JP3880077B2 - Glass fiber reinforced thermoplastic resin composition - Google Patents
Glass fiber reinforced thermoplastic resin composition Download PDFInfo
- Publication number
- JP3880077B2 JP3880077B2 JP16010794A JP16010794A JP3880077B2 JP 3880077 B2 JP3880077 B2 JP 3880077B2 JP 16010794 A JP16010794 A JP 16010794A JP 16010794 A JP16010794 A JP 16010794A JP 3880077 B2 JP3880077 B2 JP 3880077B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- component
- parts
- glass fiber
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、耐熱性、剛性、タッピング性、及び成形性に優れたガラス繊維強化熱可塑性樹脂組成物に関する。このガラス繊維強化熱可塑性樹脂組成物は電気・電子部品、自動車内装部品特に、インストルメントパネルの芯材に好適である。
【0002】
【従来の技術】
従来から、マレイミド系共重合体とABS樹脂との樹脂組成物は知られている(特開昭57ー125241)。この樹脂組成物は耐熱性とタッピング性、衝撃強度、成形性に優れているものの、剛性が低いという欠点を持っている。この欠点を改良する目的で、マレイミド系共重合体とABS樹脂との樹脂組成物にガラス繊維をブレンドした樹脂組成物も知られている(特開昭60−47049)。
【0003】
しかしながら、このガラス繊維をブレンドした樹脂組成物は耐熱性、剛性、衝撃性は充分高いものの、タッピング強度と流動性をともに高くすることが出来ないという問題点があった。例えば、マレイミド系共重合体の分子量及び/又はABS樹脂の分子量を低くする事で流動性を高くする事はできるが、タッピング強度が低くなり、ネジによるセルフタッピングが出来なくなり、成形品の組立が困難になる。また、マレイミド系共重合体及び/又はABS樹脂の分子量を高くするか、ABS樹脂の配合量を増やせば、タッピング強度は充分高くなるが、成形性が低下してしまい、射出成形時にショートショット等の不良現象が起こる。
【0004】
熱可塑性樹脂組成物が、耐熱性、剛性を損なうことなく、優れた流動性、タッピング強度を有するということは極めて重要な特性である。流動性が高いと、射出成形が容易で複雑な構造であっても、不良なく成形する事ができ成形性が良好となる。また、タッピング強度が高いと、タッピングネジを用いた2次加工時の成形品組立が容易になり、タッピング性が優れていることになる。
【0005】
【発明が解決しようする問題点】
上記で述べたとおりガラス繊維強化されたマレイミド系樹脂組成物において、耐熱性、剛性、タッピング性、成形性のいずれも優れた特性を有するガラス繊維強化熱可塑性樹脂組成物は得られておらず、これらの性質を兼備した該樹脂組成物が強く望まれている。本発明の目的は、これらの問題点を解決しガラス繊維強化されたマレイミド系樹脂組成物の耐熱性、剛性、衝撃強度を損なうことなく、優れた成形性とタッピング強度を付与することにある。
【0006】
【問題点を解決する為の手段】
すなわち、本発明者らは鋭意検討を重ねた結果、特定の組成のマレイミド系共重合体(A)成分、特定の組成のビニル系共重合体(B)成分、特定の組成、ゴム粒径、グラフト率、及び未グラフト平均分子量を持つグラフト共重合体(C)成分、並びにガラス繊維(D)成分を選択し、しかもこれらの各成分の配合比を特定の範囲に規定し、かつ(D)成分を除いた(A)〜(C)の3成分のメルトフローレート(以下、MFRと称する)が特定の範囲になる場合に、極めて優れた耐熱性、剛性、タッピング強度及び成形性を有したガラス繊維強化熱可塑性樹脂組成物を得ることができ、本発明の目的を達成することができる事を見いだしたものである。
【0007】
すなち、本発明は、(A)成分:芳香族ビニル単量体単位60〜70重量%、不飽和ジカルボン酸イミド誘導体単位30〜40重量%、及びこれらと共重合可能なビニル単量体(但しシアン化ビニル単量体を除く)単位0〜10重量%からなるマレイミド系共重合体10〜50重量部、(B)成分:芳香族ビニル単量体単位75〜80重量%、シアン化ビニル単量体単位20〜25重量%、及びこれらと共重合可能なビニル単量体単位0〜5重量%からなるビニル系共重合体40〜80重量部、
(C)成分:ブタジエン重合体、ブタジエンと共重合可能なビニル単量体との共重合体、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体、及びアクリル酸エステル重合体、アクリル酸エステルと共重合可能なビニル単量体との共重合体から選ばれるゴム状重合体40〜60重量部に、芳香族ビニル単量体75〜80重量%、シアン化ビニル単量体20〜25重量%及びこれらと共重合可能なビニル単量体0〜5重量%からなる単量体混合物60〜40重量部をグラフト重合させ、かつ重量平均ゴム粒径が0.2〜0.3μの範囲で、グラフト率が30〜40%の範囲であり、未グラフトコポリマーの重量平均分子量が6〜12万であるグラフト共重合体5〜30重量部、及び
(D)成分:ガラス繊維5〜30重量部よりなる組成物で、かつ(D)成分を除く前記3成分の混合物のMFRが20〜80g/10分の範囲にあるガラス繊維強化熱可塑性樹脂組成物から成るものである。
【0008】
本発明のガラス繊維強化熱可塑性樹脂組成物に含まれる(A)成分のマレイミド系共重合体について説明する。
(A)成分を製造するにあたって、第1の製法としては、芳香族ビニル単量体、不飽和ジカルボン酸イミド誘導体、及びこれらと共重合可能なビニル単量体混合物を共重合させる方法、第2の製法としては、芳香族ビニル単量体、不飽和ジカルボン酸無水物単量体及びこれらと共重合可能なビニル単量体混合物を共重合させた後、この共重合体中の不飽和ジカルボン酸無水物基をアンモニア、及び/又は第1級アミンと反応させてイミド基に変換させる方法が挙げられ、いずれの方法によってもマレイミド系共重合体を得ることができる。
【0009】
(A)成分を構成する芳香族ビニル単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、t−ブチルスチレン、クロルスチレン等のスチレン系単量体及びその置換単量体が挙げられ、これらの中でスチレンが特に好ましい。
【0010】
不飽和ジカルボン酸イミド誘導体としては、マレイミド、N−メチルマレイミド、N−エチルマレイミド、Nーシクロヘキシルマレイミド、N−フェニルマレイミド、N−ナフチルマレイミド等が挙げられる。これらの中でN−フェニルママレイミドが好ましい。
【0011】
不飽和ジカルボン酸無水物単量体としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の無水物が挙げられ、これらの中でマレイン酸無水物が特に好ましい。
【0012】
これらと共重合可能なビニル単量体としては、メチルアクリル酸エステル、エチルアクリル酸エステル、ブチルアクリル酸エステル等のアクリル酸エステル単量体,メチルメタクリル酸エステル、エチルメタクリル酸エステル等のメタクリル酸エステル単量体、アクリル酸、メタクリル酸等のビニルカルボン酸単量体、アクリル酸アミド、メタクリル酸アミド、及びN−ビニルカルバゾ−ル等が挙げられる。これらの中でアクリル酸エステル、メタクリル酸エステル、アクリル酸、メタクリル酸等の単量体が特に好ましい。また、第1の製法では上記の不飽和ジカルボン酸無水物単量体が挙げられる。第2の製法では不飽和ジカルボン酸無水物単量体を用いるが、イミド基へ転換されずに残った不飽和ジカルボン酸無水物基を共重合体中に導入することができる。
【0013】
(A)成分を製造する第1の製法の場合は、塊状−懸濁重合、溶液重合、塊状重合を、第2の製法の場合は、懸濁重合、乳化重合、溶液重合、塊状重合等公知の重合方法を用いることができる。
【0014】
第2の製法で、マレイミド系共重合体を得るためのイミド化反応に用いるアンモニアや第1級アミンは、無水又は水溶液のいずれの状態でもあってもよい。第1級アミンの例としてメチルアミン、エチルアミン、シクロヘキシルアミン等のアルキルアミン、アニリン、トルイジン、ナフチルアミン等の芳香族アミンが挙げられる。これらの中で特にアニリンが好ましい。
【0015】
イミド化反応は溶液状態又は懸濁状態で行う場合は通常の反応容器、例えばオートクレーブ等を用いるのが好ましく、塊状溶融状態で行う場合には、脱揮装置の付いた押出機を用いてもよい。
【0016】
イミド化反応の温度は約80〜350℃であり、好ましくは100〜300℃である。80℃未満の場合には反応速度が遅く、反応に長時間を要して実用的でない。一方350℃を越える場合には重合体の熱分解による物性低下をきたす。イミド化反応時に触媒を用いてもよく、その場合は第3級アミン、例えばトリエチルアミン等が好ましく用いられる。
【0017】
(A)成分に用いられる芳香族ビニル単量体単位は60〜70重量%であり、好ましくは62〜69重量%である。芳香族ビニル単量体単位が60重量%未満では、マレイミド系共重合体の特徴である成形性が失われ、樹脂組成物の成形性が低下する。また不飽和ジカルボン酸イミド誘導体単位は30〜40重量%であり、好ましくは31〜38重量%である。30重量%未満で(B)成分及び(C)成分との相容性が低下し、またガラス繊維との親和性も不充分となりタッピング強度が低下し、また耐熱性も低下する。一方不飽和ジカルボン酸イミド誘導体単位が、40重量%を越えると樹脂組成物が脆くなり、成形性も著しく悪くなる。また、これらと共重合可能なビニル単量体単位は0〜15重量%であり、15重量%を越えると(B)成分及び(C)成分との相容性が低下し、タッピング強度が低下する。
【0018】
(A)成分のマレイミド系共重合体は、ゴム状重合体の存在下で行ってもよく、ゴム状重合体は0〜30重量%が好ましい。ゴム状重合体の量が30重量%を超えると耐熱性、成形性が損なわれる。
なお、ゴム状重合体はブタジエン重合体、ブタジエンと共重合可能なビニル単量体との共重合体、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体、及びアクリル酸エステル重合体、アクリル酸エステルと共重合可能なビニル単量体との共重合体等を用いるとができる。
【0019】
次に、(B)成分のビニル系共重合体について説明する。
(B)成分において用いられる芳香族ビニル単量体としては、スチレン、α−メチルスチレン、ビニルトルエン、クロルスチレン等のスチレン系単量体、及びその置換単量体が挙げられ、特にスチレンが好ましい。
【0020】
シアン化ビニル単量体としては、アクリロニトリル、メタクリロニトリル、αークロルアクリロニトリル等があり、特にアクリロニトリルが好ましい。
【0021】
これらと共重合可能なビニル単量体としては、メチルアクリル酸エステル、エチルアクリル酸エステル、ブチルアクリル酸エステル等のアクリル酸エステル単量体、メチルメタクリル酸エステル、エチルメタクリル酸エステル等のメタクリル酸エステル単量体、アクリル酸、メタクリル酸等のピニルカルボン酸単量体、アクリル酸アミド、メタクリル酸アミド、及びN−ビニルカルバゾ−ル等が挙げられる。これらの中でアクリル酸エステル、及びメタクリル酸エステル、アクリル酸、メタクリル酸等の単量体が特に好ましい。
【0022】
(B)成分も通常の重合方法で製造でき、例えば懸濁重合、溶液重合、乳化重合のどの重合方法でもよい。
【0023】
(B)成分中の芳香族ビニル単量体単位は75〜80重量%であり、特に76〜79重量%が望ましい。75重量%未満では成形性が低下し、80重量%を超えると成形品が脆くなり、タッピング強度が低下する。
シアン化ビニル単量体単位は20〜25重量%であり、特に21〜24重量%が好ましい。20重量%未満では(A)成分及び(C)成分との相溶性が低下してタッピング強度が低下し、25重量%を越えると成形性が低下する。
【0024】
次に、本発明の(C)成分のグラフト重合体について説明する。
(C)成分に使用されるゴム状重合体はブタジエン重合体、ブタジエンと共重合可能なビニル単量体との共重合体、エチレン−プロピレン共重合体、エチレン−プロピレン−ジエン共重合体、及びアクリル酸エステル重合体、アクリル酸エステルと共重合可能なビニル単量体との共重合体等が挙げられる。
【0025】
(C)成分に用いられる芳香族ビニル単量体はスチレン、α−メチルスチレン、ビニルトルエン、クロルスチレン等のスチレン系単量体、及びその置換単量体が挙げられ、特にスチレンが好ましい。
【0026】
シアン化ビニル単量体としては、アクリロニトリル、メタクリロニトリル、αークロルアクリロニトリル等があり、特にアクリロニトリルが好ましい。
【0027】
また、これらと共重合可能なビニル単量体としては、メチルアクリル酸エステル、エチルアクリル酸エステル、ブチルアクリル酸エステル等のアクリル酸エステル単量体,メチルメタクリル酸エステル、エチルメタクリル酸エステル等のメタクリル酸エステル単量体、アクリル酸、メタクリル酸等のビニルカルボン酸単量体、アクリル酸アミド、メタクリル酸アミド、及びN−ビニルカルバゾ−ル等が挙げられる。これらの中でアクリル酸エステル、メタクリル酸エステル、アクリル酸、メタクリル酸等の単量体が特に好ましい。
【0028】
このグラフト重合体の製造に当たっては、一般に公知のいずれの重合技術も採用可能であって、例えば懸濁重合、乳化重合の如き水性不均一重合、塊状重合、溶液重合及び生成重合体の貧溶媒中での沈殿不均一重合、並びにこれらの組合せ等が挙げられる。
【0029】
ゴム粒径は、重量平均粒径で0.2〜0.3μの範囲にあり、それ以外の範囲ではタッピング強度が低下する。また、グラフト率は30〜40%で、グラフト率が30%未満ではタッピング強度が低下し、グラフト率が40%以上では流動性が低下する問題がある。更に未グラフトコポリマーの重量平均分子量は6〜12万であり、6万未満ではタッピング強度が低下し、12万を超えると流動性が低下する。
【0030】
(C)成分は、ゴム状重合体40〜60重量部存在下に、芳香族ビニル単量体75〜80重量%、シアン化ビニル単量体20〜25重量%及びこれらと共重合可能なビニル単量体0〜15重量%からなる単量体混合物60〜40重量部をグラフト重合させたものである。
好ましくは、ゴム状重合体45〜55重量部存在下に、芳香族ビニル単量体76〜79重量%、シアン化ビニル単量体21〜24重量%及びこれらと共重合可能なビニル単量体0〜10重量%からなる単量体混合物45〜55重量部をグラフト重合させたものである。
芳香族ビニル単量体が75重量%未満では成形性が低下し、80重量%を越えると耐熱性が低下する。また、シアン化ビニル単量体が20重量%未満ではタッピング強度が低下し、25重量%を越えると成形性が低下する。またこれらと共重合可能なビニル単量体が15重量%を越えると(A)成分及び(B)成分との相溶性が低下し、タッピング強度が低下する。さらにゴム状重合体が40重量部未満ではタッピング強度が低下し、60重量部を超えると成形性が低下する。
【0031】
次に、(D)成分のガラス繊維について説明する。
通常ガラス繊維強化組成物はガラス繊維の形状、表面処理状態によって物性が大きく変動する。本発明のガラス繊維強化熱可塑性樹脂組成物においても、ガラス繊維の繊維長は0.3mm以上が好ましく、又アミノシラン、エポキシシラン等のシラン系カップリング剤やチタン系カップリング剤等で処理したガラス繊維を使用することができる。
【0032】
ガラス繊維含有量は5〜30重量部であり更に好ましくは10〜20重量部である。ガラス繊維が5重量部未満の場合は得られる成形品の剛性及び寸法安定性が十分に改良されず、30重量部を越えると成形性が劣り、特に射出成形等が難しくなる。
【0033】
本発明のガラス繊維強化熱可塑性樹脂組成物における(A)成分、(B)成分、(C)成分、及び(D)成分の配合比は、(A)成分10〜50重量部、(B)成分40〜80重量部、(C)成分5〜30重量部、(D)成分5〜30重量部である。更に、(A)成分15〜45重量部、(B)成分45〜65重量部、(C)成分10〜25重量部、(D)成分10〜25重量部が好ましい。
(A)成分が10重量部未満では耐熱性が充分でなく、50重量部を超えると成形性が低下する。(B)成分は40重量部未満では成形性が充分でなく、80重量部を超えるとタッピング強度が低下する。(C)成分が5重量部未満ではタッピング強度が充分でなく、30重量部を超えると成形性が低下する。(D)成分が5重量部未満では耐熱性が充分でなく、30重量部を超えると成形性が低下する。
【0034】
本発明のガラス繊維強化熱可塑性樹脂組成物においては、(A)〜(C)各成分の単量体単位及び誘導体単位の比、並びに(A)〜(D)各成分の配合量比だけでは、耐熱性、剛性、成形性、タッピング強度のバランスを良好にする事はできない。タッピング強度は各成分中の単量体単位及び誘導体単位の比と各成分の配合量比のバランスで微妙に変化してしまうので、(A)成分と(B)成分と(C)成分の組成物のMFRが20〜80g/10分の範囲にあって初めて、耐熱性、剛性、成形性、タッピング強度を高くする事が出来る。(A)〜(C)成分の3成分のMFRが20g/10分未満ではタッピング強度は高いが、成形性が充分でなく、MFRが80g/10分を超えると、成形性は良いが、タッピング強度が低くなり、ともに規定の範囲を逸脱すると好ましくない。
【0035】
なお、本発明におけるMFRは、ASTM D−6874に基づき、測定温度265℃、荷重10kg、時間10分の条件で測定した値である。
(A)成分、(B)成分及び(C)成分からなる組成物のMFRは、各成分の単量体単位及び誘導体単位の比、重合度及び各成分の配合量比により調整することができる。一般に(A)成分及び(C)成分が増加するとMFRは小さくなり、(B)成分が増加するとMFRは大きくなる。しかし、同一の重合度でも(A)成分のイミド含有量が多くなるとMFRは小さくなり、又同一のイミド含有量でも重合度が大きくなるとMFRは小さくなる。(B)成分及び(C)成分においても各成分の配合比が同じでも重合度が大ききなるとMFRは小さくなる。また(C)成分においては、一般にゴム状重合体が多くなると、MFRは小さくなる傾向にある。
【0036】
本発明のガラス繊維強化熱可塑性樹脂組成物は、高含量の不飽和ジカルボン酸イミド誘導体を有するマレイミド系共重合体を必須成分とした熱可塑性樹脂とガラス繊維を含有したものであるが、その混合法は特に制限がなく、公知の手段を使用する事が出来る。その手段として例えばバンバリ−ミキサ−、タンブラ−ミキサ−、混合ロ−ル、1軸又は2軸押出機等が挙げられる。混合形態としては通常の溶触混合、マスタ−ペレット等を用いる多段階溶融混練、溶液中でのブレンドより組成物を得る方法がある。
【0037】
また、本発明のガラス繊維強化熱可塑性樹脂組成物には、更に酸化防止剤、紫外線吸収材、難燃剤、可塑剤、滑剤、着色剤及びタルク、シリカ、クレー、マイカ、炭酸カルシウム等の充填剤を添加する事も可能である。
【0038】
更に、本発明のガラス繊維強化熱可塑性樹脂組成物は均衡して優れた耐熱性、耐衝撃性、タッピング強度、成形性(流動性)を有しているので、複雑な構造であっても不良なく成形品を得ることができ、またタッピング強度が高いので、該樹脂組成物の成形品はタッピングネジを用いた成形品組立が容易になる。
従って、タッピングネジを用いて二次加工する自動車部品のドア芯材、インパネコア、スポイラー、ピラーサンルーフフレーム、デフロスターグリル、ランプハウジング等や、電気・電子機器部品、工業用機械部品等に好適である。
【0039】
以下、本発明を更に実施例により説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、実施例中の部、%はいずれも特にことわらない限り重量基準である。
【0040】
【実施例】
実験例(1)(A)成分の製造
撹拌機を備えたオートクレーブ中にスチレン75部、メチルエチルケトン100部を仕込み、系内を窒素ガスで置換した後温度を85℃に昇温し、無水マレイン酸25部とベンゾイルパ−オキサイド0.15部をメチルエチルケトン200部に溶解した溶液を8時間で連続的に添加した。添加後更に3時間温度を85℃に保った。粘調な反応液の一部をサンプリングしてガスクロマトグラフィーにより未反応単量体の定量を行った結果、重合率はスチレン95モル%、無水マレイン酸98モル%であった。ここで得られた共重合体溶液に無水マレイン酸に対し当量のアニリン23.3部、トリエチルアミン0.3部を加え140℃で7時間反応させた。反応溶液にメチルエチルケトン200部を加え、室温まで冷却し、激しく撹拌したメタノ−ル1500部に注ぎ、析出、濾別、乾燥しイミド化重合体を得た。C−13NMR 分析より酸無水物基のイミド基への転化率はほぼ100モル%であった。このイミド化重合体は、不飽和ジカルボン酸イミド誘導体としてのN−フェニルマレイミド単位を37.8重量%含む共重合体であり、これを重合体A−1とした。なお、ゲルパーミエーションクロマトグラフイーを用い、ポリスチレンを標準分子量として求めた重量平均分子量は15.2万であった。
【0041】
実験例(2)(A)成分の製造
実験例(1)と同様のオートクレーブ中にスチレン80部、メチルエチルケトン100部を仕組み、系内を窒素ガスで置換し、温度を85℃に昇温した。無水マレイン酸20部とベンゾイルパ−オキサイド0.075部及びアゾビスイソブチロニトリル0.075部をメチルエチルケトン200部に溶解した溶液を8時間で連続的に添加した。これ以降は、アニリン量を19部に替えた以外は実験例(1)と全く同じ操作を行った。重合率はスチレン96モル%、無水マレイン酸98モル%であった。酸無水物基のイミド基への転化率は実験例(1)と同様ほぼ100モル%であった。このイミド化重合体は、不飽和ジカルボン酸イミド誘導体としてのN−フェニルマレイミド単位を31.0重量%含む共重合体であり、これを重合体A−2とした。なお、重合体A−1と同様にして求めた重合体A−2の重量平均分子量は16.4万であった。
【0042】
実験例(3)(A)成分の製造
実験例(1)と同様のオートクレーブ中にスチレン60部、メチルエチルケトン100部を仕組み、系内を窒素ガスで置換し、温度を85℃に昇温した。無水マレイン酸40部とベンゾイルパ−オキサイド0.075部及びアゾビスイソブチロニトリル0.075部をメチルエチルケトン200部に溶解した溶液を8時間で連続的に添加した。これ以降はアニリン量を38部に替えた以外は実験例(1)と全く同じ操作を行った。重合率はスチレン96モル%、無水マレイン酸98モル%であった。酸無水物基のイミド基への転化率は実験例(1)と同様ほぼ100モル%であった。このイミド化重合体は、不飽和ジカルボン酸イミド誘導体としてのN−フェニルマレイミド単位を50.6重量%含む共重合体であり、これを重合体A−3とした。なお、重合体A−1と同様にして求めた重合体A−3の重量平均分子量は12.5万であった。
【0043】
実験例(4)(B)成分の製法
撹拌機を備えたオートクレーブ中にスチレン78部、アクリロニトリル22部、ステアリン酸カリウム2.5部、t−ドデシルメルカブタン0.5部及び水250部を70℃に加熱し、これに過硫酸カリウム0.05部を添加し重合を開始させた。重合開始から7時間後にさらに過硫酸カリウム0.03部を添加し、温度を75℃に昇温して3時間保ち重合を完結させた。重合率は97モル%に達した。得られたラテックスを塩化カルシウムで凝固し、水洗、乾燥後、白色粉末の共重合体を得た。これを共重合体B−1とした。なお、ゲルパーミエーションクロマトグラフイーを用い、ポリスチレンを標準分子量として求めた重量平均分子量は13.7万であった。
【0044】
実験例(5)(B)成分の製法
スチレンを70部、アクリロニトリルを30部に替えた以外は実験例(4)と同様に重合、析出を行い、得られた共重合体をB−2とした。なお、重合体B−1と同様にして求めた重合体B−2の重量平均分子量は13.5万であった。
【0045】
実験例(6)(B)成分の製法
t−ドデシルメルカブタン量を1.5部に替えた以外は実験例(4)と同様に重合、析出を行い、得られた共重合体をB−3とした。なお、重合体B−1と同様にして求めた重合体B−3の重量平均分子量は5.3万であった。
【0046】
実験例(7)(C)成分の製法
ポリブタジエンラテックス143部(固形分35%、ゴムの重量平均粒径0.25μ、ゲル含率90%)、ステアリン酸カリウム1部、ソジウムホルムアルデヒドスルホキシレ−ト0.1部、テトラソジウムエチレンジアミンテトラアセチックアシッド0.03部、硫酸第一鉄0.003部、及び水150部を50℃に加熱し、これにスチレン77%及びアクリロニトリル23%よりなる単量体混合物50部、t−ドデシルメルカブタン0.2部、キユメンハイドロオキサイド0.15部、を6時間で連続添加し、更に添加後65℃に昇温し2時間重合した。重合率はガスクロマトグラフィ−分析により97モル%に達した。得られたラテックスに酸化防止剤を添加した後、塩化カルシウムで凝固、水洗、乾燥後白色粉末としてグラフト共重合体を得た。これを重合体C−1とした。
【0047】
次に、C−1のグラフト率と未グラフトコポリマーの分子量を測定する為に、C−1を規定量とり、メチルエチルケトン溶液に膨潤させて、遠心分離した。上澄み溶液中の未グラフトコポリマーのスチレンーアクリロニトリル共重合体の分子量をゲルパーミエイションクロマトグラフィーにて測定したところ、重量平均分子量は8万であった。また、遠心分離で沈降したゲル分(枝部がグラフトコポリマーで、幹部がポリブタジエンゴム)の組成をケルダール窒素定量分析と熱分解ガスクロマトグラフィーにより分析し、スチレンとアクリロニトリル量からグラフトコポリマー(枝部)の重量を測定した。また臭素付加法によりポリブタジエンゴム(幹部)を分析し、ポリブタジエンゴム(幹部)の重量を決定した。このように求められたグラフトコポリマー(枝部)の重量とポリブタジエンゴム(幹部)の重量から以下の一般式1よりグラフト率を求めたところグラフト率は33%であった。
【0048】
【数1】
【0049】
実験例8(C)成分の製造
実験例7のポリブタジエンラテックスをゴムの重量平均粒径0.15μのものに変えた以外は、実験例7と同様に重合、析出を行ないグラフト共重合体C−2を得た。これの重合率をガスクロマトグラフィ−で、分析したとこ98モル%であった。また、C−2のグラフト率は34%で、未グラフトコポリマーのスチレン−アクリロニトリル共重合体の重量平均分子量は8万であった。なお、重量平均分子量は、共重合体A及び重合体Bを測定したと同じゲルパーミエーションクロマトグラフイーを用い、ポリスチレンを標準分子量として求めた。
【0050】
実施例1
実験例1で得られた重合体A−1を35部、実験例4で得られた重合体B−1を45部、実験例7で得られたグラフト共重合体C−1を10部と、ガラス繊維TP−89(日本板硝子株式会社製、繊維径13μ、繊維長3mm)10部をタンブラーミキサーで混合後、ベント付き押出機で押出し、ペレット化した。このペレットを射出成形機で成形し、物性評価を行い、その結果を表ー1に示した。
【0051】
実施例2〜4及び比較例1〜6
重合体A−1〜A−3、重合体B−1〜B−3、グラフト重合体C−1〜C−2、ガラス繊維TP−89をそれぞれ表−1に記載の配合比でブレンドし、実施例1と同様にペレット化して、それぞれの物性を評価し、その結果を表ー1に示した。
【0052】
【表1】
【0053】
なお、物性測定の試験方法は下記の方法で行った。
(1)熱変形温度:ASTM D−648に準じ、1/4インチ厚み試験片を用い、荷重18.6kg/cm2で測定した。
(2)アイゾット強度:ASTM−D256に準じ、1/4インチ厚みのノッチ付試験片を用いて測定した。
(3)MFR:ASTM D−6874に準じ、温度265℃、荷重10kgで測定した。
(4)タッピング強度:図ー1に示したボス部を有する成形品を、東芝機械製IS−50EPを使用し、設定温度250℃、金型温度50℃、射出速度70%、射出圧力は最低充填圧力+5Kg/cm2のゲージ圧で射出成形した。次に、山外径5mm,谷外径4mmのネジをトルクドライバーを使用し、50回/分の回転数でボス成形品にねじ込み、破壊までの最大トルクを測定した。
【0054】
表−1に示すとおり、本発明のガラス繊維強化熱可塑性樹脂組成物は耐熱、耐衝撃性、タッピング強度、成形性(流動性)において著しい向上が認められる。特に流動性が高くて、かつタッピング強度が極めて高いものであった。また、タッピング強度は従来衝撃強度の目安として評価されていたアイゾット強度とは全く相関性がないものでもあった。このように、本発明はガラス繊維強化されたマレイミド系樹脂組成物の耐熱性、剛性、衝撃強度を損なうことなく、優れた成形性とタッピング強度の付与を成した。
【0055】
【発明の効果】
本発明のガラス繊維強化熱可塑性樹脂組成物は均衡して優れた耐熱性、耐衝撃性、タッピング強度、成形性(流動性)を有する。従って、本発明のガラス繊維強化熱可塑性樹脂組成物は耐熱性、剛性、寸法安定性、耐衝撃性、タッピング性、成形性の特性が要求される用途に使用される。例えば、自動車部品であるドア芯材、インパネコア、スポイラー、ピラーサンルーフフレーム、デフロスターグリル、ランプハウジング等や、電気・電子機器部品、工業用機械部品等に好適である。
【図面の簡単な説明】
【図1】(1) ボス成形品の上面図を示す。
(2) ボス成形品の側面図を示す。
(3) ボス部Aの概略断面図を示す。
【符号の簡単な説明】
a=60.0mm
b=60.0mm
c= 8.0mmΦ
d= 4.2mmΦ
e=30.0mm
f= 3.0mm[0001]
[Industrial application fields]
The present invention relates to a glass fiber reinforced thermoplastic resin composition having excellent heat resistance, rigidity, tapping properties, and moldability. This glass fiber reinforced thermoplastic resin composition is suitable for electrical and electronic parts, automobile interior parts, particularly for the core material of instrument panels.
[0002]
[Prior art]
Conventionally, a resin composition of a maleimide copolymer and an ABS resin is known (Japanese Patent Laid-Open No. 57-125241). Although this resin composition is excellent in heat resistance, tapping property, impact strength, and moldability, it has a drawback of low rigidity. For the purpose of improving this defect, a resin composition obtained by blending a glass fiber with a resin composition of a maleimide copolymer and an ABS resin is also known (Japanese Patent Laid-Open No. 60-47049).
[0003]
However, although the resin composition blended with the glass fibers has sufficiently high heat resistance, rigidity, and impact property, there is a problem in that both tapping strength and fluidity cannot be increased. For example, the flowability can be increased by lowering the molecular weight of the maleimide copolymer and / or the molecular weight of the ABS resin, but the tapping strength is lowered and self-tapping with screws cannot be performed, so that the molded product can be assembled. It becomes difficult. Also, if the molecular weight of the maleimide copolymer and / or ABS resin is increased or the blending amount of the ABS resin is increased, the tapping strength is sufficiently increased, but the moldability is reduced, and a short shot or the like at the time of injection molding. The failure phenomenon occurs.
[0004]
It is an extremely important characteristic that the thermoplastic resin composition has excellent fluidity and tapping strength without impairing heat resistance and rigidity. When the fluidity is high, even if the injection molding is easy and the structure is complicated, it can be molded without any defect and the moldability is good. Further, when the tapping strength is high, the assembly of the molded product at the time of secondary processing using the tapping screw becomes easy, and the tapping property is excellent.
[0005]
[Problems to be solved by the invention]
In the maleimide resin composition reinforced with glass fiber as described above, a glass fiber reinforced thermoplastic resin composition having excellent heat resistance, rigidity, tapping properties, and moldability has not been obtained. There is a strong demand for the resin composition having these properties. An object of the present invention is to solve these problems and to impart excellent moldability and tapping strength without impairing the heat resistance, rigidity and impact strength of the glass fiber reinforced maleimide resin composition.
[0006]
[Means for solving problems]
That is, as a result of intensive studies, the present inventors have determined that a maleimide copolymer (A) component having a specific composition, a vinyl copolymer (B) component having a specific composition, a specific composition, a rubber particle size, A graft copolymer (C) component having a graft ratio and an ungrafted average molecular weight, and a glass fiber (D) component are selected, and the blending ratio of these components is specified within a specific range; and (D) When the melt flow rate (hereinafter referred to as MFR) of the three components (A) to (C) excluding the components is in a specific range, it has extremely excellent heat resistance, rigidity, tapping strength, and moldability. It has been found that a glass fiber reinforced thermoplastic resin composition can be obtained and the object of the present invention can be achieved.
[0007]
That is, the present invention comprises (A) component: aromatic vinyl monomer unit 60 to 70% by weight, unsaturated dicarboxylic imide derivative unit 30 to 40% by weight, and vinyl monomer copolymerizable therewith.(Excluding vinyl cyanide monomer)Unit 01010 to 50 parts by weight of a maleimide copolymer consisting of 5% by weight, component (B): 75 to 80% by weight of aromatic vinyl monomer units, 20 to 25% by weight of vinyl cyanide monomer units, and copolymers thereof Polymerizable vinyl monomer units 0 to540 to 80 parts by weight of a vinyl copolymer comprising
(C) component:Copolymerizable with butadiene polymer, copolymer of vinyl monomer copolymerizable with butadiene, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, acrylic acid ester polymer, acrylic acid ester Selected from copolymers with various vinyl monomers40 to 60 parts by weight of a rubber-like polymer, 75 to 80% by weight of an aromatic vinyl monomer, 20 to 25% by weight of a vinyl cyanide monomer and 0 to 25% of a vinyl monomer copolymerizable therewith560 to 40 parts by weight of a monomer mixture consisting of 50% by weight is graft-polymerized, the weight average rubber particle size is in the range of 0.2 to 0.3 μm, the graft ratio is in the range of 30 to 40%, and ungrafted 5 to 30 parts by weight of a graft copolymer having a copolymer weight average molecular weight of 6 to 120,000, and
Component (D): Glass fiber reinforced thermoplastic resin composition comprising 5 to 30 parts by weight of glass fiber, and MFR of the mixture of the three components excluding component (D) is in the range of 20 to 80 g / 10 min. It consists of things.
[0008]
The maleimide copolymer of component (A) contained in the glass fiber reinforced thermoplastic resin composition of the present invention will be described.
In producing the component (A), the first production method is a method of copolymerizing an aromatic vinyl monomer, an unsaturated dicarboxylic imide derivative, and a vinyl monomer mixture copolymerizable therewith, second The production method of this method includes copolymerizing an aromatic vinyl monomer, an unsaturated dicarboxylic acid anhydride monomer, and a vinyl monomer mixture copolymerizable therewith, and then unsaturated dicarboxylic acid in the copolymer. A method of reacting an anhydride group with ammonia and / or a primary amine to convert it into an imide group can be mentioned, and a maleimide copolymer can be obtained by any method.
[0009]
Examples of the aromatic vinyl monomer constituting the component (A) include styrene monomers such as styrene, α-methylstyrene, vinyltoluene, t-butylstyrene, chlorostyrene, and substituted monomers thereof. Of these, styrene is particularly preferred.
[0010]
Examples of the unsaturated dicarboxylic imide derivative include maleimide, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-naphthylmaleimide and the like. Of these, N-phenylmaleimide is preferred.
[0011]
Examples of the unsaturated dicarboxylic acid anhydride monomer include anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid. Among these, maleic anhydride is particularly preferable.
[0012]
As vinyl monomers copolymerizable with these,,Acrylic acid ester monomers such as methyl acrylic acid ester, ethyl acrylic acid ester and butyl acrylic acid ester, Methacrylic acid ester monomers such as methyl methacrylic acid ester and ethyl methacrylic acid ester, Vinylcarboxylic such as acrylic acid and methacrylic acid Examples thereof include acid monomers, acrylic acid amides, methacrylic acid amides, and N-vinylcarbazole. Among these, monomers such as acrylic acid esters, methacrylic acid esters, acrylic acid, and methacrylic acid are particularly preferable. In the first production method, the unsaturated dicarboxylic acid anhydride monomer may be mentioned. In the second production method, an unsaturated dicarboxylic acid anhydride monomer is used, but the unsaturated dicarboxylic acid anhydride group remaining without being converted into an imide group can be introduced into the copolymer.
[0013]
(A) In the case of the 1st manufacturing method which manufactures a component, block-suspension polymerization, solution polymerization, block polymerization is known in the case of the 2nd manufacturing method, suspension polymerization, emulsion polymerization, solution polymerization, block polymerization, etc. The polymerization method can be used.
[0014]
In the second production method, the ammonia and primary amine used in the imidization reaction for obtaining the maleimide copolymer may be in either anhydrous or aqueous solution. Examples of primary amines include alkylamines such as methylamine, ethylamine and cyclohexylamine, and aromatic amines such as aniline, toluidine and naphthylamine. Of these, aniline is particularly preferred.
[0015]
When the imidation reaction is carried out in a solution state or suspension state, it is preferable to use an ordinary reaction vessel, such as an autoclave, and when it is carried out in a bulk molten state, an extruder equipped with a devolatilizer may be used. .
[0016]
The temperature of the imidization reaction is about 80 to 350 ° C, preferably 100 to 300 ° C. When the temperature is lower than 80 ° C., the reaction rate is slow, and the reaction takes a long time and is not practical. On the other hand, when it exceeds 350 ° C., physical properties are deteriorated due to thermal decomposition of the polymer. A catalyst may be used during the imidation reaction. In that case, a tertiary amine such as triethylamine is preferably used.
[0017]
(A) The aromatic vinyl monomer unit used for a component is 60 to 70 weight%, Preferably it is 62 to 69 weight%. If the aromatic vinyl monomer unit is less than 60% by weight, the moldability characteristic of the maleimide copolymer is lost, and the moldability of the resin composition is lowered. The unsaturated dicarboxylic imide derivative unit is 30 to 40% by weight, preferably 31 to 38% by weight. If it is less than 30% by weight, the compatibility with the component (B) and the component (C) is lowered, the affinity with the glass fiber is insufficient, the tapping strength is lowered, and the heat resistance is also lowered. On the other hand, if the unsaturated dicarboxylic acid imide derivative unit exceeds 40% by weight, the resin composition becomes brittle and the moldability is remarkably deteriorated. Moreover, the vinyl monomer unit copolymerizable with these is 0 to 15% by weight, and if it exceeds 15% by weight, the compatibility with the component (B) and the component (C) decreases, and the tapping strength decreases. To do.
[0018]
The maleimide copolymer (A) may be carried out in the presence of a rubbery polymer, and the rubbery polymer is preferably 0 to 30% by weight. When the amount of the rubbery polymer exceeds 30% by weight, heat resistance and moldability are impaired.
The rubbery polymer is a butadiene polymer, a copolymer of a vinyl monomer copolymerizable with butadiene, an ethylene-propylene copolymer, an ethylene-propylene-diene copolymer, and an acrylate polymer, For example, a copolymer of a vinyl monomer copolymerizable with an acrylate ester can be used.
[0019]
Next, the vinyl copolymer of component (B) will be described.
Examples of the aromatic vinyl monomer used in the component (B) include styrene monomers such as styrene, α-methylstyrene, vinyltoluene, chlorostyrene, and substituted monomers thereof, and styrene is particularly preferable. .
[0020]
Examples of the vinyl cyanide monomer include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, and acrylonitrile is particularly preferable.
[0021]
Examples of vinyl monomers copolymerizable with these include acrylic ester monomers such as methyl acrylate, ethyl acrylate and butyl acrylate, and methacrylic esters such as methyl methacrylic ester and ethyl methacrylic ester. Monomers, pinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, acrylic acid amides, methacrylic acid amides, and N-vinylcarbazole. Among these, monomers such as acrylic acid esters and methacrylic acid esters, acrylic acid, and methacrylic acid are particularly preferable.
[0022]
The component (B) can also be produced by an ordinary polymerization method, and any polymerization method such as suspension polymerization, solution polymerization, and emulsion polymerization may be used.
[0023]
The aromatic vinyl monomer unit in the component (B) is 75 to 80% by weight, particularly preferably 76 to 79% by weight. If it is less than 75% by weight, the moldability is lowered, and if it exceeds 80% by weight, the molded product becomes brittle and the tapping strength is lowered.
The vinyl cyanide monomer unit is 20 to 25% by weight, particularly 21 to 24% by weight. If it is less than 20% by weight, the compatibility with the component (A) and the component (C) is lowered and the tapping strength is lowered, and if it exceeds 25% by weight, the moldability is lowered.
[0024]
Next, the graft polymer of the component (C) of the present invention will be described.
The rubbery polymer used for component (C) is a butadiene polymer, a copolymer of a vinyl monomer copolymerizable with butadiene, an ethylene-propylene copolymer, an ethylene-propylene-diene copolymer, and Examples thereof include acrylic acid ester polymers and copolymers of vinyl monomers copolymerizable with acrylic acid esters.
[0025]
Examples of the aromatic vinyl monomer used for the component (C) include styrene monomers such as styrene, α-methylstyrene, vinyltoluene, and chlorostyrene, and substituted monomers thereof, and styrene is particularly preferable.
[0026]
Examples of the vinyl cyanide monomer include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, and acrylonitrile is particularly preferable.
[0027]
Examples of vinyl monomers copolymerizable with these include acrylic acid ester monomers such as methyl acrylate, ethyl acrylate and butyl acrylate, and methacrylic esters such as methyl methacrylic acid and ethyl methacrylic acid. Examples include acid ester monomers, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, acrylic acid amides, methacrylic acid amides, and N-vinyl carbazole. Among these, monomers such as acrylic acid esters, methacrylic acid esters, acrylic acid, and methacrylic acid are particularly preferable.
[0028]
In the production of the graft polymer, any of the generally known polymerization techniques can be employed. For example, aqueous heterogeneous polymerization such as suspension polymerization and emulsion polymerization, bulk polymerization, solution polymerization, and in a poor solvent for the produced polymer. Precipitation heterogeneous polymerization, and combinations thereof.
[0029]
The rubber particle size is in the range of 0.2 to 0.3 μm in terms of weight average particle size, and the tapping strength decreases in other ranges. In addition, the graft ratio is 30 to 40%. When the graft ratio is less than 30%, the tapping strength is lowered, and when the graft ratio is 40% or more, the fluidity is lowered. Further, the ungrafted copolymer has a weight average molecular weight of 60 to 120,000. If it is less than 60,000, the tapping strength is lowered, and if it exceeds 120,000, the fluidity is lowered.
[0030]
Component (C) is an aromatic vinyl monomer 75 to 80% by weight, vinyl cyanide monomer 20 to 25% by weight and vinyl copolymerizable therewith in the presence of 40 to 60 parts by weight of a rubbery polymer. 60 to 40 parts by weight of a monomer mixture composed of 0 to 15% by weight of monomer is graft-polymerized.
Preferably, in the presence of 45 to 55 parts by weight of rubbery polymer, 76 to 79% by weight of aromatic vinyl monomer, 21 to 24% by weight of vinyl cyanide monomer, and vinyl monomer copolymerizable therewith. A monomer mixture comprising 45 to 55 parts by weight of 0 to 10% by weight is graft-polymerized.
If the aromatic vinyl monomer is less than 75% by weight, the moldability is lowered, and if it exceeds 80% by weight, the heat resistance is lowered. Further, when the vinyl cyanide monomer is less than 20% by weight, the tapping strength is lowered, and when it exceeds 25% by weight, the moldability is lowered. On the other hand, if the vinyl monomer copolymerizable with these exceeds 15% by weight, the compatibility with the component (A) and the component (B) is lowered, and the tapping strength is lowered. Further, when the rubber-like polymer is less than 40 parts by weight, the tapping strength is lowered, and when it exceeds 60 parts by weight, the moldability is lowered.
[0031]
Next, the glass fiber of (D) component is demonstrated.
Usually, the physical properties of glass fiber reinforced compositions vary greatly depending on the shape of the glass fibers and the surface treatment state. Also in the glass fiber reinforced thermoplastic resin composition of the present invention, the glass fiber has a fiber length of preferably 0.3 mm or more, and glass treated with a silane coupling agent such as aminosilane or epoxysilane, a titanium coupling agent, or the like. Fibers can be used.
[0032]
Glass fiber content is 5-30 weightPartAnd more preferably 10 to 20 wt.PartIt is. 5 weight glass fiberPartIn the case of less than 30%, the rigidity and dimensional stability of the obtained molded product are not sufficiently improved, and 30 weightPartIf it exceeds 1, moldability is inferior, and injection molding and the like are particularly difficult.
[0033]
The compounding ratio of the component (A), the component (B), the component (C), and the component (D) in the glass fiber reinforced thermoplastic resin composition of the present invention is 10 to 50 parts by weight of the component (A), (B) 40 to 80 parts by weight of component, 5 to 30 parts by weight of component (C), and 5 to 30 parts by weight of component (D). Furthermore, (A) component 15-45 weight part, (B) component 45-65 weight part, (C) component 10-25 weight part, (D) component 10-25 weight part are preferable.
When the component (A) is less than 10 parts by weight, the heat resistance is not sufficient, and when it exceeds 50 parts by weight, the moldability is lowered. If the component (B) is less than 40 parts by weight, the moldability is not sufficient, and if it exceeds 80 parts by weight, the tapping strength decreases. When the component (C) is less than 5 parts by weight, the tapping strength is not sufficient, and when it exceeds 30 parts by weight, the moldability is lowered. When the component (D) is less than 5 parts by weight, the heat resistance is not sufficient, and when it exceeds 30 parts by weight, the moldability is lowered.
[0034]
In the glass fiber reinforced thermoplastic resin composition of the present invention, (A) to (C) the ratio of monomer units and derivative units of each component, and (A) to (D) the blending ratio of each component alone. The balance of heat resistance, rigidity, moldability, and tapping strength cannot be improved. The tapping strength varies slightly depending on the balance between the ratio of monomer units and derivative units in each component and the blending ratio of each component, so the composition of component (A), component (B), and component (C) The heat resistance, rigidity, moldability and tapping strength can be increased only when the MFR of the product is in the range of 20 to 80 g / 10 min. When the MFR of the three components (A) to (C) is less than 20 g / 10 min, the tapping strength is high, but the moldability is not sufficient, and when the MFR exceeds 80 g / 10 min, the moldability is good, but the tapping is good. It is not preferable that the strength decreases and both deviate from the specified range.
[0035]
The MFR in the present invention is a value measured under the conditions of a measurement temperature of 265 ° C., a load of 10 kg, and a time of 10 minutes based on ASTM D-6874.
The MFR of the composition comprising the component (A), the component (B) and the component (C) can be adjusted by the ratio of the monomer unit and the derivative unit of each component, the degree of polymerization, and the blending ratio of each component. . In general, when the components (A) and (C) increase, the MFR decreases, and when the component (B) increases, the MFR increases. However, the MFR decreases as the imide content of the component (A) increases even at the same degree of polymerization, and the MFR decreases as the degree of polymerization increases even at the same imide content. Even in the component (B) and the component (C), the MFR decreases as the degree of polymerization increases even when the blending ratio of each component is the same. In the component (C), the MFR generally tends to decrease as the amount of the rubbery polymer increases.
[0036]
The glass fiber reinforced thermoplastic resin composition of the present invention contains a thermoplastic resin and a glass fiber, which contain a maleimide copolymer having a high content of an unsaturated dicarboxylic imide derivative as essential components. The method is not particularly limited, and known means can be used. Examples of such means include a Banbury mixer, a tumbler mixer, a mixing roll, a single or twin screw extruder, and the like. As a mixing form, there are a method of obtaining a composition from ordinary welding mixing, multi-stage melt kneading using a master-pellet or the like, and blending in a solution.
[0037]
Further, the glass fiber reinforced thermoplastic resin composition of the present invention further includes a filler such as an antioxidant, an ultraviolet absorber, a flame retardant, a plasticizer, a lubricant, a colorant and talc, silica, clay, mica, calcium carbonate, etc. It is also possible to add.
[0038]
Furthermore, the glass fiber reinforced thermoplastic resin composition of the present invention has excellent heat resistance, impact resistance, tapping strength, and moldability (fluidity) in a balanced manner. Since the molded product can be obtained without any problem and the tapping strength is high, the molded product of the resin composition can be easily assembled using a tapping screw.
Therefore, it is suitable for door core materials, instrument panel cores, spoilers, pillar sunroof frames, defroster grills, lamp housings, electrical / electronic equipment parts, industrial machine parts, etc. .
[0039]
EXAMPLES Hereinafter, the present invention will be further described with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist of the present invention. In the examples, parts and% are based on weight unless otherwise specified.
[0040]
【Example】
Experimental example (1)(A) Production of component
In an autoclave equipped with a stirrer, 75 parts of styrene and 100 parts of methyl ethyl ketone were charged, the inside of the system was replaced with nitrogen gas, the temperature was raised to 85 ° C., 25 parts of maleic anhydride and 0.15 part of benzoyl peroxide were added. A solution dissolved in 200 parts of methyl ethyl ketone was continuously added in 8 hours. The temperature was kept at 85 ° C. for an additional 3 hours after the addition. As a result of sampling a part of the viscous reaction liquid and quantifying the unreacted monomer by gas chromatography, the polymerization rate was 95 mol% styrene and 98 mol% maleic anhydride. 23.3 parts of aniline equivalent to maleic anhydride and 0.3 part of triethylamine were added to the copolymer solution obtained here and reacted at 140 ° C. for 7 hours. To the reaction solution was added 200 parts of methyl ethyl ketone, cooled to room temperature, poured into 1500 parts of vigorously stirred methanol, precipitated, filtered and dried to obtain an imidized polymer. From the C-13 NMR analysis, the conversion ratio of the acid anhydride group to the imide group was almost 100 mol%. This imidized polymer is a copolymer containing 37.8% by weight of an N-phenylmaleimide unit as an unsaturated dicarboxylic acid imide derivative, and this was designated as polymer A-1. The weight average molecular weight determined by using gel permeation chromatography and polystyrene as the standard molecular weight was 152,000.
[0041]
Experimental example (2)(A) Production of component
In the same autoclave as in Experimental Example (1), 80 parts of styrene and 100 parts of methyl ethyl ketone were worked, the inside of the system was replaced with nitrogen gas, and the temperature was raised to 85 ° C. A solution prepared by dissolving 20 parts of maleic anhydride, 0.075 part of benzoyl peroxide and 0.075 part of azobisisobutyronitrile in 200 parts of methyl ethyl ketone was continuously added in 8 hours. Thereafter, the same operation as in Experimental Example (1) was performed except that the amount of aniline was changed to 19 parts. The polymerization rate was 96 mol% styrene and 98 mol% maleic anhydride. The conversion rate of the acid anhydride group to the imide group was almost 100 mol% as in Experimental Example (1). This imidized polymer is a copolymer containing 31.0% by weight of an N-phenylmaleimide unit as an unsaturated dicarboxylic acid imide derivative, and this was designated as polymer A-2. The weight average molecular weight of polymer A-2 obtained in the same manner as polymer A-1 was 164,000.
[0042]
Experimental example (3)(A) Production of component
In the same autoclave as in Experimental Example (1), 60 parts of styrene and 100 parts of methyl ethyl ketone were worked, the inside of the system was replaced with nitrogen gas, and the temperature was raised to 85 ° C. A solution prepared by dissolving 40 parts of maleic anhydride, 0.075 part of benzoyl peroxide and 0.075 part of azobisisobutyronitrile in 200 parts of methyl ethyl ketone was continuously added in 8 hours. Thereafter, the same operation as in Experimental Example (1) was performed except that the amount of aniline was changed to 38 parts. The polymerization rate was 96 mol% styrene and 98 mol% maleic anhydride. The conversion rate of the acid anhydride group to the imide group was almost 100 mol% as in Experimental Example (1). This imidized polymer is a copolymer containing 50.6% by weight of an N-phenylmaleimide unit as an unsaturated dicarboxylic acid imide derivative, and this was designated as polymer A-3. The weight average molecular weight of the polymer A-3 obtained in the same manner as the polymer A-1 was 12,500.
[0043]
Experimental example (4)(B) Component manufacturing method
In an autoclave equipped with a stirrer, 78 parts of styrene, 22 parts of acrylonitrile, 2.5 parts of potassium stearate, 0.5 part of t-dodecyl mercaptan and 250 parts of water were heated to 70 ° C. .05 parts was added to initiate the polymerization. Seven hours after the start of the polymerization, 0.03 part of potassium persulfate was further added, and the temperature was raised to 75 ° C. and maintained for 3 hours to complete the polymerization. The polymerization rate reached 97 mol%. The obtained latex was coagulated with calcium chloride, washed with water and dried to obtain a white powder copolymer. This was designated as copolymer B-1. The weight average molecular weight obtained by gel permeation chromatography using polystyrene as the standard molecular weight was 137,000.
[0044]
Experimental example (5)(B) Component manufacturing method
Polymerization and precipitation were carried out in the same manner as in Experimental Example (4) except that 70 parts of styrene and 30 parts of acrylonitrile were changed, and the resulting copolymer was designated as B-2. The weight average molecular weight of the polymer B-2 obtained in the same manner as the polymer B-1 was 135,000.
[0045]
Experimental example (6)(B) Component manufacturing method
Polymerization and precipitation were conducted in the same manner as in Experimental Example (4) except that the amount of t-dodecyl mercabtan was changed to 1.5 parts, and the resulting copolymer was designated as B-3. The weight average molecular weight of polymer B-3 obtained in the same manner as polymer B-1 was 53,000.
[0046]
Experimental example (7)(C) Component manufacturing method
143 parts of polybutadiene latex (solid content 35%, rubber weight average particle size 0.25 μ, gel content 90%),
[0047]
Next, in order to measure the graft ratio of C-1 and the molecular weight of the ungrafted copolymer, a prescribed amount of C-1 was taken, swollen in a methyl ethyl ketone solution, and centrifuged. When the molecular weight of the ungrafted styrene-acrylonitrile copolymer in the supernatant solution was measured by gel permeation chromatography, the weight average molecular weight was 80,000. The composition of the gel fraction precipitated by centrifugation (branch is graft copolymer and stem is polybutadiene rubber) is analyzed by Kjeldahl nitrogen quantitative analysis and pyrolysis gas chromatography. The weight of was measured. Further, polybutadiene rubber (stem) was analyzed by bromine addition method, and the weight of polybutadiene rubber (stem) was determined. When the graft ratio was determined from the following
[0048]
[Expression 1]
[0049]
Experimental Example 8(C) Production of component
Polymerization and precipitation were carried out in the same manner as in Experimental Example 7 except that the polybutadiene latex of Experimental Example 7 was changed to a rubber having a weight average particle size of 0.15 μm to obtain a graft copolymer C-2. When the polymerization rate of this was analyzed by gas chromatography, it was 98 mol%. The graft ratio of C-2 was 34%, and the weight average molecular weight of the ungrafted styrene-acrylonitrile copolymer was 80,000. In addition, the weight average molecular weight calculated | required polystyrene as a standard molecular weight using the same gel permeation chromatography as which the copolymer A and the polymer B were measured.
[0050]
Example 1
35 parts of the polymer A-1 obtained in Experimental Example 1, 45 parts of the polymer B-1 obtained in Experimental Example 4, and 10 parts of the graft copolymer C-1 obtained in Experimental Example 7 Then, 10 parts of glass fiber TP-89 (manufactured by Nippon Sheet Glass Co., Ltd., fiber diameter 13 μ,
[0051]
Examples 2-4 and Comparative Examples 1-6
Polymers A-1 to A-3, Polymers B-1 to B-3, Graft polymers C-1 to C-2, and Glass fiber TP-89 were blended at the blending ratios shown in Table 1, respectively. Pelletization was performed in the same manner as in Example 1, and the physical properties of each were evaluated. The results are shown in Table-1.
[0052]
[Table 1]
[0053]
In addition, the test method of a physical-property measurement was performed with the following method.
(1) Thermal deformation temperature: According to ASTM D-648, using a 1/4 inch thickness test piece, load 18.6 kg / cm2Measured with
(2) Izod strength: measured in accordance with ASTM-D256 using a 1/4 inch thick notched specimen.
(3) MFR: Measured according to ASTM D-6874 at a temperature of 265 ° C. and a load of 10 kg.
(4) Tapping strength: The molded product having the boss part shown in Fig. 1 is made using Toshiba Machine IS-50EP, the set temperature is 250 ° C, the mold temperature is 50 ° C, the injection speed is 70%, and the injection pressure is the lowest. Filling pressure + 5Kg / cm2Injection molding was performed at a gauge pressure of. Next, a screw with a mountain outer diameter of 5 mm and a valley outer diameter of 4 mm was screwed into the boss molded product at a rotation speed of 50 times / minute using a torque driver, and the maximum torque until breakage was measured.
[0054]
As shown in Table 1, the glass fiber reinforced thermoplastic resin composition of the present invention is remarkably improved in heat resistance, impact resistance, tapping strength, and moldability (fluidity). In particular, the fluidity was high and the tapping strength was extremely high. Further, the tapping strength has no correlation with the Izod strength which has been conventionally evaluated as a standard of impact strength. As described above, the present invention provided excellent moldability and tapping strength without impairing the heat resistance, rigidity, and impact strength of the maleimide resin composition reinforced with glass fiber.
[0055]
【The invention's effect】
The glass fiber reinforced thermoplastic resin composition of the present invention has excellent heat resistance, impact resistance, tapping strength, and moldability (fluidity) in a balanced manner. Therefore, the glass fiber reinforced thermoplastic resin composition of the present invention is used for applications requiring heat resistance, rigidity, dimensional stability, impact resistance, tapping properties, and moldability. For example, it is suitable for door core materials, instrument panel cores, spoilers, pillar sunroof frames, defroster grills, lamp housings, etc., electrical / electronic equipment parts, industrial machine parts, etc., which are automobile parts.
[Brief description of the drawings]
FIG. 1 shows a top view of a boss molded product.
(2) A side view of the boss molded product is shown.
(3) A schematic cross-sectional view of the boss part A is shown.
[Brief description of symbols]
a = 60.0mm
b = 60.0mm
c = 8.0mmΦ
d = 4.2 mmΦ
e = 30.0mm
f = 3.0mm
Claims (2)
(B)成分:芳香族ビニル単量体単位75〜80重量%、シアン化ビニル単量体単位20〜25重量%、及びこれらと共重合可能なビニル単量体単位0〜5重量%からなるビニル系共重合体40〜80重量部、
(C)成分:ゴム状重合体40〜60重量部に、芳香族ビニル単量体75〜80重量%、シアン化ビニル単量体20〜25重量%及びこれらと共重合可能なビニル単量体0〜5重量%からなる単量体混合物60〜40重量部をグラフト重合させ、かつ重量平均ゴム粒径が0.2〜0.3μの範囲で、グラフト率が30〜40%の範囲であり、未グラフトコポリマーの重量平均分子量が6〜12万であるグラフト共重合体5〜30重量部、及び
(D)成分:ガラス繊維5〜30重量部よりなる組成物で、かつ(D)成分を除く前記3成分の混合物のメルトフローレート(MFR)が20〜80g/10分の範囲にあることを特徴とするガラス繊維強化熱可塑性樹脂組成物。Component (A): 60 to 70% by weight of aromatic vinyl monomer unit, 30 to 40% by weight of unsaturated dicarboxylic imide derivative unit, and vinyl monomer copolymerizable therewith (however, vinyl cyanide monomer) 10 ) to 50 parts by weight of a maleimide copolymer comprising 0 to 10 % by weight of units,
Component (B): composed of 75 to 80% by weight of aromatic vinyl monomer units, 20 to 25% by weight of vinyl cyanide monomer units, and 0 to 5 % by weight of vinyl monomer units copolymerizable therewith. 40-80 parts by weight of vinyl copolymer,
Component (C): 40 to 60 parts by weight of a rubber-like polymer, 75 to 80% by weight of an aromatic vinyl monomer, 20 to 25% by weight of a vinyl cyanide monomer, and a vinyl monomer copolymerizable therewith. 60 to 40 parts by weight of a monomer mixture consisting of 0 to 5 % by weight is graft polymerized, the weight average rubber particle size is in the range of 0.2 to 0.3 μm, and the graft ratio is in the range of 30 to 40%. A composition comprising 5 to 30 parts by weight of a graft copolymer having a weight average molecular weight of 6 to 120,000 and an (D) component: 5 to 30 parts by weight of glass fiber, and the component (D) A glass fiber reinforced thermoplastic resin composition, wherein a melt flow rate (MFR) of the mixture of the three components is in the range of 20 to 80 g / 10 min.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16010794A JP3880077B2 (en) | 1994-07-12 | 1994-07-12 | Glass fiber reinforced thermoplastic resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16010794A JP3880077B2 (en) | 1994-07-12 | 1994-07-12 | Glass fiber reinforced thermoplastic resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0827334A JPH0827334A (en) | 1996-01-30 |
JP3880077B2 true JP3880077B2 (en) | 2007-02-14 |
Family
ID=15708010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16010794A Expired - Fee Related JP3880077B2 (en) | 1994-07-12 | 1994-07-12 | Glass fiber reinforced thermoplastic resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3880077B2 (en) |
-
1994
- 1994-07-12 JP JP16010794A patent/JP3880077B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0827334A (en) | 1996-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09302197A (en) | Coating-resistant thermoplastic resin composition and its production | |
JP3405478B2 (en) | Thermoplastic resin composition | |
JP3880077B2 (en) | Glass fiber reinforced thermoplastic resin composition | |
US4743646A (en) | Thermoplastic resin composition | |
JPH1160882A (en) | Thermoplastic resin composition | |
JP3694986B2 (en) | Thermoplastic resin composition for blow molding and blow molded article comprising the same | |
JPH0764963B2 (en) | Thermoplastic resin composition | |
JP3745476B2 (en) | Thermoplastic resin composition | |
JP4739489B2 (en) | Heat resistant thermoplastic resin composition and method for producing the same | |
JP3503907B2 (en) | Thermoplastic resin composition | |
JPH0526820B2 (en) | ||
JP3252981B2 (en) | Thermoplastic resin composition | |
JP2786890B2 (en) | Thermoplastic resin composition | |
JPH06885B2 (en) | Heat resistant resin composition | |
JP4363734B2 (en) | Thermoplastic resin composition | |
JPH09302174A (en) | Thermoplastic resin composition for blow molding | |
JP2007217621A (en) | Resin composition and molded article thereof | |
JP3397360B2 (en) | Glass fiber reinforced thermoplastic resin composition with excellent ultrasonic weldability | |
JPS60155216A (en) | Production of thermoplastic resin | |
JP2656803B2 (en) | Thermoplastic resin composition | |
JP3386532B2 (en) | Thermoplastic resin composition | |
JP2005298774A (en) | Resin composition and heat-resistant resin composition using the same | |
JPH0627235B2 (en) | Thermoplastic resin composition | |
JPH08169999A (en) | Thermoplastic resin composition | |
JP2824274B2 (en) | Thermoplastic resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061107 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131117 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |