JP3881819B2 - Vibration level prediction method and traffic vibration occurrence prediction method for three-story buildings - Google Patents

Vibration level prediction method and traffic vibration occurrence prediction method for three-story buildings Download PDF

Info

Publication number
JP3881819B2
JP3881819B2 JP2000026328A JP2000026328A JP3881819B2 JP 3881819 B2 JP3881819 B2 JP 3881819B2 JP 2000026328 A JP2000026328 A JP 2000026328A JP 2000026328 A JP2000026328 A JP 2000026328A JP 3881819 B2 JP3881819 B2 JP 3881819B2
Authority
JP
Japan
Prior art keywords
vibration
vibration level
ground
building
story
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000026328A
Other languages
Japanese (ja)
Other versions
JP2001215167A (en
Inventor
豊彦 東田
宗男 小谷
由紀夫 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Original Assignee
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd filed Critical Sekisui House Ltd
Priority to JP2000026328A priority Critical patent/JP3881819B2/en
Publication of JP2001215167A publication Critical patent/JP2001215167A/en
Application granted granted Critical
Publication of JP3881819B2 publication Critical patent/JP3881819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、建物の振動レベル予測方法及び建物の交通振動発生予測方法に関するものである。
【0002】
【従来の技術】
従来より交通振動問題は存在しており、特に三階建て住宅において顕著である。この理由として、三階建て住宅の固有振動数は大型車両が発する振動の振動数と近似しており、相互が共振しやすい固有振動数領域に位置しているためである。ことに地盤の固有振動数の主分布域がそれらの振動数を含む場合は、計測される地盤の振動レベルが小さくても、共振の効果が甚大で予測のつかない交通振動を発生させることがあった。しかしながら、個々の立地条件(付近に大型車両の通過する道路が存在するなど)に合わせた設計は設計段階から配慮されることは稀であった。竣工後振動が発生して問題となった場合に限り、大掛かりな工事をして対処しているというのが一般的であった。特開平11−140967号の技術のように、設計前に交通振動等の微小振動の影響を考慮にいれたものもある。該発明では、建物の構造計算による数値解析によって建物の振動増幅率を求め、事前に計測された地盤の振動レベルとを併せて、竣工後の建物の振動レベルを予測するのである。さらにはその予測結果に基づき、建物剛性の強化によって振動低減を図ったり、対処不能の場合は施工中止などを決定する方法を与えている。しかし該発明では、建物と外部振動との共振の可能性については考慮されていないのである。また、建物剛性の強化によってのみ解決策が考慮され、積極的な振動抑制策が取られる事はないのである。三階建て住宅の場合においては、そもそも構造上大型車両による振動に共振しやすいところがあり、共振の可能性を考慮しないと交通振動発生の予測は困難であり、しかも建物剛性の強化のみでは根本的に対処することができないのである。
【0003】
【発明が解決しようとしている課題】
前記従来技術の問題点である振動レベル予測の不備や、積極的な振動抑制策を含んだ交通振動に対する対処法を実現するため、建物と外部振動の共振を考慮した振動レベル予測及び、交通振動発生の予測の方法を提供することを、本発明の課題としている。交通振動の発生を設計前に予測し、その結果をもとに設計段階で配慮することで、施工時に交通振動への対処を行い、従来と比べ施工を容易に、低コスト、かつ効率的な振動低減を図ることが可能となるのである。そして質量体に弾性部材と減衰器を内装する動吸振器を制振装置として用いることで、積極的な振動抑制策を実現しようとするのである。これらの対処によって、交通振動を恐れることなく振動源近辺での建物建設を可能としようとするのである。
【0004】
【課題を解決するための手段】
本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
【0005】
請求項1においては、三階建て建物内の振動レベル予測において、対象とする三階建て住宅を選択し(作業1)、該三階建て住宅の構造システムを入力し(作業2)、同一構造システムの三階建て住宅の振動測定によって、固有振動数の測定を行い(作業3)、規模パラメータを与え(作業4)、同一構造システムかつ規模パラメータの異なる建物の固有振動数を推測し(作業5)、建設予定地の地盤の振動レベルを測定し(作業7)、三階建て住宅の選択(作業1)と構造システムの入力(作業2)により、該三階建て住宅三階床での振動レベル測定(作業6)と、前記地盤の振動レベル測定(作業7)より、その差を求めて振動レベル増幅量を得て(作業9)、更に、振動源の特定を行い(作業10)、建物の固有振動数の予測(作業5)と振動源の特定(作業10)により導かれる振動数を比較することで、共振が発生するか否かを判定し(作業11)、共振が発生する可能性がない場合、建物剛性の特性による振動レベル増幅量のみを増幅量として考慮し(作業12)、共振が発生する可能性があるときは、建物剛性の特性による振動レベル増幅量に加えて共振による増幅量を考慮し(作業13)、上記何れかで与えられる値と、地盤の振動レベル(作業7)とを加えて、三階建て住宅三階床での振動レベル予測値L1を得る(作業1 4)、ものである。
【0006】
請求項2においては、三階建て建物内の振動レベル予測において、対象とする三階建て住宅を選択し(作業1)、該三階建て住宅の構造システムを入力し(作業2)、同一構造システムの三階建て住宅の振動測定によって、固有振動数の測定を行い(作業3)、規模パラメータを与え(作業4)、同一構造システムかつ規模パラメータの異なる建物の固有振動数を推測し(作業5)、建設予定地の地盤の振動レベルを測定し(作業7)、地盤の振動数分布及び振動数ごとの強度の測定を行い(作業24)、下記の相関関数に入力し、該相関関数は、作成を開始し(作業27)、三階建て住宅の固有振動数を測定し(作業3)、三階床の振動レベル測定し(作業6)、地盤の振動数分布・強度の測定し(作業24)、地盤の振動レベル測定を行ない(作業7)、三階建て住宅の固有振動数の測定(作業3)と地盤の振動数分布・強度の測定(作業24)により共振振動数の強度を測定し(作業28)、三階床の振動レベル測定(作業6)と地盤の振動レベル測定(作業7)より振動レベルの増幅量を測定し(作業29)、測定された共振振動数(作業28)及び測定された地盤の振動数分布・強度(作業24)と、測定された振動レベル増幅量(作業29)とを関連付けてデータ蓄積を行い(作業32)、最終的に蓄積されたデータ(作業32)より、共振振動数、共振振動数の強度、地盤の振動レベルの三つの入力に対し、振動レベル増幅量を出力する相関関数を作成し(作業34)、上記により導かれた相関関数への入出力より、建設予定の三階建て住宅に関する振動レベル増幅量予測を行ない(作業25)、測定された地盤の振動レベル(作業7)に加えて、三階床での振動レベル予測を行ない、三階床振動レベル予測値L2を求める(作業26)、ものである。
【0007】
請求項3においては、請求項1又は請求項2記載の三階建て建物の振動レベル予測方法より得た振動レベル予測値と、55dBとの大小比較より交通振動発生の有無を予測する三階建て建物の交通振動発生予測方法である。
【0008】
請求項4においては、請求項1又は請求項2記載の三階建て建物の振動レベル予測方法より得た振動レベル予測値から、制振装置による振動レベル低減量を引いた振動レベル予測値と、55dBとの大小比較より交通振動発生の有無を予測する三階建て建物の交通振動発生予測方法である。
【0009】
【発明の実施の形態】
以下に本発明の実施形態について、図面を用いて詳細に説明する。図1は三階建て住宅の固有振動数予測手順を示す図、図2は建物剛性の特性による振動レベル増幅量予測手順、図3は第一実施例の振動レベル予測手順、図4は第一実施例の交通振動対策手順、図5は第二実施例の振動レベル予測手順、図6は相関関数作成手順、図7は第二実施例の交通振動対策手順を示す図である。図8は交通振動発生の原因例を示す概念図、図9は住宅の水平・鉛直振動を示す概念図、図10は地盤振動の分布領域を示す概念図、図11は水平振動用体感補正曲線を示す図、図12は制振装置の機構を示す図、図13はTMDによる振動低減効果を示す図である。
【0010】
まず、交通振動について説明する。交通振動とは、自動車や列車の運行によって周辺の地盤が振動し、その上に建つ建物が揺すられることを意味する。特にこの地盤振動が大きい場合や地盤振動と建物の共振が発生する場合は、建物内の人間に振動が感じられることがある。ここで交通振動の発生源として、トラック等大型車両の通過する道路(特に高架高速道路)、及び列車の通過する線路の二つを、対処すべき典型とする。
【0011】
図8に交通振動発生の原因例として、高架高速道路が地盤振動の発生源となる場合の概念を示している。図8(a)は、柱脚部の曲げにより発生する場合である。図中の破線部分は車両31によって高架高速道路30が微小に振動する状態を示しており、柱脚部30aは微小に曲げと復元を繰り返す。柱脚部30aの曲げと復元により地盤に伝播する振動が発生し、それを弓形の実線で示している。また図8(b)は、路面のエキスパンション部の段差30bにより発生する場合を示しており、地盤に伝播する振動は同じく弓形の実線で示している。
【0012】
トラック等の大型車両が道路の通過によって発生させる振動数は、本発明の対象とする三階建て住宅の固有振動数3〜5Hzとほぼ一致している。したがって、詳しくは後述するが、道路を振動源とする交通振動の場合は、地盤振動と建物とが共振する場合を考慮する必要がある。前述で道路と線路の場合を別の扱いとしているのは、このためである。
【0013】
一般的に振動は水平方向と鉛直方向に分割されるが、本発明が対象としているのは水平方向の振動のみである。しかし、地震のような大きな振動は対象としておらず、交通振動による微小な振動のみを対象としている。図9(a)には建物が水平方向に振動する様子を示しているが、上階になるほど振動が増幅されている。一方、図9(b)には鉛直方向に振動する様子を示しているが、この場合はどの階でも振動はほぼ同じ大きさである。交通振動が問題となるのは、この三階建て住宅の最上階である三階における増幅された水平振動である。交通振動の発生源は建物の水平方向に位置するものであり、鉛直振動が上階における増幅された水平振動と比べて大きい場合は考えにくい。したがって、この増幅された水平振動の抑制ができるなら、他の場合の抑制も同時に実現できているものとみなせるのである。
【0014】
図10には地盤振動の分布のパターンを四つ示しており、横軸は振動数、縦軸は振動の振幅の大きさである。振幅の大きさの二乗値は振動のエネルギーに比例するものである。図10(a)〜(d)は順にそれぞれの主分布域が、低域(〜5Hz)、中域(5Hz〜10Hz)、高域(10Hz〜)、全域にわたる場合を示している。地盤振動は、様々な振動源からの揺れが重なり合った結果として多くの振動数を含んでいる。また、地盤そのものもある一定の広がりを持つ固有振動数領域を有している。図10中で主分布域に違いが現れるのは、振動源が発生する振動数の違いにも因るが、地盤の固有振動数の分布域の違いも大きい。地盤の固有振動数の主分布域に属さない振動源の振動は地盤にほとんど伝播せず、逆に主分布域に属する振動源の振動は地盤との間に共振を引き起こし、増幅された振動となるからである。
【0015】
三階建て住宅の固有振動数は3〜5Hzである。地盤振動の分布域が図10(b)・(c)に示す場合のときは、建物の固有振動数と地盤の振動数とが一致する領域が存在しない(正確には地盤振動の主分布域では一致しない)ため、共振が発生しないのである。共振が発生しないとしても、図9(a)に示すように、地盤の振動が上階に行くにつれて増幅されるのである。つまり、建物は基本的に地盤と一緒に揺れるだけなのであるが、詳しくは後述するように、建物自体が剛体ではないため上階では振動が増幅され、地盤振動よりも大きな振動を建物内の居住者が受けることになるのである。
【0016】
一方、地盤振動の分布域が図10(a)・(d)に示す場合のときは、三階建て住宅の固有振動数と地盤の振動数とが一致する領域が存在するために共振が発生する。このとき三階建て住宅では、建物剛性の限界による増幅のみならず、共振による増幅も発生するのである。この場合、地盤振動は図10(b)・(c)の場合より大きな増幅を受けるのである。
【0017】
振動源より発生する振動の振動数が三階建て住宅の固有振動数と一致する場合、前述する理由より、該建物はその振動源からの地盤振動と共振するのである。そして地盤も共振する場合は、その増幅量は極めて大きなものとなる。また、遠くまで揺れが伝播する。逆に振動源の振動数領域が三階建て住宅の固有振動数を含まない場合、該建物はその振動源からの地盤振動と共振する可能性はないのである。したがって、トラック等の大型車両が通過する道路を振動源とする地盤振動は建物との共振の可能性があり、列車の通過する線路を振動源とする地盤振動には共振の可能性はないのである。これが前述で道路と線路を振動源として別扱いする理由である。
【0018】
次いで、振動レベルを計測する振動レベル計について説明する。デシベル量で与えられる振動レベルが55dBを越えると、人間の体感閾に達して人は揺れを感じるようになる。前述するように建物は上層になるほど揺れが大きくなるため、交通振動に対しては三階床で55dB以上とならないようにする必要がある。すなわち振動レベル計とは、後述する体感補正を加えて得られる振動レベルを計測する機器であり、本実施例では三階建て住宅三階床、建物立地地点の地面等の振動レベルの計測に用いられている。
【0019】
振動レベルLv(dB)は次式で示される。
【0020】
【数1】

Figure 0003881819
【0021】
ここでAは振動加速度実効値[m/s2]、A0は基準値10-5[m/s2]である。また、Aは次式で示される。
【0022】
【数2】
Figure 0003881819
【0023】
ここでAn は振動数n(Hz)の成分の振動加速度であり、Cn は振動数n(Hz)における相対レスポンス(dB)である。Cn は図11に示すように、入力振動数に対する出力振動数の比で表される。人間は振動数の高い(速い)揺れは感じにくく、振動数が低い(ゆっくりとした)揺れはよく感じやすい。図11の体感補正曲線の補正を入れることで、人間の振動に対する体感を考慮した振動加速度実効値を与えるのである。
【0024】
また、地盤に対する振動レベルの計測は、地盤振動における振動数の主分布域を特定するものではない。振動加速度実効値Aは振動加速度An の全振動数領域に対する積分値として与えられ、振動数の分布域によって一義的に決定されるものではないからである。したがって、振動源の振動の振動数領域と建物の固有振動数の重複による共振が発生するか否か正確に判定するには、振動レベルの計測のみでは無理で、地盤の振動数分布及び強度の測定を行って、共振振動数がどの程度の強度になるのかを測定することが必要となるのである。
【0025】
これより、本発明を利用する交通振動対策の手順について説明する。これは、三階建て住宅の三階床での振動レベル予測値に基づき、交通振動発生予測を行い、その結果に基づいた交通振動対策を考慮した三階建て住宅等の設計手順のことである。第一実施例においては、地盤振動と建物との共振の影響は共振発生時の振動レベル増幅量を概算値で与えて参考とし、交通振動発生予測を、非共振時及び共振時の二段階の増幅値の何れかを加算して算出される振動レベル予測値と、前記55dBとを比較して行っている。第二実施例においては、地盤振動と建物との共振の影響を詳細に検討し、振動レベル増幅量の予測精度を向上させて、算出される振動レベル予測値と55dBとを比較して交通振動発生予測を行っている。
【0026】
まず、第一実施例を利用する交通振動対策について説明する。第一実施例での三階床での振動レベル予測値は図3に示す三階床振動レベル予測手順により与えられ、該振動レベル予測値に基づいて交通振動発生予測を含む図4の交通振動対策手順を考慮して、交通振動発生の判定、三階建て住宅の設計修正が行われる。
【0027】
まず建設予定地の地盤の振動レベルを測定する(作業7)。次いで、地盤振動と三階建て住宅との共振の発生の有無より、振動レベル増幅量予測値を決定する。この振動レベル増幅量予測値が決定されれば、その値を地盤の振動レベル測定値に付加することで、三階床での振動レベル予測値が与えられるのである。なお、振動レベル、振動レベル増幅量は共にデシベル量で与えられるため、和・差の演算により増幅量の合成が行われるのである。
【0028】
三階建て住宅の選択(作業1)により、建設予定となる三階建て住宅の固有振動数を、後述する振動測定及び平面プランから予測する(作業5)。建物の固有振動数は躯体や外壁、内壁によって複合的に決定されるものである。同一構造システムの建物においては、躯体、外壁、内壁の構成が同じなので、ある一定範囲内の固有振動数を持つものである。ここで構造システムとは、躯体の構成部材である柱や梁や、内外壁の剛性及び、これらの構成部材の配置構造によって決定される建物の特性のことである。そして、これらの構成部材の最大長さや、それらを組み合わせて作り出される建物の規模によって、同一構造システムの建物同士でも固有振動数に違いが生じてくるのである。この建物の規模や、梁や柱の長さ、外壁長、内壁長などの建物構成部材の最大長さを、以下では規模パラメータとして与える。図1に示す手順では、三階建て住宅の固有振動数予測の手順を与えている。まず対象とする三階建て住宅を選択し(作業1)、その三階建て住宅の属する構造システムを入力する(作業2)。次いで、同一構造システムの三階建て住宅の振動測定によって、その固有振動数の測定を行うのである(作業3)。そして規模パラメータを与える(作業4)ことで、同一構造システムかつ規模パラメータの異なる建物の固有振動数をほぼ正確に推測する(作業5)ことができるのである。三階建て住宅の場合その固有振動数は3〜5Hzの範囲内であるが、この操作によって対象とする三階建て住宅の固有振動数の範囲を絞り込むことができるのである。
【0029】
図3に戻り、振動源の特定を行う(作業10)。振動源が建物の固有振動数と近似する振動数を持つ振動を発する場合は、前述するように、建物と振動源より伝播してくる地盤振動との間に共振が発生する。トラック等の大型車両の場合は、三階建て住宅の固有振動数領域3〜5Hzに重複する振動数の振動を発することが知られており、共振が発生するのである。これに対し、列車等の発する振動はこの領域外である。したがって、作業5・10により導かれる振動数を比較することで、共振が発生するか否かが判定されるのである(作業11)。ただし地盤の振動数測定を行わぬ限り、共振による増幅の影響の程度について知ることはできない。これについては、後述する。
【0030】
また、建物剛性の特性による振動の増幅に関しても考慮する必要がある。前述するように、建物が高い階ほど揺れやすくなるのも、建物全体が一つの剛体とみなせるほどの剛性を持っていないためである。つまり、建物の剛性が低くなるに伴い建物の構成部材の外力に対する抵抗力は低下し、各構成部材は揺れやすくなるのである。この建物剛性は前述するように、躯体構造や外壁及び内壁の取付強度により複合的に決定される。つまり、同一構造システムの建物であっても、梁や柱などの躯体構成部材の接続強化や、外壁や内壁と躯体構造との接続に用いられる部材を増加するなどして外壁や内壁の取付強度を向上させることで、建物剛性の向上を図ることができるのである。
【0031】
前記の建設後における建物振動測定において、地盤の振動レベルに対する三階建て住宅三階床での振動レベルの増幅量測定をも行う。共振が発生しない場合は、建物剛性の特性による増幅のみを受けるわけである。図2に示すように、まず三階建て住宅の選択(作業1)より構造システムを入力(作業2)する。該三階建て住宅三階床での振動レベル測定(作業6)と地盤の振動レベル測定(作業7)を行い、その差を求めて振動レベル増幅量を得るのである(作業9)。共振が発生しない場合、この手順から得られる振動レベル増幅量は、建物剛性の特性による振動レベル増幅量である。また共振が発生する場合、この手順から得られる振動レベル増幅量には、建物剛性の特性による振動レベル増幅量に加えて共振による増幅量が加わっている。
【0032】
第一実施例においては、複数箇所における振動測定を図2に示す手順によって行い、そこで得られる振動レベル増幅量を平均化して振動レベル増幅量の概算値を決定している。共振のある場合と、ない場合とでそれぞれ分けて平均化が行われ、二つの概算値が決定される。共振が発生しない場合の概算値として与えられる振動レベル増幅量は、構造システムによる違いもあるが、三階建て住宅の場合おおよそ20dB程度のものである。共振が発生する場合の概算値として与えられる振動レベル増幅量は、同じく構造システムの違いをも含めて、三階建て住宅の場合おおよそ25〜30dB程度のものである。つまり共振による増幅量R1は、5〜10dBと推定されるのである。
【0033】
再び図3に戻るが、共振が発生する可能性がない場合、建物剛性の特性による振動レベル増幅量のみを増幅量として考慮すればよい(作業12)。共振が発生する可能性があるときは、建物剛性の特性による振動レベル増幅量に加えて共振による増幅量R1をも含めた増幅量を考慮する必要が生じる(作業13)。作業12・13で与えられる値の何れかと、作業7により得られる地盤の振動レベルとを加えると、三階建て住宅三階床での振動レベル予測値L1が得られるのである(作業14)。
【0034】
次いで、前記振動レベル増幅量に基づいて、交通振動発生の判定を行う。第一実施例における三階床振動レベル予測値L1は、共振の有無によって共振による増幅量R1だけの差を予め設けて設定されている。つまり共振の可能性があると判断された時点で、実際には共振の影響が微小なものであるとしても、一律に共振による増幅量R1だけ非共振時に比べて多めに見積もっているのである。また、後述する制振装置(以下TMD)の三階建て住宅への配設により、TMDによる低減量Tだけ低減し得るものである。図4に示すように、これから述べる判定基準と三階床での振動レベル予測値L1とを比較して(作業15)、交通振動発生の可否とその対策の判定を行う。判定基準は振動レベル値によって分類される。共振が予期される最大限の規模で発生しても55デシベルに至らず、交通振動が発生しないとみなされるとき、判定A1(16)である。交通振動の発生は起こりにくいと考えられるが、発生時にはTMDの三階建て住宅への配設で交通振動を抑制し得ると見なされる場合、判定B1(17)である。交通振動の発生は間違いないと見なされるが、TMDの三階建て住宅への配設で交通振動を抑制し得ると見なされる場合、判定C1(18)である。交通振動の発生は間違いないと見なされ、かつTMDの三階建て住宅への配設では交通振動を抑制し得ないと見なされる場合、判定D1(19)である。数値的には、L1<55(dB)−R1のとき判定A1(16)であり、55(dB)−R1≦L1<55(dB)−R1+Tのとき判定B1(17)であり、55(dB)−R1+T≦L1<55(dB)+Tのとき判定C1(18)であり、L1≧55(dB)+Tのとき判定D1(19)である。
【0035】
判定A1(16)の場合、交通振動はまず発生しないと推測され、特別な交通振動対策を施さない標準設計の提案が住宅発注者に対し行われる(20)。判定B1(17)の場合、交通振動発生の可能性が無視できないので、TMDを配設可能な住宅設計及び、TMDの後付けを住宅発注者に提案する(21)。また、交通振動が発生する場合でも、TMDにより抑制が可能であるとみなされる状態である。なお後付けを提案するのは、実際に住宅発注者が住宅に居住するようになってから、体感振動の有無を確認して、TMDの配設が必要か否かを判断してもらうためである。判定C1(18)の場合、交通振動の発生が予期されるのであるが、TMDの配設により対処可能な状態であり、TMDの先付けを住宅発注者に提案する(22)。判定D1(19)は交通振動の発生は間違いないものと推測され、しかもTMDの配設のみにては対処不能な状態である。このときは設計方針の根本的変更を含んだ個別検討(23)が行われる。なお、後述する能動的動吸振器(AMD)の配設によっては対処可能となる可能性がある。
【0036】
なお共振が発生しないと判断される場合は、共振による増幅量R1が0となり、判定B1(17)と判定C1(18)が重複してしまう。この場合は、第二実施例に示す判定基準と同一の状態となるので、図7に示す手順にしたがうものとする。
【0037】
TMDについて説明する。前述のTMDとして、図12に示すような、質量体40に弾性部材たるバネ41及び減衰器42を介して住宅に接続するTMD(受動的動吸振器)43を用いる。作動機構としては、質量体40は住宅の振動に応じて慣性力が働き、住宅と逆の方向に動くため、結果として住宅の振動を打ち消すのである。なお、質量体40はバネ41により住宅の固有振動数に同調している。
【0038】
TMDはもっとも効果的に活用するために、住宅の最上部である屋上面に配設される。またTMDは重量物たる質量体を内装する装置であるため、重心ライン上に配設されて、躯体構造への過剰な負担とならないようにしている。一旦完成した住宅にTMDを配設する場合には、その住宅の構成上配設個所に制限があり、また躯体構造の強度を維持するために補強部材の配設を要求される公算が高い。そうすると住宅居住者は、外観や居住性に制限を受け、かつ高コストを強いられることにもなるのである。したがって事前に交通振動の発生が予期される場合には、TMDの配設を前提とする設計を行うことで、事後的に配設する場合に生じる困難を避けることができるのである。
【0039】
TMDは前述するように振動を打ち消す働きをするので、住宅内での振動レベルを低減させる効果があるのである。図13には横軸に時間を、縦軸に住宅内で観測される振動レベルをとった地盤振動による住宅内での振動レベルの変化を示している。また、一点鎖線は55dB体感閾境界ラインである。ここで、振動源として様々な車両が通過し、一定ではない振動が発生する道路の場合を記載している。列車の通過する線路が振動源の場合は、車両のような変化がないため発生する振動の大きさが一定となる。車両の場合はある地点のある車両の通過による断続的な振動であるのに対し、列車の場合は住宅近郊の通過中は継続した振動を与えるためである。図13には、TMDの配設によって一律に住宅内での振動レベルが低減される様子が示されている。これが、制振装置たるTMDの配設に期待するところである。また、TMDによる振動低減効果が完全でなく、振動レベルのグラフの極大値をことごとく55dB以下に低減することができなくても、その頻度を減少させることはできるのである。一定時間内に10回揺れを感じていたところが2回になるなどの効果が期待できるのである。
【0040】
制振装置としては、前記TMDの他に、能動的動吸振器(以下AMD)を用いる場合もある。AMDは自動制御の質量体摺動機構を備えており、TMDよりも高い制振効果を発揮するものである。
【0041】
次に、第二実施例を利用する交通振動対策について説明する。第二実施例での三階床での振動レベル予測値は図5に示す三階床振動レベル予測値決定手順により与えられ、該振動レベル予測値に基づいて交通振動発生予測方法を含む図7の交通振動対策手順を考慮して、交通振動発生の判定、三階建て住宅の設計修正が行われる。第一実施例との違いは、三階床での振動レベル予測をより精密に行うため、地盤振動に関する詳細な振動数測定を行う点である。
【0042】
まず図1に示す手順にしたがって、対象とする三階建て住宅の固有振動数が予測される(作業5)。次いで図5に示すように、地盤に関して、地盤の振動レベル測定(作業7)、地盤の振動数分布及び振動数ごとの強度の測定(作業24)を行い、これより述べる相関関数に入力する。作業5・7・24による入力により相関関数は振動レベル増幅量を出力する(作業25)。この相関関数による出力は、共振の有無による増幅量を含むものである。
【0043】
図6に示すこの相関関数の作成手順について説明する。作成の開始(作業27)をしたならば、既に建設されている三階建て住宅の固有振動数の測定(作業3)、同じく三階床の振動レベル測定(作業6)、地盤の振動数分布・強度の測定(作業24)、地盤の振動レベル測定(作業7)を行う。作業3・24によって共振振動数の強度の測定(作業28)が行われる。共振が発生しない場合は、この強度は0となる。また、作業6・7によって振動レベルの増幅量が測定される(作業29)。ここでは共振による増幅があるか否かは問わない。そして作業28によって測定された共振振動数、及び、作業24によって測定された地盤の振動数分布・強度と、作業29によって測定された振動レベル増幅量とを関連付けてデータ蓄積を行う(作業32)。作業32を行うことで、共振振動数、共振振動数の強度、地盤の振動レベルの三つと、振動レベル増幅量との相関関係を明らかにするデータの蓄積が行われるのである。作業27から作業32までの一連の作業を繰り返すことで、すなわち建物振動測定を複数箇所で行うことで、これらの相関関係をより正確に知ることができる。作業33によりデータ蓄積の可否を決定する。最終的に作業32によって蓄積されたデータより、共振振動数の強度、地盤の振動レベルの三つの入力に対し、振動レベル増幅量を出力する相関関数を作成することができる(作業34)。
【0044】
再び図5に戻り、図6に示す手順によって導かれた相関関数への入出力より、実物件ではなく建設予定の三階建て住宅に関する振動レベル増幅量予測が行われ(作業25)、作業7によって測定された地盤の振動レベルとを加えて、三階床での振動レベル予測が行われる(作業26)。この第二実施例における三階床振動レベル予測値をL2とする。
【0045】
第二実施例における交通振動発生予測について説明する。第一実施例においては、予測されている振動レベル予測値L1には共振による増幅量R1だけの増減の可能性があり、そのために場合分けが必要となっている。第二実施例においては、振動レベル予測値は共振の有無による影響も取り込みより正確な値を提示していると見なすことができるのである。図7に示す手順にしたがって判定を行い、まず判定基準と振動レベル予測値L2との比較を行う(作業35)。第一実施例と同様、判定基準は振動レベル値によって分類される。判定基準は、交通振動が発生しないと見なされる場合の判定A2(36)、交通振動の発生が予測されるがTMDの設置により抑制可能であると見なされる場合の判定B2(37)、TMDを設置しても交通振動の抑制は困難であると見なされる判定C2(38)の三つに分類される。数値的には、L2<55(dB)のとき判定A2(36)であり、55(dB)≦L2<55(dB)+Tのとき判定B2(37)であり、L2≧55(dB)+Tのとき判定C2(38)である。TはTMDによる低減量である。
【0046】
判定A2(36)の場合、交通振動はまず発生しないと推測され、特別な交通振動対策を施さない標準設計の提案が住宅発注者に対し行われる(20)。判定B2(37)の場合、交通振動は発生すると推測されるがTMDの配設により抑制可能であり、TMDを配設可能な住宅設計及びTMDの設置を住宅発注者に提案する(39)。判定C2(38)の場合、交通振動の発生が予期され、しかもTMDの配設のみでは対処不能な状態であり、このときは設計方針の根本的変更を含んだ個別検討(23)が行われる。なお、前述する能動的動吸振器(AMD)の配設によっては対処可能となる可能性がある。
【0047】
【発明の効果】
請求項1記載の如く、建物内の振動レベル予測を、該建物と同一構造システムの建物における、地盤振動と建物との共振の有無により分類される二段階の平均的振動レベル増幅量の何れか一方と、振動測定により測定される地盤の振動レベルとを加算して行うので、次のような効果がある。
共振の有無により分類される二段階の平均的振動レベル増幅量を用いることで、建物内の振動レベルの予測幅が限定され、比較的簡単な手順で予測される振動レベルの程度を知ることができるのである。
【0048】
請求項2記載の如く、複数箇所での同一構造システムの建物における以下の振動測定、すなわち建物の固有振動数測定と、該建物内の振動レベル測定と、地盤振動の振動レベル測定と、地盤の振動数分布及び強度測定とから導かれる相関関係より、該建物と同一構造システムの建物内の振動レベルを予測するので、次のような効果がある。
すなわち、地盤振動と建物との共振が著しく地盤の振動レベルが建物内で激しく増大する場合、あるいは共振がまるで発生せず地盤の振動レベル増幅が最小の場合など、共振による振動レベル増幅量の大きさに関して予測を得ることができ、正確な振動レベル予測を行うことができるのである。
【0049】
請求項3記載の如く、建物の振動レベル予測方法より導かれる振動レベル予測値と55dBとの大小比較より交通振動発生の有無を予測するので、交通振動の発生を事前に予期し、設計段階での対策を検討することができるのである。
【0050】
請求項4記載の如く、建物の振動レベル予測方法より導かれる振動レベル予測値から制振装置による振動レベル減衰量を引いた振動レベル予測値と、55dBとの大小比較より交通振動発生の有無を予測するので、交通振動の発生を事前に予期し、設計段階での対策を検討することができる。このため制振装置の配設を行う場合でも三階建て住宅の居住性を損なうことのない設計を行うことができ、交通振動への対処を三階建て住宅建設後に行う場合と比べて低コスト、かつ自由度の高い設計を維持しながら行うことができるのである。
【図面の簡単な説明】
【図1】 三階建て住宅の固有振動数予測手順を示す図。
【図2】 建物剛性の特性による振動レベル増幅量予測手順を示す図。
【図3】 第一実施例の振動レベル予測手順を示す図。
【図4】 第一実施例の交通振動対策手順を示す図。
【図5】 第二実施例の振動レベル予測手順を示す図。
【図6】 相関関数作成手順を示す図。
【図7】 第二実施例の交通振動対策手順を示す図。
【図8】 交通振動発生の原因例を示す概念図。
【図9】 住宅の水平・鉛直振動を示す概念図。
【図10】 地盤振動の分布領域を示す概念図。
【図11】 水平振動用体感補正曲線を示す図。
【図12】 制振装置の機構を示す図。
【図13】 TMDによる振動低減効果を示す図。
【符号の説明】
L1・L2 振動レベル予測値
R1 共振による増幅量
T TMDによる低減量
43 TMD[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a building vibration level prediction method and a building traffic vibration occurrence prediction method.
[0002]
[Prior art]
  Conventionally, there is a traffic vibration problem, especially in a three-story house. This is because the natural frequency of a three-story house is close to the frequency of vibration generated by a large vehicle, and is located in a natural frequency region where mutual resonance is likely to occur. In particular, if the main distribution range of the natural frequency of the ground includes those frequencies, even if the measured vibration level of the ground is small, it can cause traffic vibration that has a large resonance effect and cannot be predicted. there were. However, it is rare that consideration is given to the design according to individual location conditions (such as a road through which a large vehicle passes nearby) from the design stage. It was common to deal with large-scale construction only when there was a problem with vibration after completion. Some techniques, such as Japanese Patent Application Laid-Open No. 11-140967, take into account the influence of minute vibrations such as traffic vibrations before designing. In the invention, the vibration amplification factor of the building is obtained by numerical analysis based on the structural calculation of the building, and the vibration level of the building after completion is predicted together with the vibration level of the ground measured in advance. Furthermore, based on the prediction results, a method is provided to reduce vibrations by strengthening the building rigidity, or to determine whether to stop construction when it is impossible to deal with. However, this invention does not consider the possibility of resonance between the building and external vibration. Also, the solution is considered only by strengthening the building rigidity, and no aggressive vibration suppression measures are taken. In the case of a three-story house, there are places where it is easy to resonate with vibrations caused by large vehicles in the first place, and it is difficult to predict the occurrence of traffic vibration unless the possibility of resonance is taken into account. It is not possible to deal with.
[0003]
[Problems to be solved by the invention]
  In order to realize a countermeasure for traffic vibration including vibration level prediction deficiencies and aggressive vibration suppression measures, which are the problems of the prior art, vibration level prediction considering the resonance between the building and external vibration, and traffic vibration It is an object of the present invention to provide a method for predicting occurrence. Predicting the occurrence of traffic vibrations prior to design, and taking into consideration the design results at the design stage, the company handles traffic vibrations during construction, making construction easier, lower cost, and more efficient than before. It is possible to reduce vibration. By using a dynamic vibration absorber having an elastic member and an attenuator in the mass body as a vibration damping device, a positive vibration suppression measure is to be realized. By taking these measures, it is possible to construct a building near the vibration source without fear of traffic vibration.
[0004]
[Means for Solving the Problems]
  The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.
[0005]
  In claim 1,In predicting the vibration level in a three-story building, the target three-story house is selected (operation 1), the structure system of the three-story house is input (operation 2), and the three-story house with the same structure system is selected. The natural frequency is measured by the vibration measurement (operation 3), the scale parameter is given (operation 4), the natural frequency of the building having the same structural system and different scale parameters is estimated (operation 5), and the planned construction site The vibration level of the ground is measured (operation 7), and the vibration level is measured on the third floor of the three-story house (operation 6) by selecting the three-story house (operation 1) and inputting the structure system (operation 2). ) And the vibration level measurement of the ground (operation 7), the difference is obtained to obtain the vibration level amplification amount (operation 9), and the vibration source is specified (operation 10), and the natural frequency of the building is determined. Prediction (operation 5) and vibration source identification (operation 10) It is determined whether or not resonance occurs by comparing the vibration frequencies derived in 10) (operation 11), and if there is no possibility of occurrence of resonance, only the vibration level amplification amount due to the characteristics of building rigidity is amplified. Considering the amount (operation 12), when there is a possibility that resonance will occur, in addition to the vibration level amplification amount due to the characteristics of the building rigidity, the amplification amount due to resonance is considered (operation 13) and given by any of the above Value and the vibration level of the ground (operation 7) to obtain a vibration level predicted value L1 at the third floor of the three-story house (operation 1) 4),Is.
[0006]
  In claim 2,In predicting the vibration level in a three-story building, the target three-story house is selected (operation 1), the structure system of the three-story house is input (operation 2), and the three-story house with the same structure system is selected. The natural frequency is measured by the vibration measurement (operation 3), the scale parameter is given (operation 4), the natural frequency of the building having the same structural system and different scale parameters is estimated (operation 5), and the planned construction site The vibration level of the ground is measured (operation 7), the frequency distribution of the ground and the intensity for each frequency are measured (operation 24), and the following correlation function is entered. (Operation 27), measuring the natural frequency of a three-story house (operation 3), measuring the vibration level of the third floor (operation 6), measuring the frequency distribution and strength of the ground (operation 24), Vibration level measurement (operation 7), 3rd floor Then, the resonance frequency is measured by measuring the natural frequency of the house (operation 3) and by measuring the frequency distribution and strength of the ground (operation 24) (operation 28), and measuring the vibration level of the third floor (operation 6). ) And ground vibration level measurement (operation 7) to measure the amount of amplification of the vibration level (operation 29), the measured resonance frequency (operation 28), and the measured ground frequency distribution and strength (operation 24). Is stored in association with the measured vibration level amplification amount (operation 29) (operation 32), and from the finally stored data (operation 32), the resonance frequency, the strength of the resonance frequency, the ground A correlation function that outputs a vibration level amplification amount is created for three vibration level inputs (operation 34), and the vibration level for the three-story house to be constructed is determined based on the input and output to the correlation function derived above. Amplification prediction (work 5), in addition to the vibration level of the measured ground (Task 7) performs vibration level prediction in the third floor bed, obtaining the third floor floor vibration level prediction value L2 (work 26),Is.
[0007]
  In claim 3,Traffic vibration occurrence prediction of a three-story building that predicts the presence or absence of traffic vibration based on a comparison of the vibration level prediction value obtained by the vibration level prediction method of a three-story building according to claim 1 or 55 and 55 dB MethodIt is.
[0008]
  In claim 4,From the vibration level prediction value obtained by subtracting the vibration level reduction amount by the vibration control device from the vibration level prediction value obtained by the vibration level prediction method of the three-story building according to claim 1 or 2, and a size comparison with 55 dB A method for predicting the occurrence of traffic vibration in a three-story building that predicts the occurrence of traffic vibration.It is.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a natural frequency prediction procedure for a three-story house, FIG. 2 is a procedure for predicting a vibration level amplification amount based on characteristics of building rigidity, FIG. 3 is a procedure for predicting a vibration level of the first embodiment, and FIG. FIG. 5 shows a vibration level prediction procedure of the second embodiment, FIG. 6 shows a correlation function creation procedure, and FIG. 7 shows a traffic vibration countermeasure procedure of the second embodiment. 8 is a conceptual diagram showing an example of the cause of traffic vibration, FIG. 9 is a conceptual diagram showing horizontal and vertical vibrations of a house, FIG. 10 is a conceptual diagram showing a distribution area of ground vibration, and FIG. 11 is a body vibration correction curve for horizontal vibration. FIG. 12 is a view showing the mechanism of the vibration damping device, and FIG. 13 is a view showing the vibration reduction effect by TMD.
[0010]
  First, traffic vibration will be described. Traffic vibration means that the surrounding ground is vibrated by the operation of a car or train, and the building built on it is shaken. In particular, when the ground vibration is large or when the ground vibration and the resonance of the building occur, vibration may be felt by a person in the building. Here, as a generation source of traffic vibration, two types of roads on which large vehicles such as trucks pass (especially elevated highways) and tracks on which trains pass are typical.
[0011]
  FIG. 8 shows a concept when an elevated highway is a source of ground vibration as an example of the cause of traffic vibration. FIG. 8A shows a case where it occurs due to the bending of the column base. A broken line portion in the figure shows a state in which the elevated highway 30 vibrates minutely by the vehicle 31, and the column base 30a repeats bending and restoring minutely. The vibration propagating to the ground is generated by bending and restoring the column base 30a, and this is indicated by an arcuate solid line. FIG. 8B shows a case where the vibration is generated by the step 30b of the expansion portion of the road surface, and the vibration propagating to the ground is also indicated by a solid line with an arc shape.
[0012]
  The vibration frequency generated by a large vehicle such as a truck by passing through the road substantially matches the natural frequency of 3 to 5 Hz of the three-story house targeted by the present invention. Therefore, as will be described in detail later, in the case of traffic vibration using a road as a vibration source, it is necessary to consider the case where the ground vibration and the building resonate. This is why the case of roads and tracks is treated differently in the foregoing.
[0013]
  In general, the vibration is divided into a horizontal direction and a vertical direction, but the present invention targets only the vibration in the horizontal direction. However, it does not target large vibrations such as earthquakes, but only minute vibrations caused by traffic vibrations. FIG. 9A shows a state where the building vibrates in the horizontal direction, and the vibration is amplified toward the upper floor. On the other hand, FIG. 9B shows a state of vibrating in the vertical direction. In this case, the vibrations are almost the same in any floor. Traffic vibration is a problem because of the amplified horizontal vibration on the third floor, the top floor of this three-storey house. The source of traffic vibration is located in the horizontal direction of the building, and it is difficult to consider when the vertical vibration is larger than the amplified horizontal vibration on the upper floor. Therefore, if this amplified horizontal vibration can be suppressed, it can be considered that the suppression in other cases is also realized at the same time.
[0014]
  FIG. 10 shows four patterns of ground vibration distribution. The horizontal axis represents the frequency and the vertical axis represents the amplitude of the vibration. The square value of the magnitude of the amplitude is proportional to the vibration energy. FIGS. 10A to 10D show cases in which the main distribution areas sequentially cover the low range (˜5 Hz), the middle range (5 Hz to 10 Hz), the high range (10 Hz˜), and the entire range. Ground vibrations contain many frequencies as a result of overlapping vibrations from various vibration sources. The ground itself also has a natural frequency region having a certain spread. Although the difference in the main distribution range in FIG. 10 is due to the difference in the frequency generated by the vibration source, the difference in the distribution range of the natural frequency of the ground is also large. The vibration of the vibration source that does not belong to the main distribution range of the natural frequency of the ground hardly propagates to the ground, and conversely, the vibration of the vibration source that belongs to the main distribution region causes resonance between the ground and the amplified vibration. Because it becomes.
[0015]
  The natural frequency of a three-story house is 3 to 5 Hz. When the distribution range of ground vibration is shown in FIGS. 10B and 10C, there is no region where the natural frequency of the building matches the frequency of the ground (more precisely, the main distribution region of ground vibration) Therefore, resonance does not occur. Even if resonance does not occur, the vibration of the ground is amplified as it goes upstairs as shown in FIG. In other words, the building basically only shakes with the ground, but as will be described in detail later, because the building itself is not a rigid body, the vibration is amplified on the upper floor, and the vibration in the building is larger than the ground vibration. One will receive.
[0016]
  On the other hand, when the distribution range of ground vibration is shown in FIGS. 10 (a) and 10 (d), resonance occurs because there is a region where the natural frequency of the three-story house matches the frequency of the ground. To do. At this time, in the three-story house, not only amplification due to the limit of building rigidity but also amplification due to resonance occurs. In this case, the ground vibration is subjected to greater amplification than in the case of FIGS. 10 (b) and 10 (c).
[0017]
  When the vibration frequency generated from the vibration source matches the natural frequency of the three-story house, the building resonates with the ground vibration from the vibration source for the reasons described above. When the ground also resonates, the amount of amplification becomes extremely large. Also, the vibration propagates far away. Conversely, if the frequency range of the vibration source does not include the natural frequency of a three-story house, the building is unlikely to resonate with ground vibration from that vibration source. Therefore, ground vibration with a vibration source on the road through which a large vehicle such as a truck passes may resonate with the building, and ground vibration with a vibration source on the track that the train passes has no possibility of resonance. is there. This is the reason why roads and tracks are treated separately as vibration sources as described above.
[0018]
  Next, a vibration level meter that measures the vibration level will be described. When the vibration level given by the decibel amount exceeds 55 dB, the human experience threshold is reached and the person feels shaking. As described above, since the building becomes higher as the building becomes higher, it is necessary to prevent traffic vibration from exceeding 55 dB on the third floor. In other words, the vibration level meter is a device that measures the vibration level obtained by adding the sensory correction described later. In this embodiment, the vibration level meter is used to measure the vibration level of the three-story house, the third floor, the ground at the building location, etc. It has been.
[0019]
  The vibration level Lv (dB) is expressed by the following equation.
[0020]
[Expression 1]
Figure 0003881819
[0021]
  Here, A is the vibration acceleration effective value [m / s2], and A0 is the reference value 10-5 [m / s2]. A is expressed by the following equation.
[0022]
[Expression 2]
Figure 0003881819
[0023]
  Here, An is the vibration acceleration of the component of frequency n (Hz), and Cn is the relative response (dB) at frequency n (Hz). Cn is represented by the ratio of the output frequency to the input frequency as shown in FIG. Humans are less likely to feel high (fast) vibrations and low frequency (slow) vibrations. By adding the correction of the bodily sensation correction curve in FIG. 11, an effective vibration acceleration value considering the bodily sensation with respect to human vibration is given.
[0024]
  Moreover, the measurement of the vibration level with respect to the ground does not specify the main distribution range of the frequency in the ground vibration. This is because the vibration acceleration effective value A is given as an integral value with respect to the entire frequency region of the vibration acceleration An, and is not uniquely determined by the frequency distribution region. Therefore, in order to accurately determine whether or not resonance occurs due to the overlap of the vibration frequency range of the vibration source and the natural frequency of the building, it is impossible to measure the vibration level alone. This is because it is necessary to measure how much the resonance frequency is strong.
[0025]
  Hereafter, the procedure of the traffic vibration countermeasure using this invention is demonstrated. This is a design procedure for a three-story house, etc. considering traffic vibration occurrence prediction based on the predicted vibration level on the three-story floor of a three-story house, and taking into account traffic vibration measures based on the result. . In the first embodiment, the influence of the vibration between the ground vibration and the building is used as a reference by giving the approximate value of the vibration level amplification amount at the time of the resonance occurrence. The vibration level prediction value calculated by adding any of the amplification values is compared with the 55 dB. In the second embodiment, the influence of the ground vibration and the resonance of the building is examined in detail, the prediction accuracy of the vibration level amplification amount is improved, and the calculated vibration level predicted value and 55 dB are compared with the traffic vibration. Occurrence prediction is performed.
[0026]
  First, traffic vibration countermeasures using the first embodiment will be described. The vibration level prediction value on the third floor in the first embodiment is given by the third floor vibration level prediction procedure shown in FIG. 3, and the traffic vibration of FIG. 4 including the traffic vibration occurrence prediction based on the vibration level prediction value. Considering the countermeasure procedure, the occurrence of traffic vibration is determined and the design of the three-story house is revised.
[0027]
  First, the vibration level of the ground of the planned construction site is measured (operation 7). Next, a predicted vibration level amplification amount is determined from the presence / absence of occurrence of resonance between the ground vibration and the three-story house. If this vibration level amplification amount prediction value is determined, the value is added to the ground vibration level measurement value to give the vibration level prediction value at the third floor. Since the vibration level and the vibration level amplification amount are both given in decibel amounts, the amplification amounts are synthesized by calculating the sum and difference.
[0028]
  By selecting the three-story house (operation 1), the natural frequency of the three-story house to be constructed is predicted from vibration measurement and a plan to be described later (operation 5). The natural frequency of a building is determined in a complex manner by the frame, outer wall, and inner wall. In a building having the same structure system, the structure of the frame, the outer wall, and the inner wall are the same, and therefore have a natural frequency within a certain range. Here, the structural system refers to the characteristics of the building determined by the rigidity of the pillars and beams as the structural members of the frame, the rigidity of the inner and outer walls, and the arrangement structure of these structural members. Depending on the maximum length of these components and the scale of the building created by combining them, the natural frequency differs between buildings of the same structural system. The scale of this building and the maximum length of building components such as the lengths of beams and columns, the outer wall length, and the inner wall length are given as scale parameters below. In the procedure shown in FIG. 1, a procedure for predicting the natural frequency of a three-story house is given. First, a target three-story house is selected (operation 1), and a structural system to which the three-story house belongs is input (operation 2). Next, the natural frequency is measured by measuring the vibration of a three-story house with the same structural system (operation 3). Then, by giving a scale parameter (operation 4), it is possible to estimate the natural frequency of buildings having the same structural system and different scale parameters almost accurately (operation 5). In the case of a three-story house, its natural frequency is in the range of 3 to 5 Hz, but this operation can narrow down the range of the natural frequency of the target three-story house.
[0029]
  Returning to FIG. 3, the vibration source is specified (operation 10). When the vibration source emits vibration having a frequency approximate to the natural frequency of the building, as described above, resonance occurs between the building and the ground vibration propagating from the vibration source. In the case of a large vehicle such as a truck, it is known to generate vibrations having a frequency overlapping with the natural frequency region of 3 to 5 Hz of a three-story house, and resonance occurs. In contrast, vibrations generated by trains and the like are outside this region. Therefore, it is determined whether or not resonance occurs by comparing the frequencies derived from operations 5 and 10 (operation 11). However, unless the ground frequency is measured, it is impossible to know the degree of the amplification effect due to resonance. This will be described later.
[0030]
  It is also necessary to consider the vibration amplification due to the building rigidity characteristics. As described above, the higher the floor of the building, the easier it is to swing because the whole building does not have enough rigidity to be regarded as one rigid body. That is, as the rigidity of the building is lowered, the resistance force to the external force of the building component is reduced, and each component is easily shaken. As described above, the building rigidity is determined in combination by the frame structure and the mounting strength of the outer wall and the inner wall. In other words, even in buildings with the same structural system, the strength of the outer and inner walls can be increased by strengthening the connection of structural members such as beams and columns and increasing the number of members used to connect the outer and inner walls to the structural structure. By improving the above, it is possible to improve the building rigidity.
[0031]
  In the building vibration measurement after the construction, the amount of amplification of the vibration level at the three-story house three-story floor with respect to the ground vibration level is also measured. When resonance does not occur, only the amplification due to the characteristics of building rigidity is received. As shown in FIG. 2, a structural system is first input (operation 2) by selecting a three-story house (operation 1). The vibration level measurement (operation 6) and the ground vibration level measurement (operation 7) on the third floor of the three-story house are performed, and the difference between them is obtained to obtain the vibration level amplification amount (operation 9). When resonance does not occur, the vibration level amplification amount obtained from this procedure is the vibration level amplification amount due to the characteristics of the building rigidity. When resonance occurs, the vibration level amplification amount obtained from this procedure includes the amplification amount due to resonance in addition to the vibration level amplification amount due to the characteristics of the building rigidity.
[0032]
  In the first embodiment, vibration measurement at a plurality of locations is performed according to the procedure shown in FIG. 2, and the vibration level amplification amount obtained there is averaged to determine an approximate value of the vibration level amplification amount. Averaging is performed separately for cases with and without resonance, and two approximate values are determined. The amount of vibration level amplification given as an approximate value when resonance does not occur is approximately 20 dB in the case of a three-story house, although there are differences depending on the structure system. The amount of vibration level amplification given as an approximate value when resonance occurs is about 25 to 30 dB in the case of a three-story house, including differences in the structure system. That is, the amplification amount R1 due to resonance is estimated to be 5 to 10 dB.
[0033]
  Returning to FIG. 3 again, if there is no possibility of resonance, only the vibration level amplification amount due to the building rigidity characteristic may be considered as the amplification amount (operation 12). When resonance is likely to occur, it is necessary to consider the amount of amplification including the amount of amplification R1 due to resonance in addition to the amount of vibration level amplification due to the characteristics of the building rigidity (operation 13). If any of the values given in the operations 12 and 13 and the vibration level of the ground obtained in the operation 7 are added, the vibration level predicted value L1 in the three-storied house three-story floor is obtained (operation 14).
[0034]
  Next, the occurrence of traffic vibration is determined based on the vibration level amplification amount. The third floor vibration level prediction value L1 in the first embodiment is set by providing a difference corresponding to the amplification amount R1 due to resonance in advance depending on the presence or absence of resonance. That is, when it is determined that there is a possibility of resonance, even if the influence of resonance is actually very small, the amount of amplification R1 due to resonance is uniformly estimated larger than that during non-resonance. Further, by arranging a vibration damping device (hereinafter referred to as TMD), which will be described later, in a three-story house, the amount of reduction T can be reduced by TMD. As shown in FIG. 4, the determination criterion to be described is compared with the vibration level predicted value L1 on the third floor (operation 15) to determine whether or not traffic vibration can occur and countermeasures. The judgment criteria are classified by vibration level values. Even if the resonance occurs at the maximum expected level, it does not reach 55 decibels, and when it is considered that no traffic vibration occurs, it is judged A1 (16). It is considered that the occurrence of traffic vibration is unlikely to occur. However, if it is considered that the traffic vibration can be suppressed by arranging the TMD in the three-story house at the time of occurrence, it is judged B1 (17). Although it is considered that the occurrence of traffic vibration is correct, it is judged C1 (18) when it is considered that the traffic vibration can be suppressed by arranging the TMD in the three-story house. If it is considered that the occurrence of traffic vibration is correct and it is considered that the traffic vibration cannot be suppressed by the installation of the TMD in the three-story house, it is judged D1 (19). Numerically, when L1 <55 (dB) −R1, the determination is A1 (16), and when 55 (dB) −R1 ≦ L1 <55 (dB) −R1 + T, the determination is B1 (17), and 55 ( dB) When R1 + T ≦ L1 <55 (dB) + T, the determination is C1 (18), and when L1 ≧ 55 (dB) + T, the determination is D1 (19).
[0035]
  In the case of determination A1 (16), it is presumed that no traffic vibration will occur first, and a standard design proposal without special traffic vibration countermeasures is made to the home orderer (20). In the case of judgment B1 (17), the possibility of traffic vibrations cannot be ignored. Therefore, a housing design in which TMD can be installed and a retrofit of TMD are proposed to the home orderer (21). In addition, even when traffic vibration occurs, it is a state that can be suppressed by TMD. The reason why the retrofit is proposed is that the person who ordered the house actually lives in the house, and then confirms whether there is any physical vibration and determines whether or not the TMD is necessary. . In the case of judgment C1 (18), the occurrence of traffic vibration is expected, but it can be dealt with by the arrangement of TMD, and TMD advance is proposed to the home orderer (22). In the judgment D1 (19), it is presumed that the occurrence of traffic vibration is certain, and the situation cannot be dealt with only by providing the TMD. At this time, the individual examination (23) including the fundamental change of the design policy is performed. Note that there is a possibility that it can be dealt with depending on the arrangement of an active dynamic vibration absorber (AMD) to be described later.
[0036]
  When it is determined that resonance does not occur, the amplification amount R1 due to resonance becomes 0, and determination B1 (17) and determination C1 (18) overlap. In this case, since it becomes the same state as the criterion shown in the second embodiment, it is assumed that the procedure shown in FIG. 7 is followed.
[0037]
  TMD will be described. As the above-mentioned TMD, a TMD (passive dynamic vibration absorber) 43 connected to a house through a spring 41 and an attenuator 42 as elastic members is used for the mass body 40 as shown in FIG. As an operation mechanism, the mass body 40 has an inertial force according to the vibration of the house and moves in a direction opposite to that of the house. As a result, the vibration of the house is canceled. The mass body 40 is synchronized with the natural frequency of the house by a spring 41.
[0038]
  In order to use TMD most effectively, the TMD is disposed on the roof surface which is the uppermost part of the house. Since TMD is a device that houses a mass body that is a heavy object, it is disposed on the center of gravity line so as not to overload the housing structure. When a TMD is disposed in a once completed house, there is a limit to the position of the house due to the structure of the house, and there is a high probability that a reinforcing member is required to maintain the strength of the frame structure. If it does so, a resident will be restricted by an external appearance and livability, and will also be forced to cost high. Therefore, when traffic vibrations are expected to occur in advance, it is possible to avoid the difficulty that arises when the TMD is installed afterwards by performing the design based on the TMD arrangement.
[0039]
  As described above, the TMD functions to cancel vibrations, and thus has an effect of reducing the vibration level in the house. FIG. 13 shows changes in the vibration level in the house due to ground vibration, with the horizontal axis representing time and the vertical axis representing the vibration level observed in the house. The alternate long and short dash line is a 55 dB sensation threshold boundary line. Here, the case of a road where various vehicles pass as a vibration source and non-constant vibration occurs is described. When the track through which the train passes is a vibration source, the magnitude of vibration generated is constant because there is no change as in a vehicle. This is because, in the case of a vehicle, the vibration is intermittent due to the passage of a vehicle at a certain point, while in the case of a train, a continuous vibration is given while the vehicle is passing through a suburb. FIG. 13 shows a state in which the vibration level in the house is uniformly reduced by the arrangement of the TMD. This is what is expected for the installation of TMD as a vibration control device. Further, even if the vibration reduction effect by TMD is not perfect and the maximum value of the vibration level graph cannot be reduced to 55 dB or less, the frequency can be reduced. It can be expected that the effect of shaking 10 times within a certain time will be twice.
[0040]
  In addition to the TMD, an active dynamic vibration absorber (hereinafter AMD) may be used as the vibration damping device. AMD is equipped with an automatically controlled mass body sliding mechanism and exhibits a higher damping effect than TMD.
[0041]
  Next, traffic vibration countermeasures using the second embodiment will be described. The vibration level predicted value on the third floor in the second embodiment is given by the third floor floor vibration level predicted value determination procedure shown in FIG. 5, and includes a traffic vibration occurrence prediction method based on the vibration level predicted value. Considering the traffic vibration countermeasure procedure, the determination of traffic vibration and the design modification of the three-story house are performed. The difference from the first embodiment is that in order to more accurately predict the vibration level on the third floor, detailed frequency measurement related to ground vibration is performed.
[0042]
  First, according to the procedure shown in FIG. 1, the natural frequency of the target three-story house is predicted (operation 5). Next, as shown in FIG. 5, the ground vibration level measurement (operation 7), the vibration frequency distribution of the ground, and the intensity for each frequency (operation 24) are measured and input to the correlation function described below. The correlation function outputs the vibration level amplification amount by the input in operations 5, 7, and 24 (operation 25). The output by this correlation function includes the amount of amplification due to the presence or absence of resonance.
[0043]
  The procedure for creating this correlation function shown in FIG. 6 will be described. Once the preparation is started (operation 27), the measurement of the natural frequency of the three-story house already constructed (operation 3), the measurement of the vibration level of the third-floor floor (operation 6), and the frequency distribution of the ground・ Measure the strength (operation 24) and measure the vibration level of the ground (operation 7). By the operations 3 and 24, the intensity of the resonance frequency is measured (operation 28). If no resonance occurs, this intensity is zero. Further, the amount of vibration level amplification is measured in operations 6 and 7 (operation 29). Here, it does not matter whether there is amplification due to resonance. Then, the resonance frequency measured by the operation 28, the ground frequency distribution / intensity measured by the operation 24, and the vibration level amplification amount measured by the operation 29 are associated with each other to accumulate data (operation 32). . By performing the operation 32, data for clarifying the correlation between the resonance frequency, the strength of the resonance frequency, and the vibration level of the ground and the vibration level amplification amount is accumulated. By repeating a series of operations from operation 27 to operation 32, that is, by performing building vibration measurement at a plurality of locations, it is possible to know these correlations more accurately. In operation 33, it is determined whether data can be stored. Finally, from the data accumulated in the operation 32, a correlation function for outputting the vibration level amplification amount can be created for the three inputs of the resonance frequency intensity and the ground vibration level (operation 34).
[0044]
  Returning to FIG. 5 again, based on the input / output to the correlation function derived by the procedure shown in FIG. 6, the vibration level amplification amount prediction for the three-story house to be constructed, not the actual property, is performed (operation 25). The vibration level of the third floor is predicted by adding the vibration level of the ground measured by (operation 26). The predicted value of the third floor vibration level in the second embodiment is L2.
[0045]
  The traffic vibration occurrence prediction in the second embodiment will be described. In the first embodiment, the predicted vibration level predicted value L1 may be increased or decreased by the amplification amount R1 due to resonance, and for that reason, it is necessary to classify cases. In the second embodiment, the vibration level prediction value can be regarded as a more accurate value than the influence of the presence or absence of resonance. The determination is performed according to the procedure shown in FIG. 7, and first, the determination criterion is compared with the vibration level predicted value L2 (operation 35). As in the first embodiment, the determination criterion is classified by the vibration level value. The judgment criteria are judgment A2 (36) in the case where it is considered that traffic vibration does not occur, judgment B2 (37) in the case where occurrence of traffic vibration is expected but can be suppressed by installation of TMD, and TMD. Even if it is installed, it is classified into three judgments C2 (38) which are considered difficult to suppress traffic vibration. Numerically, when L2 <55 (dB), the determination is A2 (36), and when 55 (dB) ≦ L2 <55 (dB) + T, the determination is B2 (37), and L2 ≧ 55 (dB) + T Is C2 (38). T is a reduction amount by TMD.
[0046]
  In the case of determination A2 (36), it is presumed that no traffic vibration will occur first, and a standard design proposal without special traffic vibration countermeasures is made to the home orderer (20). In the case of decision B2 (37), traffic vibration is estimated to occur, but it can be suppressed by the placement of TMD, and the housing design capable of placing TMD and the installation of TMD are proposed to the housing orderer (39). In the case of judgment C2 (38), the occurrence of traffic vibration is expected, and the situation cannot be dealt with only by providing the TMD. At this time, the individual examination (23) including the fundamental change of the design policy is performed. . It may be possible to cope with the above-described arrangement of the active dynamic vibration absorber (AMD).
[0047]
【The invention's effect】
  As described in claim 1, any one of two-stage average vibration level amplification amounts classified according to presence / absence of resonance between ground vibration and building in a building having the same structure system as that of the building. Since one is added with the ground vibration level measured by vibration measurement, the following effects are obtained.
  By using the two-stage average vibration level amplification amount classified according to the presence or absence of resonance, the prediction range of the vibration level in the building is limited, and the degree of vibration level predicted by a relatively simple procedure can be known. It can be done.
[0048]
  As described in claim 2, the following vibration measurement in a building having the same structural system at a plurality of locations, that is, the natural frequency measurement of the building, the vibration level measurement in the building, the vibration level measurement of the ground vibration, Since the vibration level in the building of the same structural system as the building is predicted from the correlation derived from the frequency distribution and the intensity measurement, the following effects are obtained.
  That is, when the vibration level of the ground and the building are remarkably increased, or the vibration level of the ground is greatly increased in the building, or when the vibration level amplification of the ground is minimal with no resonance, the amount of vibration level amplification by the resonance is large. As a result, a prediction can be obtained and an accurate vibration level prediction can be performed.
[0049]
  As described in claim 3, since the presence or absence of traffic vibration is predicted based on a comparison between the vibration level prediction value derived from the building vibration level prediction method and 55 dB, the occurrence of traffic vibration is predicted in advance. This measure can be considered.
[0050]
  According to the fourth aspect of the present invention, the presence or absence of traffic vibration is determined by comparing the predicted vibration level obtained by subtracting the vibration level attenuation amount by the vibration control device from the predicted vibration level derived from the method for predicting the vibration level of the building and 55 dB. Because it predicts, it is possible to anticipate the occurrence of traffic vibrations in advance and to consider measures at the design stage. For this reason, even when a vibration control device is installed, it is possible to design without compromising the comfortability of a three-story house, and the cost is lower than when dealing with traffic vibration after construction of a three-story house. In addition, it can be performed while maintaining a highly flexible design.
[Brief description of the drawings]
FIG. 1 is a diagram showing a natural frequency prediction procedure for a three-story house.
FIG. 2 is a diagram illustrating a procedure for predicting a vibration level amplification amount based on characteristics of building rigidity.
FIG. 3 is a diagram showing a vibration level prediction procedure of the first embodiment.
FIG. 4 is a diagram showing a traffic vibration countermeasure procedure of the first embodiment.
FIG. 5 is a diagram showing a vibration level prediction procedure of the second embodiment.
FIG. 6 is a diagram showing a procedure for creating a correlation function.
FIG. 7 is a diagram showing a traffic vibration countermeasure procedure of the second embodiment.
FIG. 8 is a conceptual diagram showing an example of the cause of traffic vibration.
FIG. 9 is a conceptual diagram showing horizontal and vertical vibrations of a house.
FIG. 10 is a conceptual diagram showing a distribution region of ground vibration.
FIG. 11 is a diagram showing a sensation correction curve for horizontal vibration.
FIG. 12 is a view showing a mechanism of a vibration damping device.
FIG. 13 is a diagram showing a vibration reduction effect by TMD.
[Explanation of symbols]
  L1 ・ L2 predicted vibration level
  Amplification amount by R1 resonance
  Reduction amount by TTMD
  43 TMD

Claims (4)

三階建て建物内の振動レベル予測において、対象とする三階建て住宅を選択し(作業1)、該三階建て住宅の構造システムを入力し(作業2)、同一構造システムの三階建て住宅の振動測定によって、固有振動数の測定を行い(作業3)、規模パラメータを与え(作業4)、同一構造システムかつ規模パラメータの異なる建物の固有振動数を推測し(作業5)、建設予定地の地盤の振動レベルを測定し(作業7)、三階建て住宅の選択(作業1)と構造システムの入力(作業2)により、該三階建て住宅三階床での振動レベル測定(作業6)と、前記地盤の振動レベル測定(作業7)より、その差を求めて振動レベル増幅量を得て(作業9)、更に、振動源の特定を行い(作業10)、建物の固有振動数の予測(作業5)と振動源の特定(作業10)により導かれる振動数を比較することで、共振が発生するか否かを判定し(作業11)、共振が発生する可能性がない場合、建物剛性の特性による振動レベル増幅量のみを増幅量として考慮し(作業12)、共振が発生する可能性があるときは、建物剛性の特性による振動レベル増幅量に加えて共振による増幅量を考慮し(作業13)、上記何れかで与えられる値と、地盤の振動レベル(作業7)とを加えて、三階建て住宅三階床での振動レベル予測値L1を得る(作業14)、ことを特徴とする三階建て建物の振動レベル予測方法。In predicting the vibration level in a three-story building, the target three-story house is selected (operation 1), the structure system of the three-story house is input (operation 2), and the three-story house with the same structure system is selected. The natural frequency is measured by the vibration measurement (operation 3), the scale parameter is given (operation 4), the natural frequency of the building having the same structural system and different scale parameters is estimated (operation 5), and the planned construction site The vibration level of the ground is measured (operation 7), and the vibration level is measured on the third floor of the three-story house (operation 6) by selecting the three-story house (operation 1) and inputting the structure system (operation 2). ) And the vibration level measurement of the ground (operation 7), the difference is obtained to obtain the vibration level amplification amount (operation 9), and the vibration source is specified (operation 10), and the natural frequency of the building is determined. Prediction (operation 5) and vibration source identification (operation 10) It is determined whether or not resonance occurs by comparing the vibration frequencies derived in 10) (operation 11), and if there is no possibility of occurrence of resonance, only the vibration level amplification amount due to the characteristics of building rigidity is amplified. Considering the amount (operation 12), when there is a possibility that resonance will occur, in addition to the vibration level amplification amount due to the characteristics of the building rigidity, the amplification amount due to resonance is considered (operation 13) and given by any of the above The vibration level prediction of a three-story building is characterized by adding the value and the vibration level of the ground (operation 7) to obtain a vibration level prediction value L1 at the three-story house three-story floor (operation 14). Method. 三階建て建物内の振動レベル予測において、対象とする三階建て住宅を選択し(作業1)、該三階建て住宅の構造システムを入力し(作業2)、同一構造システムの三階建て住宅の振動測定によって、固有振動数の測定を行い(作業3)、規模パラメータを与え(作業4)、同一構造システムかつ規模パラメータの異なる建物の固有振動数を推測し(作業5)、建設予定地の地盤の振動レベルを測定し(作業7)、地盤の振動数分布及び振動数ごとの強度の測定を行い(作業24)、下記の相関関数に入力し、該相関関数は、作成を開始し(作業27)、三階建て住宅の固有振動数を測定し(作業3)、三階床の振動レベル測定し(作業6)、地盤の振動数分布・強度の測定し(作業24)、地盤の振動レベル測定を行ない(作業7)、三階建て住宅の固有振動数の測定(作業3)と地盤の振動数分布・強度の測定(作業24)により共振振動数の強度を測定し(作業28)、三階床の振動レベル測定(作業6)と地盤の振動レベル測定(作業7)より振動レベルの増幅量を測定し(作業29)、測定された共振振動数(作業28)及び測定された地盤の振動数分布・強度(作業24)と、測定された振動レベル増幅量(作業29)とを関連付けてデータ蓄積を行い(作業32)、最終的に蓄積されたデータ(作業32)より、共振振動数、共振振動数の強度、地盤の振動レベルの三つの入力に対し、振動レベル増幅量を出力する相関関数を作成し(作業34)、上記により導かれた相関関数への入出力より、建設予定の三階建て住宅に関する振動レベル増幅量予測を行ない(作業25)、測定された地盤の振動レベル(作業7)に加えて、三階床での振動レベル予測を行ない、三階床振動レベル予測値L2を求める(作業26)、ことを特徴とする三階建て建物の振動レベル予測方法。In predicting the vibration level in a three-story building, the target three-story house is selected (operation 1), the structure system of the three-story house is input (operation 2), and the three-story house with the same structure system is selected. The natural frequency is measured by the vibration measurement (operation 3), the scale parameter is given (operation 4), the natural frequency of the building having the same structural system and different scale parameters is estimated (operation 5), and the planned construction site The vibration level of the ground is measured (operation 7), the frequency distribution of the ground and the intensity for each frequency are measured (operation 24), and the following correlation function is entered. (Operation 27), measuring the natural frequency of a three-story house (operation 3), measuring the vibration level of the third floor (operation 6), measuring the frequency distribution and strength of the ground (operation 24), Vibration level measurement (operation 7), 3rd floor Then, the resonance frequency is measured by measuring the natural frequency of the house (operation 3) and by measuring the frequency distribution and strength of the ground (operation 24) (operation 28), and measuring the vibration level of the third floor (operation 6). ) And ground vibration level measurement (operation 7) to measure the amount of amplification of the vibration level (operation 29), the measured resonance frequency (operation 28), and the measured ground frequency distribution and strength (operation 24). Is stored in association with the measured vibration level amplification amount (operation 29) (operation 32), and from the finally stored data (operation 32), the resonance frequency, the strength of the resonance frequency, the ground A correlation function that outputs a vibration level amplification amount is created for three vibration level inputs (operation 34), and the vibration level for the three-story house to be constructed is determined based on the input and output to the correlation function derived above. Amplification amount prediction (work 5) In addition to the measured ground vibration level (operation 7), the vibration level prediction at the third floor is performed to obtain the third floor vibration level prediction value L2 (operation 26). A method for predicting the vibration level of a story building. 請求項1又は請求項2記載の三階建て建物の振動レベル予測方法より得た振動レベル予測値と、55dBとの大小比較より交通振動発生の有無を予測することを特徴とする三階建て建物の交通振動発生予測方法。A three-story building characterized in that the presence or absence of traffic vibration is predicted from a vibration level prediction value obtained by the vibration level prediction method for a three-story building according to claim 1 or 2 and a magnitude comparison with 55 dB. For predicting the occurrence of traffic vibration. 請求項1又は請求項2記載の三階建て建物の振動レベル予測方法より得た振動レベル予測値から、制振装置による振動レベル低減量を引いた振動レベル予測値と、55dBとの大小比較より交通振動発生の有無を予測することを特徴とする三階建て建物の交通振動発生予測方法。From the vibration level prediction value obtained by subtracting the vibration level reduction amount by the vibration control device from the vibration level prediction value obtained by the vibration level prediction method of the three-story building according to claim 1 or 2, and a size comparison with 55 dB A method for predicting the occurrence of traffic vibrations in a three-story building, wherein the presence or absence of traffic vibrations is predicted.
JP2000026328A 2000-02-03 2000-02-03 Vibration level prediction method and traffic vibration occurrence prediction method for three-story buildings Expired - Fee Related JP3881819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000026328A JP3881819B2 (en) 2000-02-03 2000-02-03 Vibration level prediction method and traffic vibration occurrence prediction method for three-story buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000026328A JP3881819B2 (en) 2000-02-03 2000-02-03 Vibration level prediction method and traffic vibration occurrence prediction method for three-story buildings

Publications (2)

Publication Number Publication Date
JP2001215167A JP2001215167A (en) 2001-08-10
JP3881819B2 true JP3881819B2 (en) 2007-02-14

Family

ID=18552074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000026328A Expired - Fee Related JP3881819B2 (en) 2000-02-03 2000-02-03 Vibration level prediction method and traffic vibration occurrence prediction method for three-story buildings

Country Status (1)

Country Link
JP (1) JP3881819B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3510616B2 (en) * 2000-12-28 2004-03-29 構造品質保証研究所株式会社 Method and system for diagnosing structures by microtremor observation
JP3876247B2 (en) * 2000-12-28 2007-01-31 構造品質保証研究所株式会社 Diagnosis method and diagnosis system of structure by microtremor observation
JP5155047B2 (en) * 2007-07-18 2013-02-27 旭化成ホームズ株式会社 Method for predicting vertical vibration of buildings
CN116519118A (en) * 2022-07-23 2023-08-01 浙江天铁实业股份有限公司 Ballast bed resonator setting method

Also Published As

Publication number Publication date
JP2001215167A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
Hao et al. Building vibration to traffic-induced ground motion
Madshus et al. Prediction model for low frequency vibration from high speed railways on soft ground
Miguel et al. Robust design optimization of TMDs in vehicle–bridge coupled vibration problems
Diaz et al. Integral resonant control scheme for cancelling human‐induced vibrations in light‐weight pedestrian structures
Zhang et al. A case study of interior low-frequency noise from box-shaped bridge girders induced by running trains: Its mechanism, prediction and countermeasures
Díaz et al. On-off nonlinear active control of floor vibrations
Kuppelwieser et al. A tool for predicting vibration and structure-borne noise immissions caused by railways
Avci et al. Vibration annoyance assessment of train induced excitations from tunnels embedded in rock
JP3881819B2 (en) Vibration level prediction method and traffic vibration occurrence prediction method for three-story buildings
Hudson et al. Implications of structural design on the effectiveness of active vibration control of floor structures
Jiménez-Alonso et al. Robust optimum design of tuned mass dampers to mitigate pedestrian-induced vibrations using multi-objective genetic algorithms
Van Nimmen et al. A simplified method to account for vertical human-structure interaction
Prendergast et al. Experimental application of FRF-based model updating approach to estimate soil mass and stiffness mobilised under pile impact tests
He et al. Acceleration‐based effective damping ratio of tuned mass damper under seismic excitations
Reggio et al. Stochastic Multi-objective Optimisation of Exoskeleton Structures
Frier et al. Flooring-systems and their interaction with furniture and humans
JP3571619B2 (en) Building vibration level prediction method and building design method
JP5155047B2 (en) Method for predicting vertical vibration of buildings
JP2987411B2 (en) Conduction and propagation phenomena measurement analysis method and system
JP2013170382A (en) Method and system for selecting vibration countermeasure for soundproof wall in overpass
Sánchez-Haro et al. Simplified method to detect resonance effects in railway bridges. Viaduct over Aragón River and Almonte bridge application
Van Nimmen et al. The impact of vertical human-structure interaction for footbridges
JP4190466B2 (en) Traffic vibration countermeasures for wooden houses
Pridham et al. Control of traffic-induced ground vibrations in a residential structure
Ahmad et al. Building Floor Vibration due to In-Building Speed Bump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Ref document number: 3881819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151117

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees