JP3879107B2 - Ion concentration measured for ion sensor and its manufacturing method, and an ion concentration measuring device using the same - Google Patents

Ion concentration measured for ion sensor and its manufacturing method, and an ion concentration measuring device using the same Download PDF

Info

Publication number
JP3879107B2
JP3879107B2 JP2002225356A JP2002225356A JP3879107B2 JP 3879107 B2 JP3879107 B2 JP 3879107B2 JP 2002225356 A JP2002225356 A JP 2002225356A JP 2002225356 A JP2002225356 A JP 2002225356A JP 3879107 B2 JP3879107 B2 JP 3879107B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
ion concentration
ion
cell
measuring
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002225356A
Other languages
Japanese (ja)
Other versions
JP2004037430A (en )
Inventor
忠雄 井原
享 佐々木
至 佐藤
次勝 小田嶋
敬紀 山田
勝嘉 菅原
Original Assignee
宮城沖電気株式会社
有限会社イハラ理研
沖電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は、半導体製造工程におけるエッチング槽中の濃厚フッ酸濃度や工場排水あるいは環境水中の水素イオン濃度および金属イオン濃度等を測定するイオン濃度測定用イオンセンサーとそれを用いたイオン濃度測定器に関する。 The present invention relates to an ion concentration measuring device using the ion concentration measurement ions sensor for measuring a concentrated hydrofluoric acid concentration and factories hydrogen ion concentration of the waste water or environmental water and metal ion concentration, etc. in the etching bath it in a semiconductor manufacturing process .
【0002】 [0002]
半導体製造工程におけるエッチング槽中のフッ酸濃度は概ね5%前後に保たれている。 Hydrofluoric acid concentration in the etching bath in the semiconductor manufacturing process is generally maintained at around 5%. この濃厚フッ酸濃度の確認方法として、現在専ら、フッ酸溶液をエッチング槽に導入する前に分析従事者がフッ酸貯蔵タンクからテフロン(登録商標)製容器等にフッ酸を採取して中和滴定法により測定している。 As a confirmation method for the concentrated hydrofluoric acid concentration, neutralization currently exclusively, by analyzing practitioner prior to introducing the hydrofluoric acid solution etching bath is taken hydrofluoric acid from the hydrofluoric acid storage tank Teflon container or the like It is measured by a titration method. エッチング槽内のフッ酸濃度は直接測定の手段が無いため、その後のエッチング槽内の濃度測定は行われず、専らシリコンウェハーのエッチングレイトから推算してフッ酸の交換時期を管理しているのが現状である。 Since there is no means of hydrofluoric acid concentration direct measurement of the etching bath it is not carried out the concentration measurement of the subsequent etching bath, that manages the replacement timing of hydrofluoric acid exclusively estimated from an etching rate of the silicon wafer in the present circumstances. しかし、このような方法ではエッチング槽内の正確なフッ酸濃度管理は不可能であり、正確にエッチングレイトを把握することは極めて困難であった。 However, the exact concentration of hydrofluoric acid management in the etching bath in such a method is not possible, it is very difficult to determine accurately etch rate. また分析従事者がフッ酸の危険性に曝されることもあった。 Further analysis workers was also exposed to the risk of hydrofluoric acid.
【0003】 [0003]
また、工場排水中には、水素イオン濃度と金属イオン濃度の排出基準が環境基準値として定められている。 Further, during the industrial wastewater discharge standard of hydrogen ion concentration and the metal ion concentration is defined as the environmental standards. これらの基準のうち、水素イオン濃度(H )の測定は一般的にガラス電極、飽和カロメル電極の組み合わせにて電気化学的に測定されている。 Of these criteria, the measurement of the hydrogen ion concentration (H +) is measured electrochemically typically glass electrode, in combination of the saturated calomel electrode. しかし、この方法では他のイオンを同時に測定することはできない。 However, it is not possible to measure other ions at the same time in this way.
【0004】 [0004]
金属イオン濃度の測定は、JIS K0102(工場排水試験法)に定められているとおり、原子吸光法、プラズマ発光分光法、プラズマ質量分析法で測定されている。 Measurements of the metal ion concentration, as it is specified in JIS K0102 (plant effluent test method), atomic absorption method, a plasma emission spectrometry, are measured at plasma mass spectrometry. しかし、これらのいずれの方法も検水を採取し、実験室にて測定する方法であり、リアルタイムに測定結果が得られない。 However, neither of these methods were taken test water, a method of measuring at the laboratory, not the measurement result in real time can be obtained.
また、数種の金属イオンセンサーが市販されているが、いずれも電気化学的測定原理に基づいているものであるため、他のイオン種による干渉があり、正確な分析値を求めることが困難である。 Although several metals ions sensors are commercially available, both for those that are based on electrochemical measurement principle, there is interference by other ionic species, it is difficult to obtain an accurate analysis is there.
【0005】 [0005]
いずれにしても、水素イオン濃度、フッ酸濃度、金属イオン濃度等を、一つの測定原理に基づく一つの測定機器で選択的に同時測定できる簡便な測定機器はまだ見当たらない。 In any case, the hydrogen ion concentration, the concentration of hydrofluoric acid, the metal ion concentration, etc., simple measuring device capable of selectively simultaneous measurement at one measuring device according to one of the measurement principle not found yet.
【0006】 [0006]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
本発明の課題は、一つの測定原理に基づく一つの測定機器で水素イオン濃度、フッ酸濃度、金属イオン濃度等を選択的に同時測定できるイオン濃度測定用イオンセンサーとそれを用いたイオン濃度測定器を提供することである。 An object of the present invention, one of the measuring instruments with hydrogen ion concentration based on a measurement principle, the concentration of hydrofluoric acid, optionally co-ion concentration measurement using the same and an ion sensor for measuring ion concentration capable of measuring the metal ion concentration, etc. to provide a vessel.
【0007】 [0007]
ポルフィリン発色試薬と水素イオンおよび金属イオンがポルフィン核内で配位結合して生成する化合物は、固有な波長の色を呈して発色し、そのモル吸光係数は10万単位に及ぶことが知られ、その吸光度を測定することは水素イオン濃度や微量金属イオン濃度の測定に有効である。 Compound porphyrin coloring reagent and hydrogen ions and metal ions are generated by coordinate bond in the porphine core, colored exhibit a color of specific wavelength, the molar extinction coefficient is known that up to 100,000 units, it is effective for the measurement of hydrogen ion concentration and trace metal ion concentration measuring its absorbance.
本発明は、この原理を応用するため、ベンゼン環を有するスチレン共重合体からなる透明な板材またはセル材にポルフィリン発色試薬を固定化する方法を見いだし、本発明を完成するに至った。 The present invention, in order to apply this principle, found a method for immobilizing porphyrin coloring reagent on a transparent plate or cell material of styrene copolymer having a benzene ring, and have completed the present invention.
【0008】 [0008]
ベンゼン環を有するスチレン共重合体からなる透明な板材またはセル材のベンゼン環を濃硫酸によりスルホン化した後、該スルホン酸基とポルフィリン発色試薬のカチオン部位とを静電的に化学結合させ、該透明な板材またはセル材の表面にポルフィリン感応膜を形成させ、吸光光度計の吸収セルに用いることを特徴とするイオン濃度測定用イオンセンサーである。 After sulfonation by concentrated sulfuric acid benzene ring transparent plate material or cell material of styrene copolymer having a benzene ring, electrostatically by chemically bonding the cation sites of the sulfonic acid groups and porphyrin coloring reagent, the to form a porphyrin sensitive film on the surface of the transparent plate material or cell material, an ion concentration measuring ion sensor which comprises using the absorption cell of an absorptiometer.
【0009】 [0009]
本発明は、ベンゼン環を有するスチレン共重合体からなる透明な板材またはセル材のベンゼン環を濃硫酸によりスルホン化した後、該スルホン酸基とポルフィリン発色試薬のカチオン部位とを静電的に化学結合させ、透明な板材またはセル材の表面にポルフィリン感応膜を形成させるイオン濃度測定用イオンセンサーの製造方法である。 The present invention was sulfonated by concentrated sulfuric acid benzene ring transparent plate material or cell material of styrene copolymer having a benzene ring, electrostatically chemistry and cationic site of the sulfonic acid group and a porphyrin coloring reagent binding is a method of producing an ionic concentration measurement for ion sensor to form a porphyrin sensitive film on the surface of the transparent plate material or cell material.
【0010】 [0010]
本発明は、上記のイオン濃度測定用イオンセンサーを装着した測定セルと、タングステンランプおよびハロゲンランプを光源とする回折格子を用いた分光器に複数のフォトダイオードアレーを受光素子として装着したポリクロメータを、光ファイバーで接続したイオン濃度測定器である。 The present invention includes a measuring cell fitted with the ion concentration measuring ion sensor, a polychromator equipped with a tungsten lamp and halogen lamp as a light receiving element a plurality of photo diode array in spectrometer using a diffraction grating whose light source , an ion concentration measuring device connected by an optical fiber.
【0011】 [0011]
本発明は、上記のイオン濃度測定用イオンセンサーを装着した測定セルと、発光ダイオードを光源にフォトダイオードを受光素子に用いた単波長検出器を、光ファイバーで接続したフッ酸濃度測定器である。 The present invention includes a measuring cell fitted with the ion concentration measuring ion sensor, a single wavelength detector using a photodiode to a light receiving element in the light source a light emitting diode, a hydrofluoric acid concentration measuring instrument that is connected with an optical fiber.
【0012】 [0012]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
ポルフィリン発色試薬は、5,10,15,20−テトラキス(N−メチルピリジニウム−4−イル)−21H,23H−ポルフィン,テトラキス(p−トルエンスルホン酸)(以下、TMPyPと略す)と5,10,15,20−テトラキス{4−[N−(トリメチル)アンモニア]フエニル}−21H,23H−ポルフィン,テトラキス(p−トルエンスルホン酸)(以下、TTMAPPと略す)等を本発明に使用することができる。 Porphyrin coloring reagent, 5,10,15,20-tetrakis (N- methylpyridinium-4-yl)-21H, 23H-porphine, tetrakis (p- toluenesulfonic acid) (hereinafter abbreviated as TMPyP) and 5,10 , 15,20- tetrakis {4-[N-(trimethyl) ammonium] phenyl}-21H, 23H-porphine, tetrakis (p- toluenesulfonic acid) (hereinafter abbreviated TTMAPP) be used in the present invention such as it can.
【0013】 [0013]
本発明のイオン濃度測定測定用イオンセンサーをテトラフロロエチレン(TFE)材、ポリテトラフロロエチレン(PTFE)材、ピーク材、塩ビ材などの樹脂製ホルダーに装着した測定セルを図1に示す。 Ion concentration measured for measuring ion sensor of tetrafluoroethylene (TFE) material of the present invention, polytetrafluoroethylene (PTFE) material, PEEK, a measuring cell mounted in a resin holder such as PVC material shown in FIG.
また、この測定セルと計測器を光ファイバーで接続した計測システムを図2に示す。 Also shows a measurement system connected to the instrument the measuring cell in the optical fiber in FIG.
【0014】 [0014]
ベンゼン環を有する共重合体からなる透明な板材またはセル材にポリフィリン発色試薬を固定化する方法は、例えば、透明なポリスチレン製の板(10mm×20mm形状)またはセル材(10mm角×45mm長)を濃硫酸に浸し、所定時間放置してポリスチレンのベンゼン環をスルホン化させる。 Method of immobilizing a porphyrin coloring reagent on a transparent plate or cell material comprising a copolymer having a benzene ring, for example, transparent polystyrene plate (10mm × 20 mm shape) or cell material (10mm square × 45 mm length) the dipped in concentrated sulfuric acid, it is sulfonated benzene rings of a predetermined time allowed to polystyrene. 水洗後、スルホン化したポリスチレンをポルフィリン溶液に浸漬して、再び所定時間放置することにより、スルホン化したスルホン酸基とポルフィリンのカチオン部位が静電的に化学結合し、ポリスチレン板上にポリフィリン感応膜が図3の模式図のように形成され、本発明のイオン濃度測定用イオンセンサーとなる。 After washing with water, the sulfonated polystyrene by immersing the porphyrin solution, by leaving again a predetermined time, the cation sites of the sulfonated sulfonic acid and porphyrin electrostatically chemically bonded, porphyrins sensitive film on the polystyrene plate There are formed as shown in the schematic view of FIG. 3, the ion concentration measurement ions sensor of the present invention.
【0015】 [0015]
本発明は、イオン濃度測定用イオンセンサーを装着した測定セルと、タングステンランプおよびハロゲンランプを光源とする回折格子を用いた分光器に複数のフォトダイオードアレーを受光素子として装着したポリクロメータを、光ファイバーで接続したイオン濃度測定器によって、水素イオン濃度、フッ酸濃度、金属イオン濃度等を同時に測定することができる。 The present invention includes a measuring cell equipped with an ion sensor for ion concentration measurement, the polychromator equipped with a tungsten lamp and halogen lamp as a light receiving element a plurality of photo diode array in spectrometer using a diffraction grating as a light source, an optical fiber the ion concentration measuring device connected in the hydrogen ion concentration can be measured concentration hydrofluoric acid, the metal ion concentration, etc. at the same time.
また、イオン濃度測定用イオンセンサーを装着した測定セルと、発光ダイオードを光源にフォトダイオードを受光素子に用いた単波長検出器を、光ファイバーで接続したフッ酸濃度測定器によって、溶液中のフッ酸濃度を測定することができる。 Further, a measuring cell equipped with an ion sensor for measuring ion concentration, emits a single wavelength detector using a photodiode to a light receiving element in the light source of the diode, the hydrofluoric acid concentration measuring instrument that is connected with an optical fiber, hydrofluoric acid in solution it is possible to measure the concentration.
【0016】 [0016]
【実施例1】 [Example 1]
ポリスチレン樹脂上にポリフィリンの固定化市販の比色計用ポリスチレン製ディスポーザブルセル(10mm角、45mm長)2個を用意し、それらに96%濃硫酸を満たし、5日間放置してセル内壁をスルホン化した後、純水で洗浄する。 Immobilization of porphyrin on polystyrene resin commercially available colorimeter for polystyrene disposable cell (10mm square, 45 mm length) two was prepared, them satisfy the 96% concentrated sulfuric acid, sulfonated cell inner wall and left 5 days after, washed with pure water. その後、1個のセルにTMPyP溶液を満たし、残りの1個のセルにTTMAPP溶液を満たし、15℃に保ちつつ2日間放置し、各ポルフィリンをそれぞれのセル内壁の光路面に固定化させる。 Thereafter, meet TMPyP solution one cell, meets TTMAPP solution to the remaining one cell, and left for 2 days while maintaining the 15 ° C., to immobilize the respective porphyrin to light the road surface of each cell inner wall. 固定化終了後、0.1M酢酸、0.1Mアンモニア、0.1M塩化カリウム溶液の順にセル内を洗浄する。 After immobilization completion, washed 0.1M acetate, 0.1M ammonia, in the order of 0.1M potassium chloride solution in the cell. このようにして、TMPyPセルとTTMAPPセルを作製した。 In this way, to prepare a TMPyP cell and TTMAPP cell.
【0017】 [0017]
イオン濃度測定法 測定装置は、イオン濃度測定用イオンセンサーを装着した測定セルと、タングステンランプおよびハロゲンランプを光源とする回折格子を用いた分光器に、複数のフォトダイオードアレーを受光素子として装着したポリクロメータを光ファイバーで接続したイオン濃度測定器を用いた。 Ion concentration measuring method measuring device includes a measuring cell equipped with an ion sensor for measuring ion concentration, a tungsten lamp and halogen lamp spectrometer using a diffraction grating whose light source, fitted with a plurality of photo diode array as a light-receiving element polychromator and using ion concentration measuring device connected by an optical fiber.
容量200ccのテフロン(商標登録)製ビーカー4個それぞれに、硝酸溶液、フッ酸溶液、鉛(II)溶液およびカドミウム(II)溶液を各々100ccを入れ、本発明のイオン濃度測定用イオンセンサーをそれぞれの溶液に順次5分間浸漬し、ポルフィリンと検体イオンとの配位結合による呈色が安定した後に、そのまま測定器の指示値を読みとることにより、硝酸濃度、フッ酸濃度、鉛(II)濃度およびカドミウム(II)濃度を順次測定した。 Teflon (registered trademark) beaker four respective capacity 200 cc, nitric acid solution, a solution of hydrofluoric acid, respectively placed 100cc lead (II) solution and cadmium (II) solution, the ion concentration measurement ions sensor of the present invention, respectively the solution successively immersed 5 minutes in, after coloration with a coordination bond with porphyrin and the analyte ion is stabilized, by reading directly indicated value of the instrument, nitrate concentration, the concentration of hydrofluoric acid, lead (II) concentration and It was sequentially measured the cadmium (II) concentration.
【0018】 [0018]
【実施例3】 [Example 3]
水素イオン濃度の測定実施例2の測定法で得られた硝酸溶液中の水素イオン[H ]による吸収スペクトルは、最大吸収波長がTMPyPにおいては449nmであり、また、TTMAPPにおいては438nmであった。 Absorption spectrum by hydrogen ions [H +] measured Example nitric acid solution obtained in the second measurement of the hydrogen ion concentration, the maximum absorption wavelength of 449nm in TMPyP, In the TTMAPP was 438nm .
硝酸濃度とTMPyPの最大吸収波長における吸光度を測定した結果を図4に示す。 The results of measuring the absorbance at the maximum absorption wavelength of the nitric acid concentration and TMPyP shown in FIG. 図中、y=74.818x+77.834は一次回帰式、R =0.9857は相関係数である。 In the figure, y = 74.818x + 77.834 primary regression equation, R 2 = 0.9857 is the correlation coefficient.
また、硝酸濃度とTTMAPPの最大吸収波長における吸光度を測定した結果を図5に示す。 Further, the results of measurement of the absorbance at the maximum absorption wavelength of the nitric acid concentration and TTMAPP in FIG. 図中、y=15.386Ln(x)+148.4は対数近似式、R =0.9857は相関係数である。 In the figure, y = 15.386Ln (x) +148.4 logarithmic approximation formula, R 2 = 0.9857 is the correlation coefficient.
いずれの場合も濃度と吸光度のピーク高さの間には良好な相関が得られた。 Good correlation is obtained between the well concentration and the absorbance of the peak height in any case. このことより、本発明になるイオン濃度測定用イオンセンサーは、TMPyPを用いても、TTMAPPを用いても、水素イオン濃度[H ](またはpH=−1og[H ])の測定が可能である。 From this, the ion concentration measurement for ion sensor according to the present invention may be used TMPyP, be used TTMAPP, can measure the hydrogen ion concentration [H +] (or pH = -1og [H +]) it is.
【0019】 [0019]
【実施例4】 [Example 4]
フッ酸濃度の測定測定するフッ酸濃度が1〜10%と濃厚な領域であるため、吸収感度の低い波長450nmにてTMPyPセルを用いて測定した。 Since hydrofluoric acid concentration measuring measures the hydrofluoric acid concentration is 1-10% and thick areas was measured using a TMPyP cells at lower wavelengths 450nm absorption sensitivity. フッ酸濃度と吸光度(ピーク高さ)を測定した結果を図6に示す。 Figure 6 shows the results of measurement of the hydrofluoric acid concentration and the absorbance (peak height). 図から明らかなように、フッ酸濃度と吸光度との間には良好な相関(y=1.336x+47.354、R =1)が得られた。 As can be seen, a good correlation between the hydrofluoric acid concentration and the absorbance (y = 1.336x + 47.354, R 2 = 1) was obtained. このことから、濃厚フッ酸の濃度管理に十分使用できることがわかった。 Accordingly, it was found to be much use to control the concentration of the concentrated hydrofluoric acid.
【0020】 [0020]
【実施例5】 [Example 5]
金属イオン濃度の測定金属イオンの測定例として鉛(II)およびカドミウム(II)の測定例を以下に記す。 As measurement examples of measuring metal ions of the metal ion concentration marks the measurement example of lead (II) and cadmium (II) below.
初めにTMPyPセルを使用した鉛(II)錯体の最大吸収波長を求めたところ483nmであった。 Was 483nm was determined the maximum absorption wavelength of lead (II) complex was used TMPyP cell at the beginning. この吸収波長を用い、鉛(II)濃度範囲1×10 −6 M〜9×10 −6 Mで吸光度との検量線を作成した結果を図7に示す。 Using this absorption wavelength, Figure 7 shows the results of a calibration curve of the absorbance of lead (II) concentration range 1 × 10 -6 M~9 × 10 -6 M.
図に示すように良好な直線関係が得られ、本発明のイオン濃度測定用イオンセンサーは鉛(II)を選択的に測定することができる。 Good linear relationship is obtained as shown in FIG., Ion concentration measurement ions sensor of the present invention can selectively measure the lead (II).
【0021】 [0021]
次に、同様にTMPyPセルを使用してカドミウムを測定したところ、最大吸収波長は459.38nmであった。 Then, by measurement of cadmium by using the same manner TMPyP cell, the maximum absorption wavelength was 459.38Nm. この吸収波長を用いてカドミウム(II)濃度範囲、試薬ブランク、5.31×10 −6 M、7.09×10 −6 Mで吸光度との検量線を作製した結果を図8に示す。 Demonstrated using the absorption wavelength cadmium (II) concentration range, the reagent blank, 5.31 × 10 -6 M, the results produced a calibration curve of the absorbance at 7.09 × 10 -6 M in FIG.
図に示すようにカドミウム(II)においても良好な相関関係が得られ、本発明のイオン濃度測定用イオンセンサーはカドミウム(II)を選択的に測定することができる。 Good correlation can be obtained even in the cadmium (II), as shown in FIG., Ion concentration measurement ions sensor of the present invention can selectively measure the cadmium (II).
同様な方法で、銅、亜鉛、鉄、水銀等の有害金属イオン濃度を測定することが可能である。 In a similar manner, it is possible to measure copper, zinc, iron, harmful metal ion concentration such as mercury.
【0022】 [0022]
本発明によれば、一つの測定原理に基づく一つの測定装置で、今まで不可能であった干渉成分が共存する溶液中においても、水素イオン濃度、フッ酸濃度、鉛、カドミウム等の金属イオン濃度をリアルタイムで簡便に測定することができる。 According to the present invention, a single measuring device according to one of the measurement principle, even in a solution interference component which was not possible until now coexist, hydrogen ion concentration, the hydrofluoric acid concentration, lead, metal ions such as cadmium it can be easily measured concentrations in real time.
また、濃厚フッ酸を人が直接取り扱うことなく、安全に測定が可能となり、作業労働安全性の向上に効果があり、また有害金属イオンおよびpHを簡便、迅速に同一測定器にて測定できるので、地球環境保全上大きな効果がある。 Further, without handling the concentrated hydrofluoric acid person directly, safely enables measurement, is effective in improving the working labor safety and convenience of toxic metal ions and pH, so quickly can be measured at the same measuring instrument , there is a large effect on the global environment conservation.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】イオン濃度測定用イオンセンサーを装着した測定セルの図である。 1 is a diagram of the measurement cell equipped with an ion sensor for measuring ion concentration.
【図2】測定セルと計測器を光ファイバーで接続した計測システムの図である。 The Figure 2 the measuring cell and the measuring instrument is a diagram of a measurement system connected by an optical fiber.
【図3】ポリスチレン板上に形成されたTTMAPP型ポリフィリン感応膜の模式図である。 3 is a schematic diagram of TTMAPP type porphyrin-sensitive film formed on the polystyrene plate.
【図4】硝酸濃度と吸光度(TMPyPの吸収波長)の関係を示す図である。 4 is a diagram showing the relationship between nitrate concentration and the absorbance (absorption wavelength of TMPyP).
【図5】硝酸濃度と吸光度(TTMAPPの吸収波長)の関係を示す図である。 5 is a diagram showing the relationship between nitrate concentration and the absorbance (absorption wavelength of TTMAPP).
【図6】フッ酸濃度と吸光度の関係を示す図である。 6 is a diagram showing the relationship between the hydrofluoric acid concentration and the absorbance.
【図7】鉛(II)濃度と吸光度の関係を示す検量線の図である。 7 is a diagram of a calibration curve showing the relationship between the lead (II) concentration and the absorbance.
【図8】カドミウム(II)濃度と吸光度の関係を示す検量線の図である。 8 is a diagram of a calibration curve showing the relationship between the cadmium (II) concentration and the absorbance.
【符号の説明】 DESCRIPTION OF SYMBOLS
1. 1. イオン濃度測定用イオンセンサー2. Ion concentration measurement for the ion sensor 2. 樹脂製センサーホルダー3. Resin sensor holder 3. 光ファイバー4. Optical fiber 4. 光源5. Light source 5. 受光素子6. The light-receiving element 6. 継手7. Joint 7. 表示部 Display unit

Claims (4)

  1. ベンゼン環を有するスチレン共重合体からなる透明な板材またはセル材のベンゼン環を濃硫酸によりスルホン化した後、該スルホン酸基とポルフィリン発色試薬のカチオン部位とを静電的に化学結合させ、該透明な板材またはセル材の表面にポルフィリン感応膜を形成させ、吸光光度計の吸収セルに用いることを特徴とするイオン濃度測定用イオンセンサー。 After sulfonation by concentrated sulfuric acid benzene ring transparent plate material or cell material of styrene copolymer having a benzene ring, electrostatically by chemically bonding the cation sites of the sulfonic acid groups and porphyrin coloring reagent, the to form a porphyrin sensitive film on the surface of the transparent plate material or cell material, ion concentration measurement ions sensor, which comprises using the absorption cell of an absorptiometer.
  2. ベンゼン環を有するスチレン共重合体からなる透明な板材またはセル材のベンゼン環を濃硫酸によりスルホン化した後、該スルホン酸基とポルフィリン発色試薬のカチオン部位とを静電的に化学結合させ、該透明な板材またはセル材の表面にポルフィリン感応膜を形成させることを特徴とするイオン濃度測定用イオンセンサーの製造方法。 After sulfonation by concentrated sulfuric acid benzene ring transparent plate material or cell material of styrene copolymer having a benzene ring, electrostatically by chemically bonding the cation sites of the sulfonic acid groups and porphyrin coloring reagent, the ion concentration method for producing a measuring ion sensor, characterized in that to form the porphyrin sensitive film on the surface of the transparent plate material or cell material.
  3. 請求項1に記載のイオン濃度測定用イオンセンサーを装着した測定セルと、発光ダイオードを光源に、フォトダイオードを受光素子に用いた単波長検出器による重金属イオン測定器。 A measuring cell equipped with ion concentration measurement ions sensor of claim 1, the light-emitting diode as a light source, a heavy metal ion meter by a single wavelength detector using a photodiode light receiving elements.
  4. 請求項1に記載のイオン濃度測定用イオンセンサーを装着した測定セルと、発光ダイオードを光源にフォトダイオードを受光素子に用いた単波長検出器を、光ファイバーで接続したことを特徴とするフッ酸濃度測定器。 A measuring cell equipped with ion concentration measurement ions sensor of claim 1, hydrofluoric acid concentration, characterized in that the single-wavelength detector using a photodiode to a light receiving element in the light source a light emitting diode, connected by optical fiber measuring instrument.
JP2002225356A 2002-06-28 2002-06-28 Ion concentration measured for ion sensor and its manufacturing method, and an ion concentration measuring device using the same Expired - Fee Related JP3879107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002225356A JP3879107B2 (en) 2002-06-28 2002-06-28 Ion concentration measured for ion sensor and its manufacturing method, and an ion concentration measuring device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225356A JP3879107B2 (en) 2002-06-28 2002-06-28 Ion concentration measured for ion sensor and its manufacturing method, and an ion concentration measuring device using the same

Publications (2)

Publication Number Publication Date
JP2004037430A true JP2004037430A (en) 2004-02-05
JP3879107B2 true JP3879107B2 (en) 2007-02-07

Family

ID=31711507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225356A Expired - Fee Related JP3879107B2 (en) 2002-06-28 2002-06-28 Ion concentration measured for ion sensor and its manufacturing method, and an ion concentration measuring device using the same

Country Status (1)

Country Link
JP (1) JP3879107B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078317B2 (en) 2004-02-06 2008-04-23 Hoya株式会社 Evaluation method of a solid surface, the method Evaluation of the magnetic disk, magnetic disk, and a manufacturing method thereof
WO2006011549A1 (en) * 2004-07-29 2006-02-02 Kowa Co., Ltd. Reagent for lead assay
JP4691726B2 (en) * 2005-11-30 2011-06-01 独立行政法人産業技術総合研究所 Cadmium ion sensor using a mixed lb film
WO2009013884A1 (en) * 2007-07-20 2009-01-29 Kowa Co., Ltd. Reagent for measurement of concentration of lead, and method for measurement of concentration of lead
CN102565925B (en) * 2012-01-17 2013-07-31 清华大学 Method for preparing microfine optical fiber by adopting chemical corrosion method
CN104216432A (en) * 2014-09-05 2014-12-17 东莞市威力固电路板设备有限公司 Automatic liquid medicine feeding controlling system

Also Published As

Publication number Publication date Type
JP2004037430A (en) 2004-02-05 application

Similar Documents

Publication Publication Date Title
Crosby et al. An evaluation of some methods for the determination of fluoride in potable waters and other aqueous solutions
Oudot et al. Precise shipboard determination of dissolved oxygen (Winkler procedure) for productivity studies with a commercial system1
US7323315B2 (en) Method for reducing effect of hematocrit on measurement of an analyte in whole blood
Vanderzee et al. THE THIRD DISSOCIATION CONSTANT OF ORTHOPHOSPHORIC ACID1
Barrette et al. Voltammetric evaluation of the effective acidities (pKa') for Broensted acids in aprotic solvents
Sarazin et al. A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples
Gieskes et al. Chemical methods for interstitial water analysis aboard JOIDES Resolution
US5315673A (en) Optical waveguide vapor sensor
Bühlmann et al. Studies on the phase boundaries and the significance of ionic sites of liquid membrane ion‐selective electrodes
Bothner et al. Mercury contamination of sea water samples stored in polyethylene containers
Peterson et al. Spectrophotometric determination of serum copper with biscyclohexanoneoxalyldihydrazone
US20080215254A1 (en) Method for the Determination of the Concentration of a Non-Volatile Analyte
US6508921B1 (en) Lithium ion-selective electrode for clinical applications
Wolfbeis et al. Optical sensors: an ion-selective optrode for potassium
Rabenstein et al. Determination of microscopic acid dissociation constants by nuclear magnetic resonance spectrometry
US20040174520A1 (en) Low resolution surface enhanced raman spectroscopy on sol-gel substrates
US20030129092A1 (en) Molecularly imprinted polymer solution anion sensor
Ozawa et al. Ammonia-gas-selective optical sensors based on neutral ionophores
US5494640A (en) Device for identifying at least one gaseous component in a gaseous or liquid sample
Tao et al. Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers
US5691205A (en) Fluorometric analysis of chloride ion and chemical sensor therefor
Buck Ion selective electrodes, potentiometry, and potentiometric titrations
US7283245B2 (en) Handheld device with a disposable element for chemical analysis of multiple analytes
Shamsipur et al. Novel fluorimetric bulk optode membrane based on a dansylamidopropyl pendant arm derivative of 1-aza-4, 10-dithia-7-oxacyclododecane ([12] aneNS2O) for selective subnanomolar detection of Hg (II) ions
Ovenston et al. The spectrophotometric determination of small amounts of hydrogen peroxide in aqueous solutions

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041013

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Effective date: 20051016

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051224

A131 Notification of reasons for refusal

Effective date: 20060606

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060608

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20061003

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20061028

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20091117

LAPS Cancellation because of no payment of annual fees