JP3881821B2 - High bulk density detergent particles - Google Patents

High bulk density detergent particles Download PDF

Info

Publication number
JP3881821B2
JP3881821B2 JP2000119656A JP2000119656A JP3881821B2 JP 3881821 B2 JP3881821 B2 JP 3881821B2 JP 2000119656 A JP2000119656 A JP 2000119656A JP 2000119656 A JP2000119656 A JP 2000119656A JP 3881821 B2 JP3881821 B2 JP 3881821B2
Authority
JP
Japan
Prior art keywords
weight
detergent
particles
particle group
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000119656A
Other languages
Japanese (ja)
Other versions
JP2001011499A (en
Inventor
修 山口
宏之 西條
弘 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2000119656A priority Critical patent/JP3881821B2/en
Publication of JP2001011499A publication Critical patent/JP2001011499A/en
Application granted granted Critical
Publication of JP3881821B2 publication Critical patent/JP3881821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高嵩密度洗剤粒子群に関する。
【0002】
【従来の技術】
近年上市されている洗濯機は、『洗濯を簡単に済ませてしまいたい』という消費者ニーズに対応し、大容量化(一度に多くの衣類が洗える)傾向にあり、また洗濯時間に短時間洗濯モードの設定等がなされている。更に『衣類を大切に洗いたい』というニーズに対し、弱攪拌モードの設定が行われ、衣類いたみの軽減を訴求している。加えて、環境・エネルギーや経済性への対応から、節水、低温洗濯、運転時間の短縮への潮流がある。
【0003】
この潮流は、いずれも洗濯機の仕事量(機械力×時間の意)を低下させる方向であり、その結果、洗剤粒子の溶解速度の低下によって洗浄力の劣化が生じ、洗濯終了時に粉末洗剤の溶け残り、洗剤粒子の衣類残留が増大することがある。
【0004】
また、粉末洗剤の流動性、外観を向上させ、微粉の発生を抑える目的で、平均粒子径を大きくした高嵩密度洗剤粒子群が知られている。しかし、粉末洗剤組成物の高密度化は、輸送効率の向上や使用者の簡便性に大きな利点をもたらした反面、洗剤粒子の圧密化により溶解性に対する懸念が高まった。即ち、該洗剤粒子群は低嵩密度洗剤粒子群に比べて溶解時間が長いため、水温や攪拌力等の洗濯条件によっては洗浄力の低下や溶け残りが生じるおそれがあった。
【0005】
例えば、特開平5−247497号公報には、ゼオライトを含有したクラッチャースラリーを調製する際に、クエン酸塩を添加して、噴霧乾燥して得られるビーズの強度を向上させ、そのビーズに界面活性剤を塗布して、高い溶解性特性を有する、平均粒径の大きい高嵩密度洗剤粒子群を含有してなる洗浄剤が開示されているが、低水温域での溶解性や洗浄性の点で未だ満足のいくものではなかった。
【0006】
一方、特表平7−509267号公報には、150μm未満の粒子10重量%未満及び1700μmより大きい粒子10重量%未満を有するベース粉末に、クエン酸ナトリウム、炭酸水素ナトリウム等の充填剤粒子を有する洗剤組成物が開示されているが、洗濯機の仕事量が低い場合における洗剤組成物の溶解性や分散性の点で未だ満足のいくものではなかった。
【0007】
更に、特開平11−35998号公報には、粒度分布により溶解性が改善された高密度粒状洗剤が開示されているが、保存安定性(例えば、保存時の耐ケーキング性)の点で未だ満足のいくものではなかった。
【0008】
また、炭酸塩は洗剤にとって有用で、かつ安価なビルダーである。しかし、炭酸塩は二酸化炭素と反応して水不溶物となる。そのため、炭酸塩の配合には上記利点はあるものの、配合によって洗濯の際の粉残留物の低減の点や保存時の耐ケーキング性の点で問題が生じることもあった。
【0009】
【発明が解決しようとする課題】
本発明の課題は、如何なる洗濯条件でも溶解性及び洗浄性に優れ、且つ保存安定性にも優れた高嵩密度洗剤粒子群を提供することにある。
【0010】
【課題を解決するための手段】
即ち、本発明の要旨は、
(1)界面活性剤、結晶性又は非晶質のアルミノケイ酸塩からなる水難溶性無機物及び炭酸塩を含有し、平均粒径が150〜500μm、嵩密度が500g/L以上の高嵩密度洗剤粒子群であって、710μm以上の粒径の粒子群及び125μm未満の粒径の粒子群がそれぞれ該洗剤粒子群全体の10重量%以下であり、かつ該洗剤粒子群中の水難溶性無機物及び炭酸塩の含有量の和が10〜70重量%、該水難溶性無機物の該炭酸塩に対する重量比が1/2以上、9/10以下である高嵩密度洗剤粒子群、及び
(2)前記(1)記載の高嵩密度洗剤粒子群を含んでなる洗浄剤組成物に関する。
【0011】
【発明の実施の形態】
1.高嵩密度洗剤粒子群
嵩密度は500g/L以上、好ましくは500〜1000g/L、より好ましくは600〜1000g/L、特に好ましくは650〜850g/Lである。経済効率の観点から嵩密度は500g/L以上が好ましく、溶解性の観点から1000g/L以下が好ましい。
水分量は、洗剤粒子群の20重量%以下が好ましく、10重量%以下がより好ましく、5重量%以下が特に好ましい。
【0012】
本発明の洗剤粒子群において、水難溶性無機物と炭酸塩との含有量の和は、洗浄性、溶解性、粉残留物(水不溶物)の低減、耐ケーキング性等の観点から洗剤粒子群の10〜70重量%であり、20〜60重量%が好ましく、20〜50重量%がより好ましい。さらに本発明の洗剤粒子群において、水難溶性無機物の炭酸塩に対する重量比は1/2以上、1/1未満であり、11/20〜19/20が好ましく、3/5〜9/10がより好ましい。溶解性及び分散性の観点から該重量比は1/2以上が好ましく、洗浄力、粉残留物の低減、及び耐ケーキング性の観点から1/1未満が好ましい。特に、後述の態様1の場合、水難溶性無機物と炭酸塩との関係がこれらの範囲内でかつ洗剤粒子群が特定の粒度範囲であれば、分散性、溶解性及び保存安定性に優れ、さらに粉残留物低減を図ることができた洗剤粒子群となる。又は、後述の態様2の場合、上記関係がこれらの範囲内であれば、ベース顆粒の構造は炭酸塩及び/又は水溶性ポリマーがベース顆粒の内部よりも表面近傍に多く偏在した構造となる。そのために、水中で表面近傍の水溶性成分が速やかに溶解して、洗剤粒子表面からの洗剤粒子の崩壊を促進するという溶解挙動を示す。その結果、かかるベース顆粒により高速溶解性が実現され、さらに溶解性に優れた洗剤粒子群を得ることができる。
【0013】
本発明の高嵩密度洗剤粒子群は、10℃における電気伝導度法による95%溶解時間が120秒以下のものが好ましく、90秒以下のものがより好ましい。
更に、本発明の高嵩密度洗剤粒子群は、後述の分級装置を用いて分級して得られた各分級粒子群の重量頻度と、各分級粒子群の5℃における攪拌2分後の300μmでの透過率との積の総和が90%以上のものが好ましく、95%以上のものがより好ましい。この値も洗剤粒子群の溶解性を示す値であり、数値が100%に近いほど溶解性が高いことを示す。なお、95%溶解時間とは、後述の実施例に記載の方法により測定されたものをいう。
【0014】
このような10℃の低温でも優れた溶解性を有する洗剤粒子群としては、例えば、以下の態様の粒子群が好ましい。
1)態様1
本態様の洗剤粒子群の平均粒径は、ペースト化による溶解速度遅延の防止及び洗剤粒子群の溶解性向上の観点から150〜500μmであり、180〜500μmが好ましく、180〜300μmがより好ましい。
【0015】
特に、本態様の洗剤粒子群は、低水温や低攪拌等の洗浄条件での溶解性及び洗浄性の点で平均粒径が150〜500μmであり、710μm以上の粒径の粒子群が洗剤粒子群全体の10重量%以下、好ましくは8重量%以下、より好ましくは5重量%以下、更に好ましくは3重量%以下、特に好ましくは0重量%、及び125μm未満の粒径の粒子群が10重量%以下、好ましくは8重量%以下、より好ましくは5重量%以下、更に好ましくは2重量%以下、特に好ましくは0重量%の洗剤粒子群である。特に撹拌力の弱い閉塞された様な洗濯条件において洗剤のペースト化を抑制する点で、180μm未満の粒径の粒子群が10重量%以下が好ましく、6重量%以下がより好ましく、3重量%以下が更に好ましい。該粒度分布は、例えば、それぞれの篩の目開きが装置上部から下部に向かって2000μm、1410μm、1000μm、710μm、500μm、355μm、250μm、180μm及び125μmである9段の篩と、目開きが125μmの篩を通り抜ける粒子群を受ける、最下部にある受け皿とからなる分級装置を用いて分級することにより求めることができる。また、平均粒径は、重量50%径であり、上記の分級装置を用いて測定できる。即ち、分級操作後、微粒から粗粒に向けて、順番に重量頻度を積算し、積算の重量頻度が50%以上となる最初の篩の目開きをaμmとし、またaμmよりも一段大きい篩の目開きをbμmとした時、受け皿からaμmの篩までの重量頻度の積算をc%、またaμmの篩上の重量頻度をd%とした場合、下記式(I)に従って求めることができる。
【0016】
【数1】

Figure 0003881821
【0017】
本態様の洗剤粒子群は界面活性剤、水難溶性無機物、炭酸塩及び、要すれば水溶性ポリマーを含有する。かかる態様の洗剤粒子群の組成としては、例えば、界面活性剤が5〜80重量%、水難溶性無機物が3.5〜32.5重量%、より好ましくは4〜22.5重量%、炭酸塩が5.5〜33重量%、より好ましくは6〜25重量%、水溶性ポリマーが0〜20重量%、より好ましくは1〜20重量%の組成が好ましい。洗浄力、生産性、ケーキング防止及び流動性の観点から界面活性剤の量が10〜60重量%がより好ましく、10〜40重量%が特に好ましい。
【0018】
本態様の洗剤粒子群に含有される界面活性剤としては、陰イオン界面活性剤、非イオン界面活性剤、両性界面活性剤、陽イオン界面活性剤等が挙げられる。これらは単独で用いても、複数種を混合して用いても良い。
【0019】
本態様の洗剤粒子群は、例えば水難溶性無機物の一部を除いた主成分を連続ニーダーを用いて捏和・混合し、得られた捏和物と残部の水難溶性無機物とを粉砕機に投入して粉砕することにより得ることができる。そして、得られた洗剤粒子群を篩い分けすることによって所定の平均粒径の分布を有する洗剤粒子群を得ることができる。なお、連続ニーダーとしては、栗本鉄工所製KRC2型等、粉砕機としてはホソカワミクロン製DKASO6型等が好適例である。
【0020】
2)態様2
本態様の洗剤粒子群の平均粒径は、ペースト化による溶解遅延の防止及び洗剤粒子群の溶解性の向上の観点から150〜700μmであり、150〜500μmが好ましく、180〜400μmがより好ましい。
【0021】
本態様の洗剤粒子群は、ベース顆粒に界面活性剤が担持されてなるものである。ベース顆粒は、水難溶性無機物、炭酸塩及び、要すれば水溶性ポリマーを含有してなる。
【0022】
ベース顆粒の組成については、水難溶性無機物は3.5〜32.5重量%が好ましく、4〜22.5重量%が特に好ましい。炭酸塩は5.5〜33重量%が好ましく、6〜25重量%が特に好ましい。水溶性ポリマーは好ましくは1〜20重量%、より好ましくは1〜15重量%、特に好ましくは1〜10重量%である。これらの範囲内であれば、ベース顆粒の構造は水溶性ポリマー及び/又は水溶性塩類がベース顆粒の内部よりも表面近傍に多く偏在した構造となる。かかるベース顆粒は、水中で表面近傍の水溶性成分が速やかに溶解して、それにより洗剤粒子表面からの洗剤粒子の崩壊を促進するという溶解挙動を示すために、高速溶解性が実現され、さらに溶解性に優れた洗剤粒子群を得ることができる。したがって、本態様においては、ベース顆粒がかかる偏在性を有することが好ましい。
【0023】
ベース顆粒の構造の偏在性の確認は、例えば、フーリエ変換赤外分光法(FT−IR)や光音響分光法(PAS)を併用する方法(FT−IR/PAS)を用いて行うことができる。これは、APPLIED SPECTROSCOPY vol.47 、1311- 1316(19 93) に記載のとおり、ベース顆粒の表面から深さ方向における物質の分布状態を解析する方法であり、それにより偏在性を確認することができる。
【0024】
また、前記界面活性剤としては、陰イオン界面活性剤、非イオン界面活性剤、両性界面活性剤、陽イオン界面活性剤等が挙げられ、これらは単独で用いても、複数種を混合して用いても良い。取り分け、水溶性色素汚れや襟、袖等の皮脂汚れ洗浄力や溶解性の点で、陰イオン界面活性剤のカリウム塩がより好ましい。
【0025】
ベース顆粒に担持させる界面活性剤の量としては、洗浄力の点で、ベース顆粒100重量部に対して5〜80重量部が好ましく、5〜60重量部がより好ましく、10〜60重量部がさらに好ましく、15〜60重量部が特に好ましい。ベース顆粒に陰イオン界面活性剤を担持させることにより、上記の偏在性を維持しつつ多量の界面活性剤を配合することができる。
【0026】
本態様の洗剤粒子群は、例えば、次のようにして調製することができる。
まず、ベース顆粒を構成する成分を含有するスラリーを調製する。次いで、スラリーを噴霧乾燥に付してベース顆粒を得る。噴霧乾燥により、ベース顆粒を構成する成分のうちの水溶性成分が水分の蒸発に伴ってベース顆粒表面に移動する。そのために、ベース顆粒は偏在性を示すことになる。
次いで、得られたベース顆粒と界面活性剤とを、回分式や連続式の混合機に投入することによりベース顆粒に界面活性剤を担持させることができる。
【0027】
以上の態様1及び2で示される洗剤粒子群は、水に溶解する過程において粒子径の1/10以上の径の気泡を粒子内部から放出し得る洗剤粒子(以下、気泡放出洗剤粒子という)を含有することが好ましい。この気泡放出洗剤粒子は、水に溶解する過程において、まず、粒子内部に少量の水が浸入すると粒子内部から所定の大きさの気泡が放出され、次いで、該粒子内部に大量の水が浸入することによって粒子自体が崩壊(粒子の自己崩壊)し、表面近傍からの溶解のみならず、粒子内部からの溶解及び崩壊が起こる。
【0028】
このような溶解挙動は、気泡放出洗剤粒子を水に溶解した場合に、該粒子の粒子径の1/10以上、好ましくは1/5以上、より好ましくは1/4以上、さらに好ましくは1/3以上の径の気泡(以下、所定の大きさの気泡という)を放出する現象として、デジタルマイクロスコープや光学顕微鏡等で確認することができる。これに対して従来のコンパクト洗剤粒子では、発生する殆どの気泡の大きさは洗剤粒子径の1/10未満に過ぎず、粒子自体を自己崩壊させるには至らないため、本発明の洗剤粒子群のような十分な高速溶解性が得られない。尚、気泡放出洗剤粒子は、水に静置状態にて溶解させた場合、120秒以内に所定の大きさの気泡が発生することが好ましく、60秒以内がより好ましく、45秒以内がさらに好ましい。
【0029】
この気泡放出による高速溶解性を有する気泡放出洗剤粒子は、所定の大きさの気泡を放出可能な気孔(単数個でも複数個でもよい)を有していれば良く、特に、粒子の形態、構造に限定されない。例えば、単核性の洗剤粒子であっても良く、単核性以外、例えば単核性のベース顆粒を凝集させた洗剤粒子(以下、多核性洗剤粒子という。)であっても良い。中でも、気泡放出洗剤粒子は、単核性であることが、溶解速度を飛躍的に高める観点から好ましい。
【0030】
ここで、単核性洗剤粒子とは、前記ベース顆粒を核として製造された洗剤粒子であって、実質的に1個の洗剤粒子の中に1個のベース顆粒を核として有する洗剤粒子をいう。
【0031】
洗剤粒子群の単核性を表す指標として、次式で定義される粒子成長度を用いることができる。ここで言う単核性洗剤粒子群は、粒子成長度が、1.5以下、好ましくは1.3以下、より好ましくは1.2以下である。
粒子成長度=(洗剤粒子群の平均粒径)/(ベース顆粒の平均粒径)
【0032】
単核性洗剤粒子群は粒子間の凝集が抑制されているため、所望の粒径範囲外の粒子(凝集粒子)の生成が抑えられており(即ち、これは界面活性剤の配合量の変動に対して得られる洗剤粒子群の平均粒径及び粒度分布の変動が少ないことを示す。)、溶解性に優れた洗剤粒子群が高収率で得られる。
【0033】
このような気泡放出洗剤粒子群は、洗剤粒子群に60重量%以上含有されることが好ましく、80重量%以上がより好ましい。
【0034】
なお、気泡径は次のように測定する。即ち、ガラスシャーレ(内径50mm)の底面中心に両面テープを装着し、該両面テープ上に洗剤粒子群を付着させる。次に、デジタルマイクロスコープを用いて得られる画像から個々の粒子についての円相当径(αμm)を測定する。デジタルマイクロスコープとしては例えばKEYENCE社製VH−6300を用いることができる。
【0035】
続いて前記ガラスシャーレに20℃のイオン交換水を5mL注入し、測定対象の個々の粒子についての溶解挙動を観察する。粒子内部から気泡が放出される場合、気泡が粒子から離脱する瞬間の画像から気泡の円相当径(βμm)を測定する。尚、粒子内部から複数個の気泡が放出される場合にはそれぞれの気泡について測定した円相当径の最大値をβμmとする。そして粒子径に対する気泡径の比(β/α)をそれぞれの粒子について求める。
【0036】
好ましい気泡放出洗剤粒子では、該粒子の内部に粒子径の1/10〜4/5の、好ましくは1/5〜4/5の径の気孔が存在することが好ましい。
【0037】
気孔径は次のように測定することができる。即ち、選択された粒子を壊さない様にメス等で最大粒子径を含む面で切断する。切断面を走査型電子顕微鏡(SEM)で観察して、切断粒子の切断面の円相当径(粒子径)(γμm)及び粒子内部で気孔の存在が確認された場合には気孔の円相当径(気孔径)(δμm)を測定する。なお、複数個の気孔が確認される場合には、その中で最も大きい気孔についての円相当径をδμmとする。そして粒子径に対する気孔径の比(δ/γ)を求める。
【0038】
また、気泡放出洗剤粒子が前記ベース顆粒により構成される場合、ベース顆粒はその内部に粒子径の1/10〜4/5の、好ましくは1/5〜4/5の径の気孔が存在する構造が好ましい。気孔径は、前述の方法で測定することができる。
【0039】
以上の態様1及び2に示される洗剤粒子群の中で、高速溶解性を発現させる最も好ましい態様としては、前記のような偏在性を有すると共に、さらに気泡放出洗剤粒子である態様2の洗剤粒子群が挙げられる。
【0040】
2.高嵩密度洗剤粒子群を構成する成分
陰イオン界面活性剤としては、高級アルコールの硫酸エステル塩、高級アルコールのエトキシル化物の硫酸エステル塩、アルキルベンゼンスルホン酸塩、パラフィンスルホン酸塩、α−オレフィンスルホン酸塩、α−スルホ脂肪酸塩若しくはそのアルキルエステル塩、又は脂肪酸塩等が挙げられる。特に、アルキル鎖の炭素数が10〜18の、より好ましくは12〜14の直鎖アルキルベンゼンスルホン酸塩、炭素数が10〜20のα−スルホ脂肪酸アルキルエステル塩が好ましい。
【0041】
非イオン界面活性剤としては、高級アルコールのエチレンオキシド(以下「EO」という)付加物、若しくはEO/プロピレンオキシド(以下「PO」という)付加物、脂肪酸アルカノールアミド、アルキルポリグリコシド等が挙げられる。特に炭素数が10〜16のアルコールのEO1〜10モル付加物が皮脂汚れの除去、耐硬水性、生分解性の点、及び直鎖アルキルベンゼンスルホン酸塩との相性の点で好ましい。
【0042】
両性界面活性剤としては、アルキルジメチルアミノ酢酸ベタイン、脂肪酸アミノプロピルベタイン等が、陽イオン界面活性剤としては、モノ(又はジ)アルキル型第四級アンモニウム塩等が挙げられる。
【0043】
洗剤粒子群中の陰イオン界面活性剤、非イオン界面活性剤、両性界面活性剤及び陽イオン界面活性剤の含有量は、それぞれ好ましくは0〜60重量%、0〜60重量%、0〜20重量%及び0〜20重量%、より好ましくは1〜50重量%、1〜50重量%、1〜10重量%及び1〜10重量%の範囲で適宜調整すれば良い。
【0044】
水難溶性無機物としては、一次粒子の平均粒径が0.1〜20μmのものが好ましい。具体的な物質としては、結晶性又は非晶質のアルミノケイ酸塩、二酸化ケイ素、水和ケイ酸化合物、パーライト、ベントナイト等の粘土化合物等が挙げられる。中でも金属イオン封鎖能及び界面活性剤の吸油能の点で結晶性アルミノケイ酸塩が好ましく、ゼオライト(A型、P型、X型)がより好ましい。
【0045】
水溶性ポリマーとしては、カルボン酸系ポリマー、カルボキシメチルセルロース、可溶性澱粉、糖類等が挙げられる。中でも金属イオン封鎖能、固体汚れ・粒子汚れの分散能及び再汚染防止能の点で、分子量が数千〜10万のカルボン酸系ポリマーが好ましい。特に、アクリル酸−マレイン酸コポリマーの塩とポリアクリル酸塩が好ましい。ここで、塩としてはナトリウム塩、カリウム塩、アンモニウム塩が挙げられる。水溶性ポリマーをさらに配合することは、汚れ成分の再付着防止効果が洗剤粒子群に付与できるため、好ましい。
【0046】
炭酸塩としては、アルカリ金属塩、アンモニウム塩、又はアミン塩等が挙げられる。該成分を配合することは、該成分と水との反応で生じた水和熱、溶解熱により、洗剤粒子から発生する気泡を熱膨張させ、それにより粒子の崩壊性を促進できる点でより好ましい。
【0047】
本発明の洗剤粒子群には、衣料用洗剤の分野で公知のビルダー、漂白剤(過炭酸塩、過ホウ酸塩、漂白活性化剤等)、再汚染防止剤(カルボキシメチルセルロース等)、柔軟化剤、還元剤(亜硫酸塩等)、蛍光増白剤、抑泡剤(シリコーン等)、香料等を含有させることができる。
【0048】
また、本発明の効果を損わない範囲で、炭酸水素塩、亜硫酸塩、硫酸水素塩、塩酸塩、又はリン酸塩等のアルカリ金属塩、アンモニウム塩、又はアミン塩等の水溶性無機塩類や、クエン酸塩やフマル酸塩等の低分子量の水溶性有機酸塩、蛍光染料、顔料、染料等の補助成分を含有又は担持させることができる。
【0049】
また、粒子群の流動性及び非ケーキング性向上の観点から、本発明の洗剤粒子群と表面被覆剤とを混合して表面改質を行っても良い。
表面被覆剤としては、硫酸塩、アルミノケイ酸塩、ケイ酸カルシウム、二酸化ケイ素、ベントナイト、タルク、クレイ、非晶質シリカ誘導体、結晶性シリケート化合物等のシリケート化合物、金属石鹸、粉末の界面活性剤等の微粉体、カルボキシメチルセルロース、ポリエチレングリコール、ポリアクリル酸塩、アクリル酸とマレイン酸のコポリマー又はその塩等のポリカルボン酸塩等の水溶性ポリマー、脂肪酸又はその塩等が挙げられる。表面被覆剤の含有量は、洗剤粒子群中に好ましくは0〜20重量%、より好ましくは1〜10重量%である。
【0050】
3.洗浄剤組成物
また、本発明は、前記高嵩密度洗剤粒子群を含有してなる洗浄剤組成物に関する。該洗剤粒子群の含有量は、洗浄剤組成物としての溶解性及び洗浄性の点から洗浄剤組成物の50重量%以上が好ましく、80重量%以上がより好ましい。
【0051】
本発明の洗浄剤組成物には、上記洗剤粒子群以外の成分として、界面活性剤やビルダー等の洗浄剤基剤、漂白剤(過炭酸塩、過ホウ酸塩、漂白活性化剤等)、再汚染防止剤(カルボキシメチルセルロース等)、柔軟化剤、還元剤(亜硫酸塩等)、蛍光増白剤、抑泡剤(シリコーン等)、香料等の成分を含有させることもできる。前記成分の含有量は、洗浄力向上の点で洗浄剤組成物の15〜80重量%が好ましく、21〜65重量%がより好ましく、25〜55重量%が特に好ましい。
【0052】
なお、本発明において、嵩密度はJIS K 3362に規定された方法で測定する。また、平均粒径はメジアン径であり、JIS Z 8801の標準篩を用いて試料を5分間振動させた後、ふるいの目開きのサイズによる重量分率から測定する。
【0053】
【実施例】
実施例1
攪拌翼を有した1m3 の混合槽に水507kgを加えた。水温が55℃に達した後に、50重量%のドデシルベンゼンスルホン酸ナトリウム水溶液36kg、40重量%のアクリル酸−マレイン酸コポリマー(ナトリウム塩、70モル%中和、モノマー比はモル比でアクリル酸/マレイン酸=7/3)水溶液75kgを添加した。これを15分間攪拌した後に、炭酸ナトリウム270kg、硫酸ナトリウム90kg、亜硫酸ナトリウム9kg、蛍光染料3kgを添加した。これを更に15分間攪拌した後に、4A型ゼオライト150kgを添加した。これを30分間攪拌してスラリーを得た(最終温度は60℃)。また、このスラリー中の水分は50重量%であった。
【0054】
このスラリーを噴霧乾燥塔に供給し、塔頂より噴霧を行うことによりベース顆粒を調製した。得られたベース顆粒の組成は次のとおりである。ドデシルベンゼンスルホン酸ナトリウム3.0重量%、アクリル酸−マレイン酸コポリマー(ナトリウム塩)5重量%、炭酸ナトリウム45重量%、硫酸ナトリウム15重量%、亜硫酸ナトリウム1.5重量%、蛍光染料0.5重量%、ゼオライト25重量%、水5重量%。
【0055】
該ベース顆粒をFT−IR/PASにて解析した結果、顆粒内側はゼオライトの比率が高いこと、水溶性ポリマー及び水溶性塩類は粒子表面近くに多く存在した被覆型の粒子構造を有していること、即ち該ベース顆粒は偏在性を有することが確認された。
【0056】
次いで、レディデミキサー(松坂技研(株)製、容量20L、ジャケット付)に上記ベース顆粒100重量部を投入し、主軸(150rpm)とチョッパー(4000rpm)の攪拌を開始した。そこに、炭素数12〜16、平均EO付加モル数7.0のポリオキシエチレンアルキルエーテル16重量部、ドデシルベンゼンスルホン酸ナトリウム16重量部、ポリエチレングリコール(平均分子量15000)1重量部及び水5重量部を加熱混合して得られた70℃の混合液を3分間で投入し、その後5分間攪拌を行い洗剤粒子群を得た。さらに、結晶性シリケート(SKS−6、平均粒径50μm)5重量部と非晶質アルミノケイ酸塩5重量部とを投入し表面被覆を行った。なお、非晶質アルミノケイ酸塩は、Al2 3 =29.6重量%、SiO2 =52.4重量%、Na2 O=18.0重量%(1.0Na2 O・Al2 2 ・3.10SiO2 )の組成のものであって、そのCaイオン捕捉能は185CaCO3 mg/g、吸油能は285mL/100g、含有水分量は11.2重量%であった。次いで、分級装置を用いて洗剤粒子群を分級し、所望の粒度分布に調整した。得られた洗剤粒子群の物性を表1に示す。
【0057】
得られた洗剤粒子群100重量部に、酵素0.5重量部と香料0.5重量部とを混合して洗浄剤組成物を得た。酵素としては、セルラーゼK(特開昭63−264699号公報記載のもの)、リポラーゼ100T(ノボ社製)を3:1の重量比で混合したものを用いた。
【0058】
得られた洗剤粒子群及び洗浄剤組成物の溶解性、洗浄性及び保存安定性を以下に示すようにして評価した。これらの結果を表1に示す。
【0059】
洗剤粒子群の溶解性は、10℃における電気伝導度法による95%溶解時間と粉残留物の量を測定して評価した。即ち、95%溶解時間については、内径105mmの円柱状の1Lビーカーに10℃の蒸留水1Lを入れ、電気伝導度計をセットした。全長35mm、直径7.5mmの円柱状攪拌子を用いて550rpmにて攪拌を行った。10℃の試料1gを水の渦中心に投入し、この時点を0秒として、10秒間隔で電気伝導度を測定した。継続して2分以上測定値が上昇しなくなった値を100%溶解値として95%溶解値を算出した。そしてその値に至るまでに要する時間を95%溶解時間とし、該95%溶解時間で溶解性を評価した。
【0060】
粉残留物の評価は、松下電器産業(株)製、全自動洗濯機「愛妻号NA−F42Y1」に衣料2kg(木綿肌着50重量%、ポリエステル/綿混Yシャツ50重量%)を投入した後、洗剤組成物25gを投入し、中水位(40L)の設定で5℃の水道水を注水し、標準水流で5分間の洗濯を行なった。洗濯工程終了後に排出される洗濯排水を500μm篩で濾過し、篩上に残留する洗剤量を下記評価基準に基づいて評価した。表中、「○」は、洗剤粒子がほとんどないことを示し、「×」は、洗剤粒子が多量に残留していることを示す。
【0061】
洗浄剤組成物の洗浄性(洗浄力)の評価のための試験は、特開平10−168485号公報の第14欄第6行以降に記載の方法に従って実施した。表中、洗浄率65%以上を合格品として「○」と、65%未満を不合格品として「×」と表示した。
【0062】
洗剤粒子群の保存安定性について、耐ケーキング性を用いて以下のように評価した。
濾紙(ADVANTEC社製 No.2)で長さ10.2cm×幅6.2cm×高さ4cmの天部のない箱を作り、四隅をステープラーでとめた。試料50gを入れた該箱の上にアクリル樹脂板(15g)と鉛板(250g)を載せた。これを温度35℃、湿度40%の雰囲気下で一ヶ月放置した後のケーキング状態について下記の通過率を求めることによって耐ケーキング性を評価した。
<通過率> 試験後の試料を篩(JIS Z 8801規定の目開き4760μm)上に静かにあけ、通過した粉末重量を計り、試験後の試料に対する通過率(%)を求めた。表中、通過率が70%以上を「○」と、70%未満を「×」と表示した。
【0063】
比較例1
攪拌翼を有した1m3 の混合槽に水510kgを加えた。水温が55℃に達した後に、50重量%のドデシルベンゼンスルホン酸ナトリウム水溶液120kg、α−オレフィンスルホン酸ナトリウム(炭素数16〜18)48kg、牛脂脂肪酸ナトリウム24kg、4A型ゼオライト30kg、炭酸ナトリウム198kg、非晶質ケイ酸塩(1号ケイ酸ナトリウム(東ソー(株)製))36kg、亜硫酸ナトリウム12kg、40重量%のアクリル酸−マレイン酸コポリマー(ナトリウム塩、70モル%中和、モノマー比はモル比でアクリル酸/マレイン酸=3/7)45kg、蛍光染料(チノパールCBS−X(チバーガイギー社製)、ホワイテックスSA(住友化学製)を1:1の重量比で混合したもの)1.8kg、硫酸ナトリウム49kgを添加した。これを30分間攪拌してスラリーを得た(最終温度は60℃)。また、このスラリー中の水分は50重量%であった。このスラリーを噴霧乾燥塔に供給し、塔頂より噴霧を行うことにより噴霧乾燥粒子を調製した。得られた乾燥噴霧粒子の水分は7.2重量%であった。
【0064】
得られた乾燥噴霧粒子86重量部、結晶性シリケート(SKS−6、平均粒径50μm)5重量部をレディゲミキサー(攪拌転動造粒機、松坂技研製)に投入し攪拌を開始した。そこで炭素数12〜16、平均EO付加モル数7.0のポリオキシエチレンアルキルエーテル4重量部をスプレーすることにより添加し、造粒を行った。次いで、4A型ゼオライト5重量部を投入し、表面改質を行い洗剤粒子群を得た。次いで、分級装置を用いて洗剤粒子群を分級し、所望の粒度分布に調整した。得られた洗剤粒子群の物性を表1に示す。
【0065】
得られた洗剤粒子群100重量部をロータリーキルンに入れ、酵素0.5重量部と香料0.5重量部とを混合して洗浄剤組成物を得た。酵素としては、実施例1で用いた酵素混合物と同じものを用いた。得られた洗浄剤組成物の物性を表1に示す。
【0066】
実施例2〜3、比較例2
以下のようにして粒度分布の異なる洗剤粒子群を製造した。まず、直鎖アルキルベンゼンスルホン酸ナトリウム〔LAS−Na〕(C12−14)13重量部、α−スルホ脂肪酸メチルエステルナトリウム〔SFE−Na〕(パーム油由来)10重量部、ポリオキシエチレンアルキルエーテル(C12、EO6モル)4重量部、ポリエチレングリコール(分子量8500)1重量部、4A型ゼオライト12重量部、アクリル酸−マレイン酸コポリマー(分子量70000)3重量部、脂肪酸ナトリウム(牛脂由来)8重量部、1号ケイ酸ナトリウム1重量部、炭酸ナトリウム16重量部、硫酸ナトリウム5重量部、亜硫酸ナトリウム1重量部、蛍光染料0.3重量部及び水3.2部からなる固形分50重量%スラリーを調製し、噴霧乾燥して噴霧乾燥組成物を得た。これに、結晶性シリケート3重量部及び炭酸ナトリウム10重量部をリボンミキサーに投入して混合を行った。得られた混合物を前押し出し式2軸型押し出し造粒機(ペレッターダブル:不二パウダル(株)製)で直径が10mmの円柱状に押し出し成形して圧密化した。得られたペレット状物を、4A型ゼオライト4重量部とともにフラッシュミル(不二パウダル(株)製)で粉砕造粒して表面被覆を行った。この造粒物から粗大物を取り除いた後、Vブレンダーに移し、4A型ゼオライト4重量部を混合して洗剤粒子群を得た。次いで、分級装置を用いて洗剤粒子群を分級し、表1に示す粒度分布に調整した。得られた洗剤粒子群(実施例2〜3、比較例2)の物性を表1に示す。
【0067】
次に、得られた洗剤粒子群に、酵素1.3重量部と香料0.2重量部を混合して洗浄剤組成物を得た。酵素としては、実施例1で用いた酵素混合物と同じものを用いた。得られた洗浄剤組成物の物性を表1に示す。
【0068】
比較例3
スラリー中に配合するゼオライトの量を28重量%とし、炭酸ナトリウムをスラリー中に配合しない以外は実施例2と同様にして洗剤粒子群及び洗浄剤組成物を得た。それぞれの物性を表1に示す。
【0069】
【表1】
Figure 0003881821
【0070】
表1より、実施例1〜3で得られた洗剤粒子群は、比較例1〜3で得られた洗剤粒子群に比べ、95%溶解時間が極めて短く、洗浄力に優れ、且つ耐ケーキング性の品質が改善され、粉残留物の量も低減されたものであることがわかる。
【0071】
【発明の効果】
本発明の高嵩密度洗剤粒子群は粉残留物が低減され、溶解性及び耐ケーキング性が良好であり、低温洗浄条件であっても洗浄力を十分に発揮できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high bulk density detergent particle group.
[0002]
[Prior art]
Washing machines on the market in recent years are responding to consumer needs for “easy to finish washing”, tending to increase capacity (can wash many clothes at once), and wash for a short time during washing time Mode settings are made. Furthermore, a weak agitation mode has been set to address the need to “carefully wash clothes” and appealed to reduce clothing damage. In addition, there is a trend toward saving water, low-temperature washing, and shortening operation time in response to environment / energy and economic efficiency.
[0003]
This trend is to reduce the amount of work of the washing machine (mechanical force x time). As a result, the cleaning power deteriorates due to the decrease in the dissolution rate of the detergent particles. Undissolved and increased clothing residue of detergent particles.
[0004]
In addition, for the purpose of improving the flowability and appearance of a powder detergent and suppressing the generation of fine powder, a high bulk density detergent particle group having a large average particle diameter is known. However, while increasing the density of the powder detergent composition has brought great advantages in improving transport efficiency and user convenience, concerns regarding solubility have increased due to consolidation of the detergent particles. That is, since the detergent particle group has a longer dissolution time than the low bulk density detergent particle group, there is a possibility that the cleaning power may be lowered or undissolved depending on washing conditions such as water temperature and stirring power.
[0005]
For example, in JP-A-5-247497, when preparing a clutcher slurry containing zeolite, citrate is added to improve the strength of beads obtained by spray drying, and the beads are interfaced. A detergent comprising a high bulk density detergent particle group having a large average particle diameter and having a high solubility characteristic by applying an activator is disclosed, but the solubility and detergency in a low water temperature range are disclosed. Still not satisfactory in terms.
[0006]
On the other hand, JP-A-7-509267 has filler particles such as sodium citrate and sodium hydrogen carbonate in a base powder having less than 10% by weight of particles less than 150 μm and less than 10% by weight of particles greater than 1700 μm. Although a detergent composition has been disclosed, it has not been satisfactory in terms of the solubility and dispersibility of the detergent composition when the work load of the washing machine is low.
[0007]
Furthermore, Japanese Patent Application Laid-Open No. 11-35998 discloses a high-density granular detergent whose solubility is improved by the particle size distribution, but it is still satisfactory in terms of storage stability (for example, caking resistance during storage). It wasn't going to be good.
[0008]
Carbonate is also a useful and inexpensive builder for detergents. However, carbonate reacts with carbon dioxide and becomes water insoluble. Therefore, although the blending of the carbonate has the above-mentioned advantages, it sometimes causes a problem in terms of reducing the powder residue during washing and the caking resistance during storage.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a high bulk density detergent particle group which is excellent in solubility and detergency under any washing conditions and excellent in storage stability.
[0010]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
(1) surfactant, Made of crystalline or amorphous aluminosilicate A high bulk density detergent particle group containing a poorly water-soluble inorganic substance and carbonate, having an average particle size of 150 to 500 μm and a bulk density of 500 g / L or more, a particle group having a particle size of 710 μm or more and a particle size of less than 125 μm Each of which is 10% by weight or less of the total amount of the detergent particles, and in the detergent particles The Poorly water-soluble minerals and The 10 to 70% by weight of the total carbonate content, Poorly water soluble A high bulk density detergent particle group in which the weight ratio of the inorganic substance to the carbonate is 1/2 or more and 9/10 or less, and
(2) The present invention relates to a detergent composition comprising the high bulk density detergent particle group described in (1).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
1. High bulk density detergent particles
The bulk density is 500 g / L or more, preferably 500 to 1000 g / L, more preferably 600 to 1000 g / L, and particularly preferably 650 to 850 g / L. The bulk density is preferably 500 g / L or more from the viewpoint of economic efficiency, and preferably 1000 g / L or less from the viewpoint of solubility.
The amount of water is preferably 20% by weight or less, more preferably 10% by weight or less, and particularly preferably 5% by weight or less of the detergent particle group.
[0012]
In the detergent particle group of the present invention, the sum of the contents of the poorly water-soluble inorganic substance and the carbonate is that of the detergent particle group from the viewpoints of detergency, solubility, reduction of powder residue (water insoluble matter), caking resistance, etc. It is 10 to 70% by weight, preferably 20 to 60% by weight, and more preferably 20 to 50% by weight. Furthermore, in the detergent particle group of the present invention, the weight ratio of the poorly water-soluble inorganic substance to the carbonate is 1/2 or more and less than 1/1, preferably 11/20 to 19/20, more preferably 3/5 to 9/10. preferable. The weight ratio is preferably 1/2 or more from the viewpoints of solubility and dispersibility, and is preferably less than 1/1 from the viewpoints of detergency, reduction of powder residue, and caking resistance. In particular, in the case of aspect 1 described later, if the relationship between the poorly water-soluble inorganic substance and the carbonate is within these ranges and the detergent particle group is in a specific particle size range, the dispersibility, solubility, and storage stability are excellent. A detergent particle group capable of reducing powder residue. Or in the case of the aspect 2 mentioned later, if the said relationship is in these ranges, the structure of a base granule will become a structure where carbonate and / or water-soluble polymer were unevenly distributed near the surface rather than the inside of the base granule. Therefore, the water-soluble component of the surface vicinity melt | dissolves rapidly in water, and the dissolution behavior that accelerates | stimulates the disintegration of the detergent particle from the detergent particle surface is shown. As a result, high-speed solubility is realized by such base granules, and a detergent particle group excellent in solubility can be obtained.
[0013]
The high bulk density detergent particle group of the present invention preferably has a 95% dissolution time by an electric conductivity method at 10 ° C. of 120 seconds or less, more preferably 90 seconds or less.
Furthermore, the high bulk density detergent particle group of the present invention is the weight frequency of each classified particle group obtained by classification using a classifier described below, and 300 μm after 2 minutes of stirring at 5 ° C. of each classified particle group. The total sum of the transmittance and the transmittance is preferably 90% or more, more preferably 95% or more. This value is also a value indicating the solubility of the detergent particle group, and the closer the value is to 100%, the higher the solubility. In addition, 95% dissolution time means what was measured by the method as described in the below-mentioned Example.
[0014]
As such a detergent particle group having excellent solubility even at a low temperature of 10 ° C., for example, the following particle group is preferable.
1) Aspect 1
The average particle diameter of the detergent particle group of this embodiment is 150 to 500 μm, preferably 180 to 500 μm, and more preferably 180 to 300 μm from the viewpoint of preventing dissolution rate delay due to pasting and improving the solubility of the detergent particle group.
[0015]
In particular, the detergent particle group of this embodiment has an average particle size of 150 to 500 μm in terms of solubility and detergency under washing conditions such as low water temperature and low stirring, and a particle group having a particle size of 710 μm or more is a detergent particle. 10% by weight or less of the whole group, preferably 8% by weight or less, more preferably 5% by weight or less, further preferably 3% by weight or less, particularly preferably 0% by weight, and 10% by weight of particles having a particle size of less than 125 μm %, Preferably 8% by weight or less, more preferably 5% by weight or less, still more preferably 2% by weight or less, and particularly preferably 0% by weight. In particular, the particle group having a particle size of less than 180 μm is preferably 10% by weight or less, more preferably 6% by weight or less, and more preferably 3% by weight from the viewpoint of suppressing the formation of a detergent paste under washing conditions where the stirring force is weak. The following is more preferable. The particle size distribution is, for example, a nine-stage sieve in which the openings of each sieve are 2000 μm, 1410 μm, 1000 μm, 710 μm, 500 μm, 355 μm, 250 μm, 180 μm, and 125 μm from the upper part to the lower part of the apparatus, and the opening is 125 μm. It can obtain | require by classifying using the classification apparatus which consists of the saucer in the lowermost part which receives the particle group which passes through the sieve of this. The average particle diameter is 50% by weight and can be measured using the above classifier. That is, after classification operation, the weight frequency is accumulated in order from fine particles to coarse particles, and the opening of the first sieve where the accumulated weight frequency is 50% or more is defined as a μm, and the sieve having a step larger than a μm When the mesh opening is b μm, the total weight frequency from the tray to the a μm sieve is c%, and the weight frequency on the a μm sieve is d%, it can be obtained according to the following formula (I).
[0016]
[Expression 1]
Figure 0003881821
[0017]
The detergent particle group of this embodiment contains a surfactant, a poorly water-soluble inorganic substance, a carbonate and, if necessary, a water-soluble polymer. Examples of the composition of the detergent particle group in this embodiment include 5 to 80% by weight of a surfactant, 3.5 to 32.5% by weight of a poorly water-soluble inorganic substance, more preferably 4 to 22.5% by weight, and carbonate. Is 5 to 33% by weight, more preferably 6 to 25% by weight, and the water-soluble polymer is preferably 0 to 20% by weight, more preferably 1 to 20% by weight. The amount of the surfactant is more preferably 10 to 60% by weight and particularly preferably 10 to 40% by weight from the viewpoints of detergency, productivity, caking prevention and fluidity.
[0018]
Examples of the surfactant contained in the detergent particle group of this embodiment include an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, and a cationic surfactant. These may be used alone or as a mixture of plural kinds.
[0019]
The detergent particles of this embodiment are, for example, kneaded and mixed the main component excluding a part of the poorly water-soluble inorganic substance using a continuous kneader, and the resulting kneaded substance and the remaining poorly water-soluble inorganic substance are put into a grinder. And then pulverized. And the detergent particle group which has distribution of a predetermined average particle diameter can be obtained by sieving the obtained detergent particle group. Suitable examples of the continuous kneader include KRC2 type manufactured by Kurimoto Iron Works, and the pulverizer includes DKASO6 type manufactured by Hosokawa Micron.
[0020]
2) Aspect 2
The average particle diameter of the detergent particle group of this embodiment is 150 to 700 μm, preferably 150 to 500 μm, and more preferably 180 to 400 μm from the viewpoint of preventing dissolution delay due to pasting and improving the solubility of the detergent particle group.
[0021]
The detergent particle group of this embodiment is one in which a surfactant is supported on base granules. The base granule contains a hardly water-soluble inorganic substance, a carbonate, and if necessary, a water-soluble polymer.
[0022]
Regarding the composition of the base granule, the hardly water-soluble inorganic substance is preferably 3.5 to 32.5% by weight, particularly preferably 4 to 22.5% by weight. The carbonate is preferably 5.5 to 33% by weight, particularly preferably 6 to 25% by weight. The water-soluble polymer is preferably 1 to 20% by weight, more preferably 1 to 15% by weight, and particularly preferably 1 to 10% by weight. Within these ranges, the structure of the base granule becomes a structure in which water-soluble polymers and / or water-soluble salts are more unevenly distributed near the surface than inside the base granule. Such a base granule exhibits a dissolution behavior in which water-soluble components near the surface quickly dissolve in water, thereby accelerating the disintegration of the detergent particles from the surface of the detergent particles. A group of detergent particles having excellent solubility can be obtained. Therefore, in this aspect, it is preferable that the base granule has such uneven distribution.
[0023]
Confirmation of the uneven distribution of the structure of the base granule can be performed using, for example, a method (FT-IR / PAS) in combination with Fourier transform infrared spectroscopy (FT-IR) or photoacoustic spectroscopy (PAS). . As described in APPLIED SPECTROSCOPY vol.47, 1311-1316 (1993), this is a method for analyzing the distribution of substances in the depth direction from the surface of the base granule. it can.
[0024]
Examples of the surfactant include an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, a cationic surfactant, and the like. It may be used. In particular, a potassium salt of an anionic surfactant is more preferable from the viewpoints of water-soluble pigment stains, sebum stain detergency such as collars and sleeves, and solubility.
[0025]
The amount of the surfactant to be supported on the base granule is preferably 5 to 80 parts by weight, more preferably 5 to 60 parts by weight, and more preferably 10 to 60 parts by weight with respect to 100 parts by weight of the base granule in terms of detergency. Further preferred is 15 to 60 parts by weight. By supporting an anionic surfactant on the base granule, a large amount of surfactant can be blended while maintaining the above-mentioned uneven distribution.
[0026]
The detergent particle group of this aspect can be prepared as follows, for example.
First, the slurry containing the component which comprises a base granule is prepared. The slurry is then subjected to spray drying to obtain base granules. By spray drying, the water-soluble component of the components constituting the base granule moves to the surface of the base granule as the moisture evaporates. For this reason, the base granule is unevenly distributed.
Subsequently, the obtained base granule and the surfactant are put into a batch type or continuous mixer, whereby the surfactant can be supported on the base granule.
[0027]
The detergent particle groups shown in the above aspects 1 and 2 are detergent particles capable of releasing bubbles having a diameter of 1/10 or more of the particle diameter from the inside of the particles in the process of dissolving in water (hereinafter referred to as bubble releasing detergent particles). It is preferable to contain. In the process of dissolving the air bubbles in the detergent particles, first, when a small amount of water enters the inside of the particles, bubbles of a predetermined size are released from the inside of the particles, and then a large amount of water enters the inside of the particles. As a result, the particles themselves collapse (particle self-disintegration), and dissolution and collapse not only from the vicinity of the surface but also from the inside of the particles occur.
[0028]
Such dissolution behavior is such that when the foam-release detergent particles are dissolved in water, the particle diameter of the particles is 1/10 or more, preferably 1/5 or more, more preferably 1/4 or more, and even more preferably 1 / The phenomenon of releasing bubbles having a diameter of 3 or more (hereinafter referred to as bubbles having a predetermined size) can be confirmed with a digital microscope or an optical microscope. On the other hand, in the conventional compact detergent particles, the size of most of the generated bubbles is less than 1/10 of the detergent particle diameter, and the particles themselves do not self-collapse. Such a sufficient high-speed solubility cannot be obtained. In addition, when the foam-release detergent particles are dissolved in water in a stationary state, it is preferable that bubbles of a predetermined size are generated within 120 seconds, more preferably within 60 seconds, and even more preferably within 45 seconds. .
[0029]
The bubble-release detergent particles having high-speed solubility by the bubble release need only have pores (single or plural) capable of releasing bubbles of a predetermined size, and in particular, the form and structure of the particles It is not limited to. For example, mononuclear detergent particles may be used, and other than mononuclear detergent particles, for example, detergent particles obtained by agglomerating mononuclear base granules (hereinafter referred to as multinuclear detergent particles) may be used. Among these, it is preferable that the foam-releasing detergent particles are mononuclear from the viewpoint of dramatically increasing the dissolution rate.
[0030]
Here, the mononuclear detergent particle is a detergent particle produced using the base granule as a core, and substantially having one base granule as a core in one detergent particle. .
[0031]
As an index representing the mononuclearity of the detergent particle group, the particle growth degree defined by the following formula can be used. The mononuclear detergent particle group mentioned here has a particle growth degree of 1.5 or less, preferably 1.3 or less, more preferably 1.2 or less.
Particle growth degree = (average particle diameter of detergent particles) / (average particle diameter of base granules)
[0032]
In the mononuclear detergent particle group, aggregation between particles is suppressed, so that generation of particles outside the desired particle size range (aggregated particles) is suppressed (that is, this is a variation in the amount of surfactant added). It shows that there is little variation in the average particle size and particle size distribution of the obtained detergent particle group.), And the detergent particle group having excellent solubility can be obtained in high yield.
[0033]
Such a bubble-release detergent particle group is preferably contained in the detergent particle group in an amount of 60% by weight or more, and more preferably 80% by weight or more.
[0034]
The bubble diameter is measured as follows. That is, a double-sided tape is attached to the center of the bottom surface of a glass petri dish (inner diameter 50 mm), and a detergent particle group is adhered on the double-sided tape. Next, the equivalent circle diameter (α μm) of each particle is measured from an image obtained using a digital microscope. As a digital microscope, for example, VH-6300 manufactured by KEYENCE can be used.
[0035]
Subsequently, 5 mL of 20 ° C. ion exchange water is injected into the glass petri dish, and the dissolution behavior of each particle to be measured is observed. When bubbles are released from the inside of the particles, the equivalent circle diameter (β μm) of the bubbles is measured from an image at the moment when the bubbles are detached from the particles. When a plurality of bubbles are discharged from the inside of the particle, the maximum value of the equivalent circle diameter measured for each bubble is β μm. Then, the ratio of the bubble diameter to the particle diameter (β / α) is obtained for each particle.
[0036]
In the preferred bubble-release detergent particles, it is preferable that pores having a diameter of 1/10 to 4/5, preferably 1/5 to 4/5 of the particle diameter are present inside the particles.
[0037]
The pore diameter can be measured as follows. That is, it cut | disconnects in the surface containing the largest particle diameter with a knife etc. so that the selected particle | grain may not be broken. When the cut surface is observed with a scanning electron microscope (SEM), the equivalent circle diameter (particle diameter) (γ μm) of the cut surface of the cut particles and the presence of pores inside the particles are confirmed. (Pore diameter) (δ μm) is measured. When a plurality of pores are confirmed, the equivalent circle diameter of the largest pore is δ μm. Then, the ratio of pore diameter to particle diameter (δ / γ) is determined.
[0038]
When the foam-release detergent particles are constituted by the base granules, the base granules have pores having a diameter of 1/10 to 4/5, preferably 1/5 to 4/5 of the particle diameter. A structure is preferred. The pore diameter can be measured by the method described above.
[0039]
Among the detergent particle groups shown in the above-described aspects 1 and 2, the most preferable aspect that expresses high-speed solubility is the detergent particles according to aspect 2 that have the above-mentioned uneven distribution property and are further bubble-release detergent particles. Groups.
[0040]
2. Components constituting high bulk density detergent particles
Anionic surfactants include higher alcohol sulfates, higher alcohol ethoxylate sulfates, alkylbenzene sulfonates, paraffin sulfonates, α-olefin sulfonates, α-sulfo fatty acid salts or alkyls thereof. Examples thereof include ester salts and fatty acid salts. In particular, a linear alkylbenzene sulfonate having 10 to 18 carbon atoms, more preferably 12 to 14 carbon atoms, and an α-sulfo fatty acid alkyl ester salt having 10 to 20 carbon atoms are preferable.
[0041]
Examples of the nonionic surfactant include ethylene oxide (hereinafter referred to as “EO”) adducts of higher alcohols, or EO / propylene oxide (hereinafter referred to as “PO”) adducts, fatty acid alkanolamides, alkyl polyglycosides, and the like. In particular, an EO 1 to 10 mol adduct of an alcohol having 10 to 16 carbon atoms is preferable in terms of removal of sebum soil, hard water resistance, biodegradability, and compatibility with linear alkylbenzene sulfonate.
[0042]
Examples of amphoteric surfactants include alkyldimethylaminoacetic acid betaines and fatty acid aminopropyl betaines, and examples of cationic surfactants include mono (or di) alkyl type quaternary ammonium salts.
[0043]
The content of the anionic surfactant, nonionic surfactant, amphoteric surfactant and cationic surfactant in the detergent particles is preferably 0 to 60% by weight, 0 to 60% by weight, and 0 to 20%, respectively. What is necessary is just to adjust suitably in the range of 1 weight% and 0-20 weight%, More preferably, 1-50 weight%, 1-50 weight%, 1-10 weight%, and 1-10 weight%.
[0044]
As the poorly water-soluble inorganic substance, those having an average primary particle diameter of 0.1 to 20 μm are preferable. Specific examples of the material include crystalline or amorphous aluminosilicates, silicon dioxide, hydrated silicate compounds, clay compounds such as perlite and bentonite. Of these, crystalline aluminosilicates are preferable in terms of sequestering ability and oil absorption ability of surfactants, and zeolite (A type, P type, X type) is more preferable.
[0045]
Examples of the water-soluble polymer include carboxylic acid polymers, carboxymethyl cellulose, soluble starch, saccharides and the like. Among them, a carboxylic acid polymer having a molecular weight of several thousand to 100,000 is preferable in terms of sequestering ability, dispersibility of solid dirt / particle dirt, and ability to prevent recontamination. Particularly preferred are salts of acrylic acid-maleic acid copolymers and polyacrylates. Here, examples of the salt include sodium salt, potassium salt, and ammonium salt. It is preferable to further mix a water-soluble polymer because the effect of preventing re-adhesion of soil components can be imparted to the detergent particles.
[0046]
Examples of the carbonate include alkali metal salts, ammonium salts, and amine salts. It is more preferable to blend this component in that the bubbles generated from the detergent particles can be thermally expanded by the heat of hydration and heat of dissolution generated by the reaction of the component and water, thereby promoting the disintegration of the particles. .
[0047]
The detergent particles of the present invention include builders, bleaches (percarbonates, perborate, bleach activators, etc.), recontamination inhibitors (carboxymethylcellulose, etc.), softening agents known in the field of garment detergents. Agents, reducing agents (sulfites, etc.), fluorescent brighteners, foam inhibitors (silicones, etc.), fragrances, and the like can be included.
[0048]
Further, water-soluble inorganic salts such as alkali metal salts such as hydrogen carbonate, sulfite, hydrogen sulfate, hydrochloride, or phosphate, ammonium salts, or amine salts, as long as the effects of the present invention are not impaired. In addition, auxiliary components such as low molecular weight water-soluble organic acid salts such as citrate and fumarate, fluorescent dyes, pigments, and dyes can be contained or supported.
[0049]
Further, from the viewpoint of improving the fluidity and non-caking property of the particle group, the detergent particle group of the present invention and the surface coating agent may be mixed to perform surface modification.
Surface coating agents include sulfates, aluminosilicates, calcium silicates, silicon dioxide, bentonite, talc, clay, amorphous silica derivatives, silicate compounds such as crystalline silicate compounds, metal soap, powder surfactants, etc. Fine powder, carboxymethyl cellulose, polyethylene glycol, polyacrylate, water-soluble polymer such as polycarboxylate such as copolymer of acrylic acid and maleic acid or salt thereof, fatty acid or salt thereof, and the like. The content of the surface coating agent is preferably 0 to 20% by weight, more preferably 1 to 10% by weight in the detergent particle group.
[0050]
3. Cleaning composition
The present invention also relates to a detergent composition comprising the high bulk density detergent particle group. The content of the detergent particles is preferably 50% by weight or more, more preferably 80% by weight or more of the cleaning composition from the viewpoint of solubility and cleaning properties as the cleaning composition.
[0051]
In the detergent composition of the present invention, as a component other than the detergent particles, a detergent base such as a surfactant or a builder, a bleach (percarbonate, perborate, bleach activator, etc.), Components such as a recontamination inhibitor (such as carboxymethyl cellulose), a softening agent, a reducing agent (such as sulfite), a fluorescent brightener, a foam suppressor (such as silicone), and a fragrance can also be contained. The content of the component is preferably from 15 to 80% by weight, more preferably from 21 to 65% by weight, and particularly preferably from 25 to 55% by weight of the cleaning composition in terms of improving detergency.
[0052]
In the present invention, the bulk density is measured by the method defined in JIS K 3362. The average particle diameter is a median diameter, which is measured from the weight fraction according to the size of the sieve opening after the sample is vibrated for 5 minutes using a standard sieve of JIS Z 8801.
[0053]
【Example】
Example 1
1m with stirring blade Three 507 kg of water was added to the mixing tank. After the water temperature reaches 55 ° C., 36 kg of 50 wt% aqueous sodium dodecylbenzenesulfonate, 40 wt% acrylic acid-maleic acid copolymer (sodium salt, 70 mol% neutralized, monomer ratio is acrylic acid / Maleic acid = 7/3) 75 kg of aqueous solution was added. After stirring for 15 minutes, 270 kg of sodium carbonate, 90 kg of sodium sulfate, 9 kg of sodium sulfite, and 3 kg of fluorescent dye were added. After stirring this for another 15 minutes, 150 kg of 4A type zeolite was added. This was stirred for 30 minutes to obtain a slurry (final temperature was 60 ° C.). Moreover, the water | moisture content in this slurry was 50 weight%.
[0054]
This slurry was supplied to a spray drying tower and sprayed from the top of the tower to prepare base granules. The composition of the obtained base granule is as follows. Sodium dodecylbenzenesulfonate 3.0% by weight, acrylic acid-maleic acid copolymer (sodium salt) 5% by weight, sodium carbonate 45% by weight, sodium sulfate 15% by weight, sodium sulfite 1.5% by weight, fluorescent dye 0.5 Wt%, zeolite 25 wt%, water 5 wt%.
[0055]
As a result of analyzing the base granule by FT-IR / PAS, the inside of the granule has a high zeolite ratio, and the water-soluble polymer and water-soluble salts have a coated particle structure in which many particles exist near the particle surface. That is, it was confirmed that the base granule has uneven distribution.
[0056]
Next, 100 parts by weight of the base granule was put into a ready demixer (manufactured by Matsuzaka Giken Co., Ltd., capacity 20 L, with jacket), and stirring of the main shaft (150 rpm) and chopper (4000 rpm) was started. There, 16 parts by weight of polyoxyethylene alkyl ether having 12 to 16 carbon atoms and an average EO addition mole number of 7.0, 16 parts by weight of sodium dodecylbenzenesulfonate, 1 part by weight of polyethylene glycol (average molecular weight 15000) and 5 parts by weight of water The mixture at 70 ° C. obtained by heating and mixing the parts was charged in 3 minutes, and then stirred for 5 minutes to obtain a detergent particle group. Further, 5 parts by weight of crystalline silicate (SKS-6, average particle size 50 μm) and 5 parts by weight of amorphous aluminosilicate were added to perform surface coating. Amorphous aluminosilicate is Al 2 O Three = 29.6 wt%, SiO 2 = 52.4 wt%, Na 2 O = 18.0 wt% (1.0 Na 2 O ・ Al 2 O 2 ・ 3.10SiO 2 ) With a Ca ion scavenging capacity of 185CaCO. Three The oil absorption capacity was 285 mL / 100 g, and the water content was 11.2% by weight. Next, the detergent particles were classified using a classifier and adjusted to a desired particle size distribution. Table 1 shows the physical properties of the obtained detergent particles.
[0057]
A detergent composition was obtained by mixing 100 parts by weight of the obtained detergent particle group with 0.5 parts by weight of an enzyme and 0.5 parts by weight of a fragrance. As the enzyme, a mixture of cellulase K (described in JP-A 63-264699) and lipolase 100T (manufactured by Novo) at a weight ratio of 3: 1 was used.
[0058]
The solubility, detergency and storage stability of the obtained detergent particles and the detergent composition were evaluated as follows. These results are shown in Table 1.
[0059]
The solubility of the detergent particles was evaluated by measuring the 95% dissolution time and the amount of powder residue by an electric conductivity method at 10 ° C. That is, for 95% dissolution time, 1 L of distilled water at 10 ° C. was placed in a cylindrical 1 L beaker having an inner diameter of 105 mm, and an electric conductivity meter was set. Stirring was performed at 550 rpm using a cylindrical stirring bar having a total length of 35 mm and a diameter of 7.5 mm. 1 g of a sample at 10 ° C. was put into the vortex center of water, and the electrical conductivity was measured at intervals of 10 seconds with this time as 0 second. The 95% dissolution value was calculated by taking the value at which the measured value did not increase for 2 minutes or more as the 100% dissolution value. The time required to reach this value was taken as 95% dissolution time, and the solubility was evaluated based on the 95% dissolution time.
[0060]
Evaluation of the powder residue was made after putting 2 kg of clothing (50% by weight of cotton underwear, 50% by weight of polyester / cotton blended shirt) into a fully automatic washing machine “Aizuma NA-F42Y1” manufactured by Matsushita Electric Industrial Co., Ltd. Then, 25 g of the detergent composition was added, tap water at 5 ° C. was poured at a medium water level (40 L), and washing was performed for 5 minutes with a standard water flow. Washing wastewater discharged after the washing process was filtered through a 500 μm sieve, and the amount of detergent remaining on the sieve was evaluated based on the following evaluation criteria. In the table, “◯” indicates that there are almost no detergent particles, and “x” indicates that a large amount of detergent particles remain.
[0061]
The test for evaluating the cleaning property (detergency) of the cleaning composition was carried out according to the method described in JP-A-10-168485, column 14, line 6 and thereafter. In the table, a cleaning rate of 65% or more was indicated as “◯” as an acceptable product, and less than 65% was indicated as “x” as an unacceptable product.
[0062]
The storage stability of the detergent particles was evaluated using the caking resistance as follows.
A box without a ceiling of 10.2 cm long × 6.2 cm wide × 4 cm high was made with filter paper (No. 2 manufactured by ADVANTEC), and the four corners were fastened with a stapler. An acrylic resin plate (15 g) and a lead plate (250 g) were placed on the box containing the sample 50 g. The caking resistance was evaluated by determining the following pass rate for the caking state after leaving this in an atmosphere of 35 ° C. and humidity 40% for one month.
<Passing Rate> The sample after the test was gently opened on a sieve (4760 μm opening according to JIS Z 8801), the weight of the passed powder was measured, and the passing rate (%) with respect to the sample after the test was obtained. In the table, a pass rate of 70% or more was indicated as “◯” and less than 70% was indicated as “x”.
[0063]
Comparative Example 1
1m with stirring blade Three 510 kg of water was added to the mixing tank. After the water temperature reached 55 ° C., 120 kg of 50% by weight aqueous sodium dodecylbenzenesulfonate solution, 48 kg of sodium α-olefin sulfonate (16 to 18 carbon atoms), 24 kg of beef tallow fatty acid sodium, 4 kg of zeolite 4A, 198 kg of sodium carbonate, Amorphous silicate (No. 1 sodium silicate (manufactured by Tosoh Corporation)) 36 kg, sodium sulfite 12 kg, 40 wt% acrylic acid-maleic acid copolymer (sodium salt, 70 mol% neutralized, monomer ratio is mol Acrylic acid / maleic acid ratio 3/7) 45 kg, fluorescent dye (mixed with Chino Pearl CBS-X (Chiber Geigy), Whiteex SA (Sumitomo Chemical Co., Ltd.) at a weight ratio of 1: 1) 1.8 kg 49 kg of sodium sulfate was added. This was stirred for 30 minutes to obtain a slurry (final temperature was 60 ° C.). Moreover, the water | moisture content in this slurry was 50 weight%. The slurry was supplied to a spray-drying tower, and spray-dried particles were prepared by spraying from the top of the tower. The water content of the obtained dry spray particles was 7.2% by weight.
[0064]
86 parts by weight of the obtained dry spray particles and 5 parts by weight of crystalline silicate (SKS-6, average particle size 50 μm) were put into a readyge mixer (stirring tumbling granulator, manufactured by Matsuzaka Giken) and stirring was started. Therefore, 4 parts by weight of polyoxyethylene alkyl ether having 12 to 16 carbon atoms and an average EO addition mole number of 7.0 was added by spraying to perform granulation. Next, 5 parts by weight of 4A-type zeolite was added and the surface was modified to obtain a detergent particle group. Next, the detergent particles were classified using a classifier and adjusted to a desired particle size distribution. Table 1 shows the physical properties of the obtained detergent particles.
[0065]
100 parts by weight of the obtained detergent particles were placed in a rotary kiln, and 0.5 parts by weight of enzyme and 0.5 parts by weight of fragrance were mixed to obtain a cleaning composition. As the enzyme, the same enzyme mixture as used in Example 1 was used. Table 1 shows the physical properties of the resulting cleaning composition.
[0066]
Examples 2-3 and Comparative Example 2
Detergent particle groups having different particle size distributions were produced as follows. First, sodium alkylbenzene sulfonate [LAS-Na] (C12-14) 13 parts by weight, sodium α-sulfo fatty acid methyl ester [SFE-Na] (from palm oil) 10 parts by weight, polyoxyethylene alkyl ether (C12 EO 6 mol) 4 parts by weight, polyethylene glycol (molecular weight 8500) 1 part, 4A zeolite 12 parts by weight, acrylic acid-maleic acid copolymer (molecular weight 70000) 3 parts by weight, fatty acid sodium (derived from tallow) 8 parts by weight, A 50 wt% solids slurry comprising 1 part by weight sodium silicate, 16 parts by weight sodium carbonate, 5 parts by weight sodium sulfate, 1 part by weight sodium sulfite, 0.3 parts by weight fluorescent dye and 3.2 parts water is prepared. And spray-dried to obtain a spray-dried composition. To this, 3 parts by weight of crystalline silicate and 10 parts by weight of sodium carbonate were put into a ribbon mixer and mixed. The obtained mixture was extruded into a columnar shape having a diameter of 10 mm with a pre-extrusion type twin-screw type extrusion granulator (Peletter Double: manufactured by Fuji Powder Co., Ltd.) to be consolidated. The obtained pellets were pulverized and granulated together with 4 parts by weight of 4A zeolite by a flash mill (Fuji Powder Co., Ltd.) for surface coating. After removing the coarse product from this granulated product, it was transferred to a V blender, and 4 parts by weight of 4A zeolite was mixed to obtain a detergent particle group. Next, the detergent particles were classified using a classifier and adjusted to the particle size distribution shown in Table 1. Table 1 shows the physical properties of the obtained detergent particles (Examples 2 to 3, Comparative Example 2).
[0067]
Next, 1.3 parts by weight of the enzyme and 0.2 parts by weight of the fragrance were mixed with the obtained detergent particle group to obtain a cleaning composition. As the enzyme, the same enzyme mixture as used in Example 1 was used. Table 1 shows the physical properties of the resulting cleaning composition.
[0068]
Comparative Example 3
A detergent particle group and a detergent composition were obtained in the same manner as in Example 2 except that the amount of zeolite blended in the slurry was 28% by weight and sodium carbonate was not blended in the slurry. The respective physical properties are shown in Table 1.
[0069]
[Table 1]
Figure 0003881821
[0070]
From Table 1, the detergent particle groups obtained in Examples 1 to 3 have an extremely short 95% dissolution time as compared with the detergent particle groups obtained in Comparative Examples 1 to 3, have excellent detergency, and are resistant to caking. It can be seen that the quality of the powder is improved and the amount of powder residue is also reduced.
[0071]
【The invention's effect】
The high bulk density detergent particle group of the present invention has reduced powder residue, good solubility and anti-caking property, and can sufficiently exert its detergency even under low temperature cleaning conditions.

Claims (3)

界面活性剤、結晶性又は非晶質のアルミノケイ酸塩からなる水難溶性無機物及び炭酸塩を含有し、平均粒径が150〜500μm、嵩密度が500g/L以上の高嵩密度洗剤粒子群であって、710μm以上の粒径の粒子群及び125μm未満の粒径の粒子群がそれぞれ該洗剤粒子群全体の10重量%以下であり、かつ該洗剤粒子群中の該水難溶性無機物及び該炭酸塩の含有量の和が10〜70重量%、該水難溶性無機物の該炭酸塩に対する重量比が1/2以上、9/10以下である高嵩密度洗剤粒子群。  A high bulk density detergent particle group comprising a surfactant, a poorly water-soluble inorganic substance composed of crystalline or amorphous aluminosilicate, and carbonate, having an average particle size of 150 to 500 μm and a bulk density of 500 g / L or more. The particle group having a particle size of 710 μm or more and the particle group having a particle size of less than 125 μm are 10% by weight or less of the total detergent particle group, and the poorly water-soluble inorganic substance and the carbonate in the detergent particle group A high bulk density detergent particle group having a total content of 10 to 70% by weight and a weight ratio of the hardly water-soluble inorganic substance to the carbonate of 1/2 to 9/10. 10℃における電気伝導度法による95%溶解時間が120秒以下である請求項1記載の高嵩密度洗剤粒子群。Claim 1 Symbol placement high bulk density detergent particles of 95% dissolution time by the electric conductivity method is less than 120 seconds at 10 ° C.. 請求項1又は2記載の高嵩密度洗剤粒子群を含んでなる洗浄剤組成物。Claim 1 or 2 comprising a high-bulk density detergent particles according detergent composition.
JP2000119656A 1999-04-26 2000-04-20 High bulk density detergent particles Expired - Fee Related JP3881821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000119656A JP3881821B2 (en) 1999-04-26 2000-04-20 High bulk density detergent particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-118584 1999-04-26
JP11858499 1999-04-26
JP2000119656A JP3881821B2 (en) 1999-04-26 2000-04-20 High bulk density detergent particles

Publications (2)

Publication Number Publication Date
JP2001011499A JP2001011499A (en) 2001-01-16
JP3881821B2 true JP3881821B2 (en) 2007-02-14

Family

ID=26456498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000119656A Expired - Fee Related JP3881821B2 (en) 1999-04-26 2000-04-20 High bulk density detergent particles

Country Status (1)

Country Link
JP (1) JP3881821B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5789532B2 (en) * 2012-01-26 2015-10-07 旭化成ケミカルズ株式会社 Granular cleaning agent, manufacturing method thereof, and molding machine cleaning method

Also Published As

Publication number Publication date
JP2001011499A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
KR100653152B1 (en) Detergent particles
US8906842B2 (en) Spray-dried detergent powder
EP2669362B1 (en) Laundry detergent composition
CA2139363C (en) Process and compositions for compact detergents
AU768794B2 (en) Particulate detergent composition containing zeolite
JP3881821B2 (en) High bulk density detergent particles
PL177812B1 (en) Detergent composition containing a grafted copolymer
JP4176595B2 (en) Cleaning composition
JP2001003094A (en) Detergent composition
JP2003055692A (en) Solid detergent composition and cleaning method
JP5705525B2 (en) Zeolite composite particles
JP4381505B2 (en) Washing method
JP4139089B2 (en) Cleaning composition
PL192643B1 (en) Granular detergent component containing zeolite map
JP4063431B2 (en) High bulk density detergent particles
JP4252176B2 (en) High bulk density detergent
JP2004099699A (en) Detergent particle aggregate
JP2004175883A (en) Powdery detergent composition
JP2000309797A (en) High-bulk-density detergent particle group
JP4021099B2 (en) High bulk density particles
JP3422728B2 (en) High bulk density detergent composition
JP4574093B2 (en) Powder detergent in containers
JP2000192084A (en) High-bulk-density detergent composition
JP2003105375A (en) Granular detergent composition
JP2007063382A (en) Softening detergent composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R151 Written notification of patent or utility model registration

Ref document number: 3881821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees