JP3879107B2 - Ion sensor for measuring ion concentration, method for producing the same, and ion concentration measuring instrument using the same - Google Patents

Ion sensor for measuring ion concentration, method for producing the same, and ion concentration measuring instrument using the same Download PDF

Info

Publication number
JP3879107B2
JP3879107B2 JP2002225356A JP2002225356A JP3879107B2 JP 3879107 B2 JP3879107 B2 JP 3879107B2 JP 2002225356 A JP2002225356 A JP 2002225356A JP 2002225356 A JP2002225356 A JP 2002225356A JP 3879107 B2 JP3879107 B2 JP 3879107B2
Authority
JP
Japan
Prior art keywords
measuring
ion
ion concentration
concentration
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002225356A
Other languages
Japanese (ja)
Other versions
JP2004037430A (en
Inventor
次勝 小田嶋
享 佐々木
至 佐藤
忠雄 井原
敬紀 山田
勝嘉 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2002225356A priority Critical patent/JP3879107B2/en
Publication of JP2004037430A publication Critical patent/JP2004037430A/en
Application granted granted Critical
Publication of JP3879107B2 publication Critical patent/JP3879107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造工程におけるエッチング槽中の濃厚フッ酸濃度や工場排水あるいは環境水中の水素イオン濃度および金属イオン濃度等を測定するイオン濃度測定用イオンセンサーとそれを用いたイオン濃度測定器に関する。
【0002】
半導体製造工程におけるエッチング槽中のフッ酸濃度は概ね5%前後に保たれている。この濃厚フッ酸濃度の確認方法として、現在専ら、フッ酸溶液をエッチング槽に導入する前に分析従事者がフッ酸貯蔵タンクからテフロン(登録商標)製容器等にフッ酸を採取して中和滴定法により測定している。エッチング槽内のフッ酸濃度は直接測定の手段が無いため、その後のエッチング槽内の濃度測定は行われず、専らシリコンウェハーのエッチングレイトから推算してフッ酸の交換時期を管理しているのが現状である。しかし、このような方法ではエッチング槽内の正確なフッ酸濃度管理は不可能であり、正確にエッチングレイトを把握することは極めて困難であった。また分析従事者がフッ酸の危険性に曝されることもあった。
【0003】
また、工場排水中には、水素イオン濃度と金属イオン濃度の排出基準が環境基準値として定められている。これらの基準のうち、水素イオン濃度(H)の測定は一般的にガラス電極、飽和カロメル電極の組み合わせにて電気化学的に測定されている。しかし、この方法では他のイオンを同時に測定することはできない。
【0004】
金属イオン濃度の測定は、JIS K0102(工場排水試験法)に定められているとおり、原子吸光法、プラズマ発光分光法、プラズマ質量分析法で測定されている。しかし、これらのいずれの方法も検水を採取し、実験室にて測定する方法であり、リアルタイムに測定結果が得られない。
また、数種の金属イオンセンサーが市販されているが、いずれも電気化学的測定原理に基づいているものであるため、他のイオン種による干渉があり、正確な分析値を求めることが困難である。
【0005】
いずれにしても、水素イオン濃度、フッ酸濃度、金属イオン濃度等を、一つの測定原理に基づく一つの測定機器で選択的に同時測定できる簡便な測定機器はまだ見当たらない。
【0006】
【発明が解決しようとする課題】
本発明の課題は、一つの測定原理に基づく一つの測定機器で水素イオン濃度、フッ酸濃度、金属イオン濃度等を選択的に同時測定できるイオン濃度測定用イオンセンサーとそれを用いたイオン濃度測定器を提供することである。
【0007】
ポルフィリン発色試薬と水素イオンおよび金属イオンがポルフィン核内で配位結合して生成する化合物は、固有な波長の色を呈して発色し、そのモル吸光係数は10万単位に及ぶことが知られ、その吸光度を測定することは水素イオン濃度や微量金属イオン濃度の測定に有効である。
本発明は、この原理を応用するため、ベンゼン環を有するスチレン共重合体からなる透明な板材またはセル材にポルフィリン発色試薬を固定化する方法を見いだし、本発明を完成するに至った。
【0008】
ベンゼン環を有するスチレン共重合体からなる透明な板材またはセル材のベンゼン環を濃硫酸によりスルホン化した後、該スルホン酸基とポルフィリン発色試薬のカチオン部位とを静電的に化学結合させ、該透明な板材またはセル材の表面にポルフィリン感応膜を形成させ、吸光光度計の吸収セルに用いることを特徴とするイオン濃度測定用イオンセンサーである。
【0009】
本発明は、ベンゼン環を有するスチレン共重合体からなる透明な板材またはセル材のベンゼン環を濃硫酸によりスルホン化した後、該スルホン酸基とポルフィリン発色試薬のカチオン部位とを静電的に化学結合させ、透明な板材またはセル材の表面にポルフィリン感応膜を形成させるイオン濃度測定用イオンセンサーの製造方法である。
【0010】
本発明は、上記のイオン濃度測定用イオンセンサーを装着した測定セルと、タングステンランプおよびハロゲンランプを光源とする回折格子を用いた分光器に複数のフォトダイオードアレーを受光素子として装着したポリクロメータを、光ファイバーで接続したイオン濃度測定器である。
【0011】
本発明は、上記のイオン濃度測定用イオンセンサーを装着した測定セルと、発光ダイオードを光源にフォトダイオードを受光素子に用いた単波長検出器を、光ファイバーで接続したフッ酸濃度測定器である。
【0012】
【発明の実施の形態】
ポルフィリン発色試薬は、5,10,15,20−テトラキス(N−メチルピリジニウム−4−イル)−21H,23H−ポルフィン,テトラキス(p−トルエンスルホン酸)(以下、TMPyPと略す)と5,10,15,20−テトラキス{4−[N−(トリメチル)アンモニア]フエニル}−21H,23H−ポルフィン,テトラキス(p−トルエンスルホン酸)(以下、TTMAPPと略す)等を本発明に使用することができる。
【0013】
本発明のイオン濃度測定測定用イオンセンサーをテトラフロロエチレン(TFE)材、ポリテトラフロロエチレン(PTFE)材、ピーク材、塩ビ材などの樹脂製ホルダーに装着した測定セルを図1に示す。
また、この測定セルと計測器を光ファイバーで接続した計測システムを図2に示す。
【0014】
ベンゼン環を有する共重合体からなる透明な板材またはセル材にポリフィリン発色試薬を固定化する方法は、例えば、透明なポリスチレン製の板(10mm×20mm形状)またはセル材(10mm角×45mm長)を濃硫酸に浸し、所定時間放置してポリスチレンのベンゼン環をスルホン化させる。水洗後、スルホン化したポリスチレンをポルフィリン溶液に浸漬して、再び所定時間放置することにより、スルホン化したスルホン酸基とポルフィリンのカチオン部位が静電的に化学結合し、ポリスチレン板上にポリフィリン感応膜が図3の模式図のように形成され、本発明のイオン濃度測定用イオンセンサーとなる。
【0015】
本発明は、イオン濃度測定用イオンセンサーを装着した測定セルと、タングステンランプおよびハロゲンランプを光源とする回折格子を用いた分光器に複数のフォトダイオードアレーを受光素子として装着したポリクロメータを、光ファイバーで接続したイオン濃度測定器によって、水素イオン濃度、フッ酸濃度、金属イオン濃度等を同時に測定することができる。
また、イオン濃度測定用イオンセンサーを装着した測定セルと、発光ダイオードを光源にフォトダイオードを受光素子に用いた単波長検出器を、光ファイバーで接続したフッ酸濃度測定器によって、溶液中のフッ酸濃度を測定することができる。
【0016】
【実施例1】
ポリスチレン樹脂上にポリフィリンの固定化
市販の比色計用ポリスチレン製ディスポーザブルセル(10mm角、45mm長)2個を用意し、それらに96%濃硫酸を満たし、5日間放置してセル内壁をスルホン化した後、純水で洗浄する。その後、1個のセルにTMPyP溶液を満たし、残りの1個のセルにTTMAPP溶液を満たし、15℃に保ちつつ2日間放置し、各ポルフィリンをそれぞれのセル内壁の光路面に固定化させる。固定化終了後、0.1M酢酸、0.1Mアンモニア、0.1M塩化カリウム溶液の順にセル内を洗浄する。このようにして、TMPyPセルとTTMAPPセルを作製した。
【0017】
イオン濃度測定法
測定装置は、イオン濃度測定用イオンセンサーを装着した測定セルと、タングステンランプおよびハロゲンランプを光源とする回折格子を用いた分光器に、複数のフォトダイオードアレーを受光素子として装着したポリクロメータを光ファイバーで接続したイオン濃度測定器を用いた。
容量200ccのテフロン(商標登録)製ビーカー4個それぞれに、硝酸溶液、フッ酸溶液、鉛(II)溶液およびカドミウム(II)溶液を各々100ccを入れ、本発明のイオン濃度測定用イオンセンサーをそれぞれの溶液に順次5分間浸漬し、ポルフィリンと検体イオンとの配位結合による呈色が安定した後に、そのまま測定器の指示値を読みとることにより、硝酸濃度、フッ酸濃度、鉛(II)濃度およびカドミウム(II)濃度を順次測定した。
【0018】
【実施例3】
水素イオン濃度の測定
実施例2の測定法で得られた硝酸溶液中の水素イオン[H]による吸収スペクトルは、最大吸収波長がTMPyPにおいては449nmであり、また、TTMAPPにおいては438nmであった。
硝酸濃度とTMPyPの最大吸収波長における吸光度を測定した結果を図4に示す。図中、y=74.818x+77.834は一次回帰式、R=0.9857は相関係数である。
また、硝酸濃度とTTMAPPの最大吸収波長における吸光度を測定した結果を図5に示す。図中、y=15.386Ln(x)+148.4は対数近似式、R=0.9857は相関係数である。
いずれの場合も濃度と吸光度のピーク高さの間には良好な相関が得られた。このことより、本発明になるイオン濃度測定用イオンセンサーは、TMPyPを用いても、TTMAPPを用いても、水素イオン濃度[H](またはpH=−1og[H])の測定が可能である。
【0019】
【実施例4】
フッ酸濃度の測定
測定するフッ酸濃度が1〜10%と濃厚な領域であるため、吸収感度の低い波長450nmにてTMPyPセルを用いて測定した。フッ酸濃度と吸光度(ピーク高さ)を測定した結果を図6に示す。図から明らかなように、フッ酸濃度と吸光度との間には良好な相関(y=1.336x+47.354、R=1)が得られた。このことから、濃厚フッ酸の濃度管理に十分使用できることがわかった。
【0020】
【実施例5】
金属イオン濃度の測定
金属イオンの測定例として鉛(II)およびカドミウム(II)の測定例を以下に記す。
初めにTMPyPセルを使用した鉛(II)錯体の最大吸収波長を求めたところ483nmであった。この吸収波長を用い、鉛(II)濃度範囲1×10−6M〜9×10−6Mで吸光度との検量線を作成した結果を図7に示す。
図に示すように良好な直線関係が得られ、本発明のイオン濃度測定用イオンセンサーは鉛(II)を選択的に測定することができる。
【0021】
次に、同様にTMPyPセルを使用してカドミウムを測定したところ、最大吸収波長は459.38nmであった。この吸収波長を用いてカドミウム(II)濃度範囲、試薬ブランク、5.31×10−6M、7.09×10−6Mで吸光度との検量線を作製した結果を図8に示す。
図に示すようにカドミウム(II)においても良好な相関関係が得られ、本発明のイオン濃度測定用イオンセンサーはカドミウム(II)を選択的に測定することができる。
同様な方法で、銅、亜鉛、鉄、水銀等の有害金属イオン濃度を測定することが可能である。
【0022】
本発明によれば、一つの測定原理に基づく一つの測定装置で、今まで不可能であった干渉成分が共存する溶液中においても、水素イオン濃度、フッ酸濃度、鉛、カドミウム等の金属イオン濃度をリアルタイムで簡便に測定することができる。
また、濃厚フッ酸を人が直接取り扱うことなく、安全に測定が可能となり、作業労働安全性の向上に効果があり、また有害金属イオンおよびpHを簡便、迅速に同一測定器にて測定できるので、地球環境保全上大きな効果がある。
【図面の簡単な説明】
【図1】イオン濃度測定用イオンセンサーを装着した測定セルの図である。
【図2】測定セルと計測器を光ファイバーで接続した計測システムの図である。
【図3】ポリスチレン板上に形成されたTTMAPP型ポリフィリン感応膜の模式図である。
【図4】硝酸濃度と吸光度(TMPyPの吸収波長)の関係を示す図である。
【図5】硝酸濃度と吸光度(TTMAPPの吸収波長)の関係を示す図である。
【図6】フッ酸濃度と吸光度の関係を示す図である。
【図7】鉛(II)濃度と吸光度の関係を示す検量線の図である。
【図8】カドミウム(II)濃度と吸光度の関係を示す検量線の図である。
【符号の説明】
1.イオン濃度測定用イオンセンサー
2.樹脂製センサーホルダー
3.光ファイバー
4.光源
5.受光素子
6.継手
7.表示部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ion sensor for measuring an ion concentration for measuring a concentration of concentrated hydrofluoric acid in an etching tank in a semiconductor manufacturing process, a hydrogen ion concentration in a factory waste water or an environmental water, a metal ion concentration, and the like, and an ion concentration measuring device using the ion sensor. .
[0002]
The concentration of hydrofluoric acid in the etching tank in the semiconductor manufacturing process is maintained at about 5%. As a method for confirming the concentration of concentrated hydrofluoric acid, the analysts currently collect the hydrofluoric acid from the hydrofluoric acid storage tank into a Teflon (registered trademark) container before neutralizing by introducing the hydrofluoric acid solution into the etching tank. It is measured by titration method. Since there is no means for direct measurement of the concentration of hydrofluoric acid in the etching tank, the subsequent measurement of the concentration in the etching tank is not performed, and the replacement timing of hydrofluoric acid is managed exclusively by estimation from the etching rate of the silicon wafer. Currently. However, with such a method, it is impossible to accurately control the concentration of hydrofluoric acid in the etching tank, and it is extremely difficult to accurately grasp the etching rate. Analysts were also exposed to the risk of hydrofluoric acid.
[0003]
In addition, the discharge standards for hydrogen ion concentration and metal ion concentration are set as environmental standard values in factory wastewater. Of these standards, the hydrogen ion concentration (H + ) is generally measured electrochemically by a combination of a glass electrode and a saturated calomel electrode. However, this method cannot measure other ions simultaneously.
[0004]
The metal ion concentration is measured by atomic absorption method, plasma emission spectroscopy, and plasma mass spectrometry as defined in JIS K0102 (Factory Wastewater Test Method). However, any of these methods is a method of collecting test water and measuring it in a laboratory, and a measurement result cannot be obtained in real time.
Also, several types of metal ion sensors are commercially available, but all are based on the electrochemical measurement principle, so there is interference from other ion types, making it difficult to obtain accurate analytical values. is there.
[0005]
In any case, there is still no simple measuring device that can selectively measure simultaneously the hydrogen ion concentration, hydrofluoric acid concentration, metal ion concentration, etc. with one measuring device based on one measuring principle.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide an ion sensor for ion concentration measurement that can selectively measure hydrogen ion concentration, hydrofluoric acid concentration, metal ion concentration, etc. with a single measuring instrument based on a single measurement principle, and ion concentration measurement using the same Is to provide a vessel.
[0007]
It is known that a compound produced by coordination bonding of a porphyrin coloring reagent, a hydrogen ion and a metal ion in a porphine nucleus develops a color having a unique wavelength, and its molar extinction coefficient reaches 100,000 units. Measuring the absorbance is effective for the measurement of hydrogen ion concentration and trace metal ion concentration.
In order to apply this principle, the present invention has found a method for immobilizing a porphyrin coloring reagent on a transparent plate material or cell material made of a styrene copolymer having a benzene ring, and has completed the present invention.
[0008]
After sulfonating the benzene ring of a transparent plate material or cell material made of a styrene copolymer having a benzene ring with concentrated sulfuric acid, the sulfonic acid group and the cation site of the porphyrin coloring reagent are electrostatically chemically bonded, An ion sensor for measuring ion concentration, wherein a porphyrin sensitive film is formed on the surface of a transparent plate material or cell material, and is used in an absorption cell of an absorptiometer.
[0009]
In the present invention, a sulfonic acid group and a cation site of a porphyrin coloring reagent are electrostatically chemistryd after sulfonating a benzene ring of a transparent plate material or cell material made of a styrene copolymer having a benzene ring with concentrated sulfuric acid. This is a method for producing an ion sensor for ion concentration measurement, in which a porphyrin-sensitive film is formed on the surface of a transparent plate material or cell material.
[0010]
The present invention provides a polychromator in which a plurality of photodiode arrays are mounted as light receiving elements in a spectroscope using a measurement cell equipped with the ion sensor for measuring ion concentration and a diffraction grating using a tungsten lamp and a halogen lamp as a light source. This is an ion concentration measuring device connected by an optical fiber.
[0011]
The present invention is a hydrofluoric acid concentration measuring instrument in which a measuring cell equipped with the ion sensor for measuring ion concentration and a single wavelength detector using a light emitting diode as a light source and a photodiode as a light receiving element are connected by an optical fiber.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Porphyrin coloring reagents are 5,10,15,20-tetrakis (N-methylpyridinium-4-yl) -21H, 23H-porphine, tetrakis (p-toluenesulfonic acid) (hereinafter abbreviated as TMPyP) and 5,10. , 15,20-tetrakis {4- [N- (trimethyl) ammonia] phenyl} -21H, 23H-porphine, tetrakis (p-toluenesulfonic acid) (hereinafter abbreviated as TTMAPP), and the like. it can.
[0013]
FIG. 1 shows a measurement cell in which an ion sensor for measuring ion concentration according to the present invention is mounted on a resin holder such as a tetrafluoroethylene (TFE) material, a polytetrafluoroethylene (PTFE) material, a peak material, or a vinyl chloride material.
FIG. 2 shows a measurement system in which this measurement cell and measuring instrument are connected by an optical fiber.
[0014]
A method for immobilizing a porphyrin coloring reagent on a transparent plate material or cell material made of a copolymer having a benzene ring is, for example, a transparent polystyrene plate (10 mm × 20 mm shape) or cell material (10 mm square × 45 mm length). Is immersed in concentrated sulfuric acid and allowed to stand for a predetermined time to sulfonate the benzene ring of polystyrene. After rinsing with water, the sulfonated polystyrene is immersed in a porphyrin solution and allowed to stand again for a predetermined period of time, so that the sulfonated sulfonic acid group and the porphyrin cation moiety are electrostatically chemically bonded, and the polyphyrin-sensitive membrane is formed on the polystyrene plate. Is formed as shown in the schematic diagram of FIG. 3 to provide an ion concentration measuring ion sensor of the present invention.
[0015]
The present invention relates to a measurement cell equipped with an ion sensor for measuring ion concentration, and a polychromator equipped with a plurality of photodiode arrays as light receiving elements in a spectroscope using a diffraction grating using a tungsten lamp and a halogen lamp as a light source. By using the ion concentration measuring device connected in (1), the hydrogen ion concentration, hydrofluoric acid concentration, metal ion concentration, etc. can be measured simultaneously.
In addition, a hydrofluoric acid concentration in a solution is measured by a measurement cell equipped with an ion sensor for measuring ion concentration, a single wavelength detector using a light emitting diode as a light source and a photodiode as a light receiving element, and a hydrofluoric acid concentration measuring device connected by an optical fiber. The concentration can be measured.
[0016]
[Example 1]
Immobilization of polyphyrin on polystyrene resin Prepare two commercially available polystyrene disposable cells for colorimetry (10mm square, 45mm length), fill them with 96% concentrated sulfuric acid and let stand for 5 days to sulfonate the inner wall of the cell. And then wash with pure water. Thereafter, one cell is filled with the TMPyP solution, the remaining one cell is filled with the TTMAPP solution, and left for 2 days while being kept at 15 ° C., so that each porphyrin is immobilized on the optical path surface of the inner wall of each cell. After immobilization, the inside of the cell is washed in the order of 0.1 M acetic acid, 0.1 M ammonia, and 0.1 M potassium chloride solution. Thus, a TMPyP cell and a TTMAPP cell were produced.
[0017]
Ion concentration measurement method The measurement device is equipped with a plurality of photodiode arrays as light receiving elements in a measurement cell equipped with an ion sensor for measuring ion concentration and a spectrometer using a diffraction grating using a tungsten lamp and a halogen lamp as a light source. An ion concentration measuring device in which a polychromator was connected by an optical fiber was used.
100 cc each of nitric acid solution, hydrofluoric acid solution, lead (II) solution, and cadmium (II) solution are put in each of four 200 cc Teflon (registered trademark) beakers, and each of the ion sensors for measuring ion concentration according to the present invention is used. After 5 minutes of immersion in the solution, the coloration due to the coordinate bond between the porphyrin and the analyte ion is stabilized, and the readings of the measuring instrument are read as they are, so that the nitric acid concentration, hydrofluoric acid concentration, lead (II) concentration and The cadmium (II) concentration was measured sequentially.
[0018]
[Example 3]
Measurement of Hydrogen Ion Concentration The absorption spectrum due to hydrogen ions [H + ] in the nitric acid solution obtained by the measurement method of Example 2 was 449 nm for TMPyP and 438 nm for TTMAPP. .
The results of measuring the nitric acid concentration and the absorbance at the maximum absorption wavelength of TMPyP are shown in FIG. In the figure, y = 74.818x + 77.833 is a linear regression equation, and R 2 = 0.9857 is a correlation coefficient.
Moreover, the result of having measured the nitric acid concentration and the light absorbency in the maximum absorption wavelength of TTMAPP is shown in FIG. In the figure, y = 15.386Ln (x) +148.4 is a logarithmic approximate expression, and R 2 = 0.9857 is a correlation coefficient.
In any case, a good correlation was obtained between the concentration and the peak height of the absorbance. Thus, the ion sensor for measuring the ion concentration according to the present invention can measure the hydrogen ion concentration [H + ] (or pH = −1 og [H + ]) using TMPyP or TTMAPP. It is.
[0019]
[Example 4]
Measurement of hydrofluoric acid concentration Since the concentration of hydrofluoric acid to be measured is 1 to 10%, it was measured using a TMPyP cell at a wavelength of 450 nm with low absorption sensitivity. The results of measuring the hydrofluoric acid concentration and absorbance (peak height) are shown in FIG. As is clear from the figure, a good correlation (y = 1.336x + 47.354, R 2 = 1) was obtained between the hydrofluoric acid concentration and the absorbance. From this, it was found that it can be used sufficiently for concentration control of concentrated hydrofluoric acid.
[0020]
[Example 5]
Measurement of Metal Ion Concentration Measurement examples of lead (II) and cadmium (II) are described below as measurement examples of metal ions.
First, when the maximum absorption wavelength of the lead (II) complex using the TMPyP cell was determined, it was 483 nm. Using this absorption wavelength, Figure 7 shows the results of a calibration curve of the absorbance of lead (II) concentration range 1 × 10 -6 M~9 × 10 -6 M.
As shown in the figure, a good linear relationship is obtained, and the ion sensor for measuring ion concentration of the present invention can selectively measure lead (II).
[0021]
Next, when cadmium was similarly measured using a TMPyP cell, the maximum absorption wavelength was 455.98 nm. FIG. 8 shows the results of preparing a calibration curve with absorbance in the cadmium (II) concentration range, reagent blank, 5.31 × 10 −6 M, and 7.09 × 10 −6 M using this absorption wavelength.
As shown in the figure, a good correlation is also obtained in cadmium (II), and the ion sensor for measuring the ion concentration of the present invention can selectively measure cadmium (II).
It is possible to measure the concentration of harmful metal ions such as copper, zinc, iron and mercury by the same method.
[0022]
According to the present invention, metal ions such as hydrogen ion concentration, hydrofluoric acid concentration, lead, cadmium, etc. can be obtained in a single measuring device based on one measurement principle, even in a solution in which interference components that have been impossible until now exist. Concentration can be easily measured in real time.
In addition, concentrated hydrofluoric acid can be measured safely without direct handling by humans, which is effective in improving work safety and safety, and because it can easily and quickly measure harmful metal ions and pH with the same measuring instrument. It has a great effect on global environmental conservation.
[Brief description of the drawings]
FIG. 1 is a diagram of a measurement cell equipped with an ion sensor for measuring ion concentration.
FIG. 2 is a diagram of a measurement system in which a measurement cell and a measuring instrument are connected by an optical fiber.
FIG. 3 is a schematic view of a TTMAPP-type porphyrin-sensitive membrane formed on a polystyrene plate.
FIG. 4 is a graph showing the relationship between nitric acid concentration and absorbance (absorption wavelength of TMPyP).
FIG. 5 is a graph showing the relationship between nitric acid concentration and absorbance (absorption wavelength of TTMAPP).
FIG. 6 is a graph showing the relationship between hydrofluoric acid concentration and absorbance.
FIG. 7 is a calibration curve showing the relationship between lead (II) concentration and absorbance.
FIG. 8 is a calibration curve showing the relationship between cadmium (II) concentration and absorbance.
[Explanation of symbols]
1. 1. Ion sensor for measuring ion concentration 2. Resin sensor holder Optical fiber 4. 4. Light source 5. Light receiving element Joint 7. Display section

Claims (4)

ベンゼン環を有するスチレン共重合体からなる透明な板材またはセル材のベンゼン環を濃硫酸によりスルホン化した後、該スルホン酸基とポルフィリン発色試薬のカチオン部位とを静電的に化学結合させ、該透明な板材またはセル材の表面にポルフィリン感応膜を形成させ、吸光光度計の吸収セルに用いることを特徴とするイオン濃度測定用イオンセンサー。  The benzene ring of a transparent plate material or cell material made of a styrene copolymer having a benzene ring is sulfonated with concentrated sulfuric acid, and then the sulfonic acid group and the cation site of the porphyrin coloring reagent are electrostatically chemically bonded, An ion sensor for measuring ion concentration, wherein a porphyrin sensitive film is formed on the surface of a transparent plate material or cell material and used for an absorption cell of an absorptiometer. ベンゼン環を有するスチレン共重合体からなる透明な板材またはセル材のベンゼン環を濃硫酸によりスルホン化した後、該スルホン酸基とポルフィリン発色試薬のカチオン部位とを静電的に化学結合させ、該透明な板材またはセル材の表面にポルフィリン感応膜を形成させることを特徴とするイオン濃度測定用イオンセンサーの製造方法。  The benzene ring of a transparent plate material or cell material made of a styrene copolymer having a benzene ring is sulfonated with concentrated sulfuric acid, and then the sulfonic acid group and the cation site of the porphyrin coloring reagent are electrostatically chemically bonded, A method for producing an ion sensor for measuring ion concentration, comprising forming a porphyrin-sensitive film on the surface of a transparent plate material or cell material. 請求項1に記載のイオン濃度測定用イオンセンサーを装着した測定セルと、発光ダイオードを光源に、フォトダイオードを受光素子に用いた単波長検出器による重金属イオン測定器。  A heavy metal ion measuring device comprising a measuring cell equipped with the ion sensor for measuring ion concentration according to claim 1, a single wavelength detector using a light emitting diode as a light source and a photodiode as a light receiving element. 請求項1に記載のイオン濃度測定用イオンセンサーを装着した測定セルと、発光ダイオードを光源にフォトダイオードを受光素子に用いた単波長検出器を、光ファイバーで接続したことを特徴とするフッ酸濃度測定器。  A hydrofluoric acid concentration comprising: a measuring cell equipped with the ion sensor for measuring an ion concentration according to claim 1; and a single wavelength detector using a light emitting diode as a light source and a photodiode as a light receiving element, connected by an optical fiber. Measuring instrument.
JP2002225356A 2002-06-28 2002-06-28 Ion sensor for measuring ion concentration, method for producing the same, and ion concentration measuring instrument using the same Expired - Fee Related JP3879107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002225356A JP3879107B2 (en) 2002-06-28 2002-06-28 Ion sensor for measuring ion concentration, method for producing the same, and ion concentration measuring instrument using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225356A JP3879107B2 (en) 2002-06-28 2002-06-28 Ion sensor for measuring ion concentration, method for producing the same, and ion concentration measuring instrument using the same

Publications (2)

Publication Number Publication Date
JP2004037430A JP2004037430A (en) 2004-02-05
JP3879107B2 true JP3879107B2 (en) 2007-02-07

Family

ID=31711507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225356A Expired - Fee Related JP3879107B2 (en) 2002-06-28 2002-06-28 Ion sensor for measuring ion concentration, method for producing the same, and ion concentration measuring instrument using the same

Country Status (1)

Country Link
JP (1) JP3879107B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078317B2 (en) 2004-02-06 2008-04-23 Hoya株式会社 Solid surface evaluation method, magnetic disk evaluation method, magnetic disk and manufacturing method thereof
US20080299664A1 (en) * 2004-07-29 2008-12-04 Kowa Co., Ltd. Reagent For Lead Assay
JP4691726B2 (en) * 2005-11-30 2011-06-01 独立行政法人産業技術総合研究所 Cadmium ion sensor using mixed LB film
JP5032577B2 (en) * 2007-07-20 2012-09-26 興和株式会社 Reagent for measuring lead concentration and method for measuring lead concentration
CN102565925B (en) * 2012-01-17 2013-07-31 清华大学 Method for preparing microfine optical fiber by adopting chemical corrosion method
CN104216432A (en) * 2014-09-05 2014-12-17 东莞市威力固电路板设备有限公司 Automatic liquid medicine feeding controlling system
KR102109597B1 (en) * 2018-06-15 2020-05-12 건국대학교 산학협력단 Water-dispersed polyurethane thin film doped with fluorescent porphyrin derivative and method for detecting mercury ion using the same

Also Published As

Publication number Publication date
JP2004037430A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP4933271B2 (en) Handheld device with a disposable element for chemical analysis of multiple specimens
JP3943008B2 (en) Ozone gas detection element, detection device, and detection method
CN110470722B (en) Method and device for detecting potential change by photoelectrochemical method
US7906339B2 (en) System and method for determining impurity content in a liquid
KR101925156B1 (en) Accurate integrated low-cost electrode chips for point- of-need analysis and a method of utilization in hot electron-induced electrochemiluminescent systems
EP0137409B1 (en) Resolution device for semiconductor thin films
JP3879107B2 (en) Ion sensor for measuring ion concentration, method for producing the same, and ion concentration measuring instrument using the same
KR20150120249A (en) Method of measuring formaldehyde concentration of gasand measuring instrument
CN108120678B (en) Detection device and method based on scattered light photothermal interference biochemical quantification
JP3639123B2 (en) Nitrogen dioxide gas detection method, nitrogen dioxide gas detection element, and nitrogen dioxide gas detection device using the same
TWI598956B (en) Improved control over hydrogen fluoride levels in oxide etchant
CN102252981A (en) Light-sensing total phosphorus detection system and detection method
Buchholz et al. A fibre-optical sensor for the determination of sodium with a reversible response
JP4128143B2 (en) Method for measuring the concentration of a plurality of chemical substances, method for measuring the concentration of a plurality of ionic species, and sensor therefor
JP3648105B2 (en) Nitrogen dioxide gas detection method and nitrogen dioxide gas detection device
RU2469303C1 (en) Method for quantitative determination of content of silicon dioxide on surface of silicon
CN112304889A (en) Method for detecting reductive glutathione in blood based on click reaction of inner wall of capillary tube
Fernández-Ramos et al. The use of one-shot sensors with a dedicated portable electronic radiometer for nitrate measurements in aqueous solutions
KR101170853B1 (en) A handheld device with a disposable element for chemical analysis of multiple analytes
Nedosekin et al. Application of Thermal Lens Spectrometry to the Study of Chemical Adsorption in a Layer of a Nafion Solid Electrolyte
RU2827410C1 (en) Chemical sensor for detecting barium or strontium cations
Reichert et al. Chemical Sensors in Environmental Analysis: Ammonium and Cadmium Sensors
JP3069021B2 (en) Method for measuring chloride ion concentration and apparatus for measuring chloride ion concentration
Maity et al. Aqua Watch: A Nitrate Sensor with Color Intelligence
Yu et al. Development of Long Term Stable Multiple-Ion-Selective Sensors for Agriculture and Aquaculture applications

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees