONU 1 is turned off and is not in use, and the OLT and the other ONUs 2 to 4 are in normal use. The downstream optical signal λ1 from the OLT is detected by the wavelength selective filter 12b side at the X point of the ONU1 line, and the communication line is determined to be in the live line state. However, since the upstream optical signal λ2 is not transmitted from the ONU 1, the optical signal λ2 is not detected on the wavelength selection filter 12a side, and can be specified as the core of the ONU 1 line. For the other ONU2 to ONU4, both the downstream optical signal λ1 and the upstream optical signal λ2 are detected, and it is determined that they are in the live state.
[0025]
【The invention's effect】
As described above, according to the present invention, the presence / absence of an optical signal in a specific wavelength band can be examined, and the core wire can be easily identified. Further, it is possible to determine the presence / absence of an optical signal in a specific wavelength band in wavelength division multiplexing communication. Further, in a PDN (PON) line, the presence / absence of an ONU and a comparison of lines without affecting the communication state of the working line It can be reliably determined at the splitter portion.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of an optical fiber identification device.
FIG. 2 is a diagram illustrating an embodiment of the present invention.
FIG. 3 is a diagram illustrating a PDS (PON) communication line.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Optical fiber, 2 ... Main-body part, 3 ... Head part, 4 ... Semicircle-shaped protrusion part, 5 ... Guide groove, 6 ... Movable part, 7 ... Operation knob, 8 ... Display part, 9 ... Reset button, DESCRIPTION OF SYMBOLS 10 ... Bending provision part, 11 ... Light receiving element, 12, 12a, 12b ... Wavelength selection filter, 13 ... Detection circuit.

Claims (3)

光ファイバを部分的に曲げて光信号を漏洩させる曲げ付与部と、漏洩光を検出する受光素子と、受光した漏洩光を増幅し判別する検出回路を備えた光心線判別装置であって、前記受光素子を少なくとも2個有し、それぞれの受光面側に波長範囲の異なる波長選択フィルタを備えていることを特徴とする光心線判別装置。An optical fiber discriminating device comprising a bend imparting unit that partially leaks an optical fiber to leak an optical signal, a light receiving element that detects leaked light, and a detection circuit that amplifies and discriminates the received leaked light, An optical core discriminating apparatus comprising at least two light receiving elements and provided with wavelength selection filters having different wavelength ranges on each light receiving surface side. 光ファイバを曲げ付与部により部分的に曲げて光信号を漏洩させ、漏洩光を受光素子により検出し、検出した漏洩光を検出回路により増幅し判別する光心線判別方法であって、少なくとも2個の受光素子のそれぞれの受光面側に配した波長範囲の異なる波長選択フィルタを介して前記漏洩光を前記受光素子により光信号の波長ごとに検出することを特徴とする光心線判別方法。It is leaking optical signal partially bent by the application unit bending an optical fiber and detected by the light receiving element leakage light, an optical core discrimination method for discriminating amplified by the detecting circuit the detected leaked light, at least 2 number of via different wavelength selective filters wavelength range arranged on the light-receiving surface side of the light receiving element, an optical core discriminating method characterized by detecting for each wavelength of the optical signal to the leakage light by the light receiving element . パッシブダブルスター(PDS)又はパッシブオプチカルネットワーク(PON)回線におけるスプリッタの分岐側で、ユーザ伝送装置(ONU)の有無又は回線対照の判別を行なうことを特徴とする請求項に記載の光心線判別方法。 3. The optical fiber core according to claim 2 , wherein the presence or absence of a user transmission device (ONU) or a line control is determined at a splitter branch side of a passive double star (PDS) or passive optical network (PON) line. How to determine.
JP2002270841A 2002-09-18 2002-09-18 Optical fiber discrimination device and discrimination method Expired - Fee Related JP3882724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002270841A JP3882724B2 (en) 2002-09-18 2002-09-18 Optical fiber discrimination device and discrimination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270841A JP3882724B2 (en) 2002-09-18 2002-09-18 Optical fiber discrimination device and discrimination method

Publications (2)

Publication Number Publication Date
JP2004109401A JP2004109401A (en) 2004-04-08
JP3882724B2 true JP3882724B2 (en) 2007-02-21

Family

ID=32268328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270841A Expired - Fee Related JP3882724B2 (en) 2002-09-18 2002-09-18 Optical fiber discrimination device and discrimination method

Country Status (1)

Country Link
JP (1) JP3882724B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4927618B2 (en) * 2006-11-16 2012-05-09 古河電気工業株式会社 Optical fiber identification method and identification apparatus
US8731341B2 (en) 2006-11-17 2014-05-20 Afl Telecommunications Llc Signal identifying apparatus for an optical fiber
PL2084836T3 (en) * 2006-11-17 2019-09-30 Afl Telecommunications Llc Signal identifying method for an optical fiber
JP5117037B2 (en) * 2006-11-28 2013-01-09 古河電気工業株式会社 Optical fiber discrimination device and discrimination method
JP2009265511A (en) * 2008-04-28 2009-11-12 Furukawa Electric Co Ltd:The Optical core wire discrimination device and optical core wire discrimination method using the same
JP6122788B2 (en) * 2014-01-15 2017-04-26 日本電信電話株式会社 Light receiving device for communication monitor and method for acquiring leaked light
JP6170875B2 (en) * 2014-05-20 2017-07-26 日本電信電話株式会社 Apparatus and method for identifying splitter optical fiber core wire
JP6277915B2 (en) * 2014-09-10 2018-02-14 住友電気工業株式会社 Detection apparatus and detection method
WO2023009253A1 (en) * 2021-07-30 2023-02-02 Afl Telecommunications Llc Wavelength-detecting optical fiber indentifier apparatus and method
WO2024079819A1 (en) * 2022-10-12 2024-04-18 日本電信電話株式会社 Optical monitor device and light intensity measurement method

Also Published As

Publication number Publication date
JP2004109401A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP3759845B2 (en) Method and system for monitoring optical transmission lines
KR100618130B1 (en) Fault localization apparatus for optical line in wavelength division multiplexed passive optical network
EP2842244B1 (en) Optical communication devices having optical time domain reflectometers
EP3148098B1 (en) Optical power measurement in a passive optical network
US4749247A (en) Self-monitoring fiber optic link
EP2819324B1 (en) Optical transceiving module, passive optical network system, optical fibre detection method and system
US10574378B2 (en) Optical power measurement in a passive optical network
US20070154212A1 (en) Method and apparatus for testing transmission lines normally propagating optical signals
EP2357737A2 (en) Fault localization method and fault localization device in a passive optical network, and passive optical network having the fault localization device
JP3882724B2 (en) Optical fiber discrimination device and discrimination method
JP2011518523A (en) Fiber network monitoring
WO2008116309A1 (en) Method and system for testing for defects in a multipath optical network
JP3966287B2 (en) Optical fiber identification device with optical power measurement function
JP7318705B2 (en) Judgment device and judgment method
JP6024634B2 (en) Optical line fault detection device and optical line fault detection method
TWI359577B (en)
JP4851380B2 (en) Optical fiber identification method and identification apparatus
JP5117037B2 (en) Optical fiber discrimination device and discrimination method
JP4383162B2 (en) Optical branch line monitoring system
JP5066555B2 (en) Optical line fault search device
EP1578039A1 (en) Device and method for real-time optical network monitoring
EP3698184B1 (en) Dynamic monitoring and calibration of nodes in an optical networking device
JP3580622B2 (en) Optical line monitoring system using optical reflector
EP4064587A1 (en) Optical device, method and system for remotely detecting optical network terminals
JP2009265511A (en) Optical core wire discrimination device and optical core wire discrimination method using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees