JP3879169B2 - Turbo molecular pump - Google Patents

Turbo molecular pump Download PDF

Info

Publication number
JP3879169B2
JP3879169B2 JP8110197A JP8110197A JP3879169B2 JP 3879169 B2 JP3879169 B2 JP 3879169B2 JP 8110197 A JP8110197 A JP 8110197A JP 8110197 A JP8110197 A JP 8110197A JP 3879169 B2 JP3879169 B2 JP 3879169B2
Authority
JP
Japan
Prior art keywords
casing
attached
molecular pump
turbo molecular
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8110197A
Other languages
Japanese (ja)
Other versions
JPH10274189A (en
Inventor
雅英 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP8110197A priority Critical patent/JP3879169B2/en
Publication of JPH10274189A publication Critical patent/JPH10274189A/en
Application granted granted Critical
Publication of JP3879169B2 publication Critical patent/JP3879169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/601Mounting; Assembling; Disassembling specially adapted for elastic fluid pumps

Description

【0001】
【発明の属する技術分野】
本発明は、ターボ分子ポンプに関し、特にターボ分子ポンプの真空容器への取付けに関する。
【0002】
【従来の技術】
ターボ分子ポンプにおいて、排気用翼体を備えた駆動軸はケーシングに収納されるが、このケーシングは真空容器等の支持体に、ケーシングと真空容器のそれぞれに設けられたフランジ部101に形成された円形の貫通孔102(図5参照)に、複数のボルトを使用して取付けられている。翼体の材料中に材料欠陥が存在した場合や、腐食性ガスの使用により翼体の材料が応力腐食を受けた場合は、回転中に翼体が破損し、ケーシングに固定された固定翼体に落下し、その破損した排気用翼体の有する回転エネルギーがケーシング及び真空容器に及ぶことがある。
【0003】
【発明が解決しようとする課題】
そこで、このような破損部品の有する回転エネルギーによって、ケーシングから真空容器に回転力が伝わり、真空容器が破損することがあるために、真空容器の厚みを増やしたり高強度の材質にするなどしていたが、いずれもコストアップや装置の重量化を招いた。
【0004】
そこで、本発明は従来のターボ分子ポンプの持つ問題点を解決し、コストアップや装置の重量化を引き起こすことなく、真空容器等の支持体に確実にケーシングを固定することのできるターボ分子ポンプの提供を目的とする。
【0005】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の請求項1に記載されたターボ分子ポンプは、取付冶具を介して支持体にケーシングが取り付けられ、このケーシング内に排気用翼体およびモータによって回転し、前記排気用翼体が取り付けられる駆動軸を備えたターボ分子ポンプにおいて、前記取付冶具は、前記駆動軸の回転方向に沿うと共に前記回転方向と一致するよう湾曲した長孔形状のボルト孔を備え、前記ケーシングは、前記排気翼体が破損し、その回転エネルギーがケーシングに伝わったときにボルトの締付力に抗して前記支持体に対して相対的に回転することによって前記回転エネルギーを消費するようにボルトで固定することによって前記支持体に取り付けられることを特徴とする。また、請求項2に記載されたターボ分子ポンプは、取付冶具を介して支持体にケーシングが取り付けられ、このケーシング内に排気用翼体およびモータによって回転し、前記排気用翼体が取り付けられる駆動軸を備えたターボ分子ポンプにおいて、前記取付冶具は、前記支持体と前記ケーシングを取り付けるボルトの周囲に取り付けられる緩衝部材が挿入可能な内径を持つボルト孔を備え、前記ボルト孔の形状は前記駆動軸の回転方向に沿うと共に前記回転方向と一致するよう湾曲した長孔形状であり、前記ケーシングは前記ボルトの周囲に前記緩衝部材を取り付けて前記ボルト孔に固定することによって、前記支持体に取り付けられ、前記緩衝部材は、前記排気翼体の破損によってケーシングに伝達される回転エネルギーを自らの破損によって消費することを特徴とする。
【0006】
請求項1に記載されたターボ分子ポンプでは、ボルトの締付力に抗して限られた範囲でケーシングを支持体に対して相対的に回転できるようにすることによってケーシングに伝わった破損部品のエネルギーを消費する。また、請求項2に記載されたターボ分子ポンプではボルトの周囲に取り付けた緩衝部材の破壊エネルギーでケーシングに伝わった破損部品のエネルギーを消費する。さらに、請求項3に記載されたターボ分子ポンプでは請求項1と請求項2に記載されたターボ分子ポンプの衝撃緩衝機構を組み合わせることによってケーシングに伝わった破損部品のエネルギーを消費する。
【0007】
【発明の実施の形態】
図1は本発明のターボ分子ポンプの概略断面図である。図1において、ターボ分子ポンプは、ケーシング50の内側にスペーサ4を介して取り付けられた固定翼体3と、駆動軸1に取り付けられると共に固定翼体3に対向して設置された排気用翼体2とによってタービン翼を形成し、固定翼体3に対して排気用翼体2を高周波モータ33によって高速回転させることによって、吸気口5から吸気した気体分子を排気口6側に移送させている。
【0008】
また、吸気口5側には、ポンプにより吸込む流体を供給する真空容器51が設けられており、図2に示すように、ケーシング50側のフランジ50aと真空容器51側のフランジ51aとが、ボルト52、ナット等の冶具で締め付けられることで、ケーシング50が真空容器51に固定されている。
【0009】
さらに、図1に示すように、排気用翼体2を備えた駆動軸1を非接触で支持する磁気軸受装置は、駆動軸1の半径方向に電磁石を設けたラジアル磁気軸受34a、34bと、軸方向に電磁石を設けたスラスト軸受34cとを備え、この電磁石とほぼ同位置に駆動軸1の状態を検出するラジアルセンサ31a、スラストセンサ等の変位センサ31bを設置してフィードバック制御系を構成し、各電磁石に流れる電流を調節して電磁石の吸引力を調節し、駆動軸1を中心位置に支持している。
【0010】
電磁石は、駆動軸1を挟んで対向して配置されており、各電磁石にPID制御等によって定められる励磁電流を励磁アンプを介して流し、対向する電磁石の吸引力によって駆動軸1の位置制御を行い、磁気浮上制御を行っている。また、排気用翼体2の回転速度は、回転センサ32によって駆動軸1の回転速度を検出して求めている。
【0011】
このようなターボ分子ポンプにおいて、材料欠陥や腐食に伴い排気用翼体2が破損すると、排気用翼体2を備えた駆動軸1はバランスを失い、駆動軸1の本体の方は保護軸受7、8で支持されるが、その破損した排気用翼体の破片は固定翼体3等に落下し、その回転エネルギーがケーシング50全体に伝わり、ケーシング50を回転させようとする。
【0012】
ところで、ケーシング50については、ターボ分子ポンプにより吸い込まれる流体を供給する真空容器51に、図3に示すように、ケーシング50及び真空容器51のそれぞれのフランジ50a、51aに設けられた長孔53にボルト52を貫通して取り付けられている。なお、複数のボルト52は複数の長孔に対し、すべて排気翼体2の回転方向の端で固定されている。したがって、上記したように、排気翼体2が破損し、その回転エネルギーがケーシング50に伝わったとき、ボルトによる締付力に抗じてケーシング50は長さS分だけ真空容器51に相対的に回転するので、その回転に要するエネルギーとして破損した排気翼体の回転エネルギーを消費し、真空容器51にかかる応力が弱められ、これらが破損しなくなる。
【0013】
即ち、上記したようなコストアップや装置の重量化を伴うことなく、フランジ50a、51aにおけるボルト52の貫通孔を長孔53とする簡単な構成で、ターボ分子ポンプのケーシング50に対する取付けを確実にすることができる。
【0014】
なお、図4に示すように、剛性が低く、破損したり弾性変形するような緩衝部材54をボルト52の周囲に取付け、ボルト52とともにフランジ50a、51aの貫通孔53に挿入し、破損した排気用翼体の回転エネルギーによってケーシング50を回転しようとするときのエネルギーを、緩衝部材の破壊エネルギーや弾性エネルギーで消費されるようにすることで、真空容器51の損傷を防止することもできる。また、上記したようなフランジの貫通孔を長孔53とする構造と組み合わせることで、真空容器の破損防止を、さらに効果的なものとすることができる。
【0015】
【発明の効果】
以上のように、本発明によれば、ケーシングを真空容器等の支持体に対して限られた範囲で回転できるように構成することで、その回転により破損部品の有する回転エネルギーを消費し、真空容器にかかる破損エネルギーが弱まるので、真空容器の厚みを増したり、高強度の材質にする必要がなく、コストアップや装置の重量化を伴わず、確実にポンプを真空容器等の支持体に取り付けることができる。
【図面の簡単な説明】
【図1】本発明のターボ分子ポンプの概略構成図。
【図2】本発明のターボ分子ポンプの真空容器に対する取付図。
【図3】本発明のターボ分子ポンプにおける下方から見たフランジの概略平面図。
【図4】本発明のターボ分子ポンプにおけるフランジの概略断面図。
【図5】従来のターボ分子ポンプにおける下方から見たフランジの概略平面図。
【符号の説明】
1 駆動軸
50 ケーシング
50a フランジ
51 真空容器
51a フランジ
52 ボルト
53 長孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a turbo molecular pump, and more particularly to mounting a turbo molecular pump to a vacuum vessel.
[0002]
[Prior art]
In a turbo molecular pump, a drive shaft provided with an exhaust blade is housed in a casing, and this casing is formed on a support body such as a vacuum vessel on flange portions 101 provided on the casing and the vacuum vessel, respectively. The circular through-hole 102 (see FIG. 5) is attached using a plurality of bolts. If there is a material defect in the wing material, or if the wing material is subjected to stress corrosion due to the use of corrosive gas, the wing body will break during rotation and the fixed wing body fixed to the casing Rotational energy of the damaged exhaust blade may fall on the casing and the vacuum vessel.
[0003]
[Problems to be solved by the invention]
Therefore, the rotational energy of such damaged parts can transmit the rotational force from the casing to the vacuum vessel, and the vacuum vessel may be damaged. Therefore, the thickness of the vacuum vessel is increased or a high-strength material is used. However, all of these resulted in increased costs and increased equipment weight.
[0004]
Therefore, the present invention solves the problems of conventional turbomolecular pumps, and is a turbomolecular pump that can securely fix a casing to a support such as a vacuum vessel without causing an increase in cost and weight of the apparatus. For the purpose of provision.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a turbo molecular pump according to claim 1 of the present invention has a casing attached to a support via an attachment jig, and an exhaust wing and a motor are provided in the casing. In a turbo molecular pump having a drive shaft that rotates and to which the exhaust wing body is attached, the mounting jig is a long hole-shaped bolt hole that is curved along the rotation direction of the drive shaft and coincides with the rotation direction. And the casing rotates the rotational energy by rotating relative to the support body against a bolt tightening force when the exhaust blade is damaged and the rotational energy is transmitted to the casing. It is attached to the said support body by fixing with a volt | bolt so that it may consume. The turbo molecular pump described in claim 2 is a drive in which a casing is attached to a support via an attachment jig, and the exhaust wing is attached to the casing by being rotated by an exhaust wing and a motor. In the turbo-molecular pump having a shaft, the mounting jig includes a bolt hole having an inner diameter into which a buffer member mounted around a bolt for mounting the support and the casing can be inserted, and the shape of the bolt hole is the drive The elongated hole shape is curved along the rotational direction of the shaft and coincides with the rotational direction, and the casing is attached to the support by attaching the buffer member around the bolt and fixing it to the bolt hole. The buffer member is configured to reduce the rotational energy transmitted to the casing when the exhaust wing body is damaged due to its own damage. Characterized in that it drain in.
[0006]
In the turbo molecular pump according to claim 1, the broken parts transmitted to the casing are allowed to rotate relative to the support body in a limited range against the tightening force of the bolts. Consume energy. Further, in the turbo molecular pump described in claim 2, the energy of the damaged part transmitted to the casing is consumed by the breaking energy of the buffer member attached around the bolt. Further, the turbo molecular pump described in claim 3 consumes the energy of the damaged parts transmitted to the casing by combining the shock absorbing mechanism of the turbo molecular pump described in claims 1 and 2.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic sectional view of a turbo molecular pump according to the present invention. In FIG. 1, a turbo molecular pump includes a fixed wing body 3 that is attached to the inside of a casing 50 via a spacer 4, and an exhaust wing body that is attached to the drive shaft 1 and is opposed to the fixed wing body 3. 2, and a turbine blade is formed, and the exhaust blade 2 is rotated at a high speed by the high-frequency motor 33 with respect to the fixed blade 3, thereby transferring gas molecules sucked from the intake 5 to the exhaust 6. .
[0008]
Further, a vacuum vessel 51 for supplying a fluid sucked by a pump is provided on the intake port 5 side. As shown in FIG. 2, a flange 50a on the casing 50 side and a flange 51a on the vacuum vessel 51 side are connected to a bolt. The casing 50 is fixed to the vacuum vessel 51 by being tightened with a jig such as 52 and a nut.
[0009]
Furthermore, as shown in FIG. 1, the magnetic bearing device that supports the drive shaft 1 provided with the exhaust blade 2 in a non-contact manner includes radial magnetic bearings 34a and 34b provided with electromagnets in the radial direction of the drive shaft 1, And a thrust bearing 34c provided with an electromagnet in the axial direction. A radial sensor 31a for detecting the state of the drive shaft 1 and a displacement sensor 31b such as a thrust sensor are installed at substantially the same position as the electromagnet to constitute a feedback control system. The drive shaft 1 is supported at the center position by adjusting the current flowing through each electromagnet to adjust the attractive force of the electromagnet.
[0010]
The electromagnets are arranged opposite to each other with the drive shaft 1 interposed therebetween, and an excitation current determined by PID control or the like is supplied to each electromagnet via an excitation amplifier, and the position of the drive shaft 1 is controlled by the attractive force of the opposing electromagnet. And magnetic levitation control. Further, the rotational speed of the exhaust blade 2 is obtained by detecting the rotational speed of the drive shaft 1 by the rotation sensor 32.
[0011]
In such a turbo molecular pump, when the exhaust wing body 2 is damaged due to material defects or corrosion, the drive shaft 1 provided with the exhaust wing body 2 loses balance, and the main body of the drive shaft 1 is the protective bearing 7. , 8, but the broken pieces of the exhaust wings that fall are dropped on the fixed wing 3 and the like, and the rotational energy is transmitted to the entire casing 50, so that the casing 50 tries to rotate.
[0012]
By the way, about the casing 50, the vacuum vessel 51 which supplies the fluid suck | inhaled with a turbo-molecular pump is provided in the long hole 53 provided in each flange 50a, 51a of the casing 50 and the vacuum vessel 51 as shown in FIG. A bolt 52 is penetrated and attached. The plurality of bolts 52 are all fixed to the plurality of elongated holes at the ends in the rotational direction of the exhaust blade body 2. Therefore, as described above, when the exhaust wing body 2 is damaged and its rotational energy is transmitted to the casing 50, the casing 50 is relatively relative to the vacuum vessel 51 by the length S against the tightening force of the bolts. Since it rotates, the rotational energy of the damaged exhaust blade is consumed as energy required for the rotation, the stress applied to the vacuum vessel 51 is weakened, and these are not damaged.
[0013]
In other words, the turbo molecular pump can be securely attached to the casing 50 with a simple configuration in which the through holes of the bolts 52 in the flanges 50a and 51a are the long holes 53 without increasing the cost and the weight of the apparatus as described above. can do.
[0014]
As shown in FIG. 4, a shock absorbing member 54 that has low rigidity and is damaged or elastically deformed is attached around the bolt 52, and is inserted into the through holes 53 of the flanges 50a and 51a together with the bolt 52. It is also possible to prevent damage to the vacuum vessel 51 by consuming the energy when the casing 50 is rotated by the rotational energy of the wing body for use with the breaking energy or elastic energy of the buffer member. Further, by combining with the structure in which the through hole of the flange as described above is the long hole 53, it is possible to further effectively prevent the vacuum vessel from being damaged.
[0015]
【The invention's effect】
As described above, according to the present invention, the casing can be rotated within a limited range with respect to a support such as a vacuum vessel, so that the rotation consumes the rotational energy of the damaged part, and the vacuum Since the damage energy applied to the container is weakened, there is no need to increase the thickness of the vacuum container or to use a high-strength material, and the pump is securely attached to a support such as a vacuum container without increasing the cost and weight of the device. be able to.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a turbo molecular pump according to the present invention.
FIG. 2 is a mounting diagram of the turbo molecular pump of the present invention with respect to a vacuum vessel.
FIG. 3 is a schematic plan view of a flange viewed from below in the turbo molecular pump of the present invention.
FIG. 4 is a schematic cross-sectional view of a flange in the turbo molecular pump of the present invention.
FIG. 5 is a schematic plan view of a flange as viewed from below in a conventional turbomolecular pump.
[Explanation of symbols]
1 Drive shaft 50 Casing 50a Flange 51 Vacuum vessel 51a Flange 52 Bolt 53 Long hole

Claims (2)

取付冶具を介して支持体にケーシングが取り付けられ、このケーシング内に排気用翼体およびモータによって回転し、前記排気用翼体が取り付けられる駆動軸を備えたターボ分子ポンプにおいて、前記取付冶具は、前記駆動軸の回転方向に沿うと共に前記回転方向と一致するよう湾曲した長孔形状のボルト孔を備え、前記ケーシングは、前記排気翼体が破損し、その回転エネルギーがケーシングに伝わったときにボルトの締付力に抗して前記支持体に対して相対的に回転することによって前記回転エネルギーを消費するようにボルトで固定することによって前記支持体に取り付けられることを特徴とするターボ分子ポンプ。In a turbo molecular pump having a drive shaft on which a casing is attached to a support via an attachment jig, rotated by an exhaust wing body and a motor, and the exhaust wing body is attached to the casing, the attachment jig includes: A bolt hole having a long hole shape that is curved along the rotation direction of the drive shaft and coincides with the rotation direction, and the casing is bolted when the exhaust blade is damaged and the rotational energy is transmitted to the casing. A turbo molecular pump, wherein the turbo molecular pump is attached to the support by being bolted so as to consume the rotational energy by rotating relative to the support against the tightening force. 取付冶具を介して支持体にケーシングが取り付けられ、このケーシング内に排気用翼体およびモータによって回転し、前記排気用翼体が取り付けられる駆動軸を備えたターボ分子ポンプにおいて、前記取付冶具は、前記支持体と前記ケーシングを取り付けるボルトの周囲に取り付けられる緩衝部材が挿入可能な内径を持つボルト孔を備え、前記ボルト孔の形状は前記駆動軸の回転方向に沿うと共に前記回転方向と一致するよう湾曲した長孔形状であり、前記ケーシングは前記ボルトの周囲に前記緩衝部材を取り付けて前記ボルト孔に固定することによって、前記支持体に取り付けられ、前記緩衝部材は、前記排気翼体の破損によってケーシングに伝達される回転エネルギーを自らの破損によって消費することを特徴とするターボ分子ポンプ。In a turbo molecular pump having a drive shaft on which a casing is attached to a support via an attachment jig, rotated by an exhaust wing body and a motor, and the exhaust wing body is attached to the casing, the attachment jig includes: A bolt hole having an inner diameter into which a cushioning member attached around the bolt for attaching the support and the casing can be inserted is provided, and the shape of the bolt hole is along the rotation direction of the drive shaft and coincides with the rotation direction. The casing has a curved long hole shape, and the casing is attached to the support body by attaching the buffer member around the bolt and fixing it to the bolt hole, and the buffer member is attached to the exhaust wing body by breakage. A turbo-molecular pump that consumes rotational energy transmitted to the casing by its own damage.
JP8110197A 1997-03-31 1997-03-31 Turbo molecular pump Expired - Fee Related JP3879169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8110197A JP3879169B2 (en) 1997-03-31 1997-03-31 Turbo molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8110197A JP3879169B2 (en) 1997-03-31 1997-03-31 Turbo molecular pump

Publications (2)

Publication Number Publication Date
JPH10274189A JPH10274189A (en) 1998-10-13
JP3879169B2 true JP3879169B2 (en) 2007-02-07

Family

ID=13737005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8110197A Expired - Fee Related JP3879169B2 (en) 1997-03-31 1997-03-31 Turbo molecular pump

Country Status (1)

Country Link
JP (1) JP3879169B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6926493B1 (en) 1997-06-27 2005-08-09 Ebara Corporation Turbo-molecular pump
US6332752B2 (en) 1997-06-27 2001-12-25 Ebara Corporation Turbo-molecular pump
JP2002327698A (en) * 2001-04-27 2002-11-15 Boc Edwards Technologies Ltd Vacuum pump
JP4004779B2 (en) * 2001-11-16 2007-11-07 Bocエドワーズ株式会社 Vacuum pump
JP4126212B2 (en) 2001-11-19 2008-07-30 エドワーズ株式会社 Vacuum pump
JP4147042B2 (en) * 2002-03-12 2008-09-10 エドワーズ株式会社 Vacuum pump
FR2844016B1 (en) * 2002-08-29 2004-11-19 Cit Alcatel DEVICE FOR FIXING VACUUM PUMP
JP2009287576A (en) * 2002-10-23 2009-12-10 Edwards Kk Molecular pump and flange
JP4484470B2 (en) * 2002-10-23 2010-06-16 エドワーズ株式会社 Molecular pump and flange
JP4499388B2 (en) * 2003-08-27 2010-07-07 エドワーズ株式会社 Molecular pump and coupling device
DE10342907A1 (en) * 2003-09-17 2005-04-21 Pfeiffer Vacuum Gmbh Vacuum pump with fast rotating rotor
GB0520750D0 (en) * 2005-10-12 2005-11-23 Boc Group Plc Vacuum pumping arrangement
FR2893094B1 (en) * 2005-11-10 2011-11-11 Cit Alcatel FIXING DEVICE FOR A VACUUM PUMP
JP4949746B2 (en) 2006-03-15 2012-06-13 エドワーズ株式会社 Molecular pump and flange
JP2007278163A (en) * 2006-04-06 2007-10-25 Shimadzu Corp Fastening structure and rotary vacuum pump
JP2007278164A (en) * 2006-04-06 2007-10-25 Shimadzu Corp Fastening structure and rotary vacuum pump
JP4895178B2 (en) * 2006-06-20 2012-03-14 株式会社島津製作所 Turbo molecular pump
JP2016161112A (en) * 2015-03-05 2016-09-05 トヨタ自動車株式会社 One-way clutch
JP6738995B2 (en) 2016-05-16 2020-08-12 パナソニックIpマネジメント株式会社 Shutter unit and imaging device
JP7377640B2 (en) 2019-07-22 2023-11-10 エドワーズ株式会社 Vacuum pumps and rotors and rotary blades used in vacuum pumps
EP3760872B1 (en) * 2020-07-03 2022-06-08 Pfeiffer Vacuum Technology AG Vacuum pump with attachment means for mounting the pump to a mounting structure and pump stand with such a mounted vacuum pump

Also Published As

Publication number Publication date
JPH10274189A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
JP3879169B2 (en) Turbo molecular pump
CN100520008C (en) Booster impeller assembly
JP2003003988A (en) Vacuum pump
JP2786955B2 (en) Inlet device for injecting high-speed rotary vacuum pump
US6747378B2 (en) Dual stiffness bearing damping system
US11585235B2 (en) Magnetic shaft mode control
JP2007132346A (en) Securing device for vacuum pump
JP2004144097A (en) Turbocharger and its manufacturing method
WO2012105116A1 (en) Rotating body of vacuum pump, fixed member placed to be opposed to same, and vacuum pump provided with them
JP4949746B2 (en) Molecular pump and flange
US5975840A (en) Pitot tube pump having axial-stabilizing construction
US20140147066A1 (en) Bearing arrangement for a shaft of a turbine wheel
US7581929B2 (en) Rotational airfoil balance system
JP2006046074A (en) Vacuum pump
KR101182353B1 (en) Device for preventing the failure of air bearing in turbo blower
WO2008035497A1 (en) Vacuum pump and flange
US5035576A (en) Propeller blade pin attachment
JP5272856B2 (en) Turbo molecular pump device
CN106662109B (en) Vertical shaft pump
BRPI0622178A2 (en) Method of generating rotation about an output shaft, Method of manufacturing a vehicle, Method for obtaining a pure water supply from the atmosphere, Method of removing pollution from the atmosphere, Motor for generating rotation about an output shaft, Engine assembly, vehicle and electricity generator
JP3748323B2 (en) Turbo molecular pump
JPS62203040A (en) Spin tester
JPH10274188A (en) Turbo-molecular pump
JP2003172290A (en) Vacuum pump
JP2014181628A (en) Vacuum pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees