JP3878464B2 - Power supply system and circuit breaker using the system - Google Patents

Power supply system and circuit breaker using the system Download PDF

Info

Publication number
JP3878464B2
JP3878464B2 JP2001361386A JP2001361386A JP3878464B2 JP 3878464 B2 JP3878464 B2 JP 3878464B2 JP 2001361386 A JP2001361386 A JP 2001361386A JP 2001361386 A JP2001361386 A JP 2001361386A JP 3878464 B2 JP3878464 B2 JP 3878464B2
Authority
JP
Japan
Prior art keywords
power
abnormality
breaker
supply system
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001361386A
Other languages
Japanese (ja)
Other versions
JP2003164076A (en
Inventor
白井  稔人
坂井  正善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2001361386A priority Critical patent/JP3878464B2/en
Publication of JP2003164076A publication Critical patent/JP2003164076A/en
Application granted granted Critical
Publication of JP3878464B2 publication Critical patent/JP3878464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道の踏切や駐車場出入口等に設置される遮断機の遮断桿に取付ける電機機器に電力を供給するための電力供給システム及びこのシステムを用いた遮断機に関する。
【0002】
【従来の技術】
鉄道の踏切には、車や人の通行の安全を図り列車運行及び車、人の通行の円滑化を図るために遮断機が設置されている。また、駐車場等にも、管理者の負担軽減や利用者の円滑な利用を図るために遮断機が設けられている。
かかる遮断機では、遮断桿で人や車の通行を規制することで、列車や車両等の衝突事故の防止、或いは、駐車場の管理業務の自動化を図っている。このため、遮断桿における折損等の異常発生は、重大事故の原因となったり管理コストの増大を招いたりする。
【0003】
このために、従来より、折損防止や折損検出を行うための電気機器を遮断桿に取付けた遮断機が提案されている。
遮断桿折損防止用の電気機器を遮断桿に取付けた遮断機の例としては、例えば、遮断桿にLED等の発光器を取付けて特に夜間における遮断桿の視認性を向上させ、通行人に対して注意を促すことにより遮断桿の折損を未然に防止するようにしたものがある。
【0004】
また、遮断桿折損検出用の電気機器を遮断桿に取付けた遮断機の例としては、本出願人により提案されたもの(特願2000−355593号)で、遮断桿位置検出用としてGPSセンサ等を遮断桿に取付け、GPSセンサからの位置情報に基づいて遮断桿が正常な動作範囲にあるか否かを判定することにより遮断桿の折損を検出するようにしたものがある。
【0005】
【発明が解決しようとする課題】
ところで、従来のこの種の遮断機では、遮断桿に取付ける電気機器への電力供給は電力線を用いている。このため、特に屋外に設置した場合に雨等の影響により電力線の接続部分が腐食し易く、また、特に踏切用遮断機では列車通過に伴う振動等で接続部分のネジが緩んだり外れたりし易いという問題があり、電力線の接続部分の接触不良が発生し易い。また、遮断桿に沿って電力線を敷設する必要があり、特に既設の遮断機にLEDやGPSセンサ等を後付けする場合、電力線の敷設に手間を要する。
【0006】
尚、遮断機用照明装置として、太陽電池とバッテリを利用して光源に電力を供給する技術が開示されている(特開平11−59424号公報)。このように太陽電池とバッテリを利用すれば、遮断桿の電気機器に電力供給する場合に電力線を敷設する必要がなく、電力線で電力供給する場合の上述の問題点は解消できる。しかし、夜間や日射量の少ないときには太陽電池の発電量が不足することが考えられ、その場合にバッテリの電力がなくなると電気機器の動作が停止し、折損防止や折損検出の機能が停止するという問題を有する。
【0007】
本発明は上記問題点に着目してなされたもので、電力線を用いず、しかも、周囲の環境条件に左右されずに安定した電力供給が可能な電力供給システム及びこのシステムを用いた遮断機を提供することを目的とする。
【0008】
【課題を解決するための手段】
このため、本発明は、遮断桿に取付ける電気機器に電力を供給する電力供給システムであって、電磁波を送出する送電手段を備える送電器と、電磁波を受信する受電手段及び該受電手段の出力に基づいて前記電気機器に供給するための電力を生成する電力生成手段を備える受電器とを備え、前記送電手段から送出した電磁波を前記遮断桿に沿って伝搬させて前記受電手段で受信するよう構成すると共に、外光を受光して電力を生成する光発電手段を設け、該光発電手段で生成された電力量を検出し、前記電気機器で要求される電力量に対して前記検出電力量が不足するときに、その不足分を前記受電器により供給する構成とした。
【0009】
かかる構成では、遮断桿に取付けた電機機器に、非接触で電力を供給することができるので、電力線の敷設作業が不要にする。しかも、太陽光発電のように環境条件に左右されずに安定した電力供給が可能となる。
請求項2のように、前記送電手段及び前記受電手段を前記遮断桿内に配置し、前記電磁波を前記遮断桿内部空間を伝搬させる構成とするとよい。
【0010】
請求項3のように、前記光発電手段で生成された電力量の検出情報に基づいて前記不足分を補うように前記送電手段の電磁波送出量を制御する構成とするとよい。
【0011】
かかる構成では、天気の良い日中等のような太陽光発電の発電量が十分である場合には、電磁波による電量供給システムの稼動を停止でき、省電力化が図れる。
イクロ波を使用する場合は、請求項のように、遮断桿の内側及び外側の少なくとも一方の側に、電磁波の漏洩を防止する電磁波漏洩防止手段を設けるとよい。
【0012】
かかる構成では、遮断桿内部を伝搬するマイクロ波が、遮断桿外部に漏れるのを抑制でき、EMC(Elector Magnetic Compatibility)の問題を解消できるようになる。
また、本発明の電力供給システムを用いた請求項の本発明の遮断機は、運転者や通行人が視認可能な遮断桿外面に発光装置を設け、該発光装置の動作用電力を、請求項1〜のいずれか1つに記載の電力供給システムを用いて供給する構成とした。
【0013】
かかる構成では、発光装置からの発光により、遮断桿の視認性が向上し、運転者や通行人に遮断桿の存在を知らせることができるので、遮断桿の折損を未然に防止できるようになる。しかも、発光装置を取付ける場合に電力線の敷設作業が不要であり、発光装置の設置作業が容易である。
請求項のように、前記発光装置を遮断桿に沿って間隔を設けて複数配置するとき、発光装置毎に前記受電器を設ける構成とするとよい。
【0014】
請求項7の発明の遮断機は、遮断機本体に回動可能に設けられる遮断桿に取付けられ遮断桿回動動作に伴って変位する取付け位置の位置座標を検出して当該位置座標情報を出力する位置検出手段と、該位置検出手段の位置座標情報に基づいて遮断桿の異常の有無を判定する異常有無判定手段とを備え、前記位置検出手段の動作用電力を、電磁波を送出する送電手段を備える送電器と電磁波を受信する受電手段及び該受電手段の出力に基づいて前記位置検出手段に供給するための電力を生成する電力生成手段を備える受電器とを備えて前記送電手段から送出した電磁波を前記遮断桿に沿って伝搬させて前記受電手段で受信するよう構成した電力供給システムを用いて供給する構成とした。
【0015】
かかる構成では、遮断桿に取付けた位置検出手段は、自身の取付け位置座標を検出し、その位置座標情報を出力する。異常有無判定手段は、位置検出手段の位置座標情報に基づいて遮断桿の異常の有無を検出する。この場合も、位置検出手段を遮断桿に取付ける場合に、位置検出手段の動作用電力を供給するための電力線の敷設作業が不要となる。
【0016】
請求項の発明の遮断機は、遮断桿に取付けられ定期的又は連続的に信号を発信する発信手段と、該発信手段からの前記発信信号の受信状態に基づいて遮断桿の異常の有無を判定する異常有無判定手段とを備え、前記発信手段の動作用電力を、電磁波を送出する送電手段を備える送電器と電磁波を受信する受電手段及び該受電手段の出力に基づいて前記発信手段に供給するための電力を生成する電力生成手段を備える受電器とを備えて前記送電手段から送出した電磁波を前記遮断桿に沿って伝搬させて前記受電手段で受信するよう構成した電力供給システムを用いて供給する構成とし、前記電力供給システムが電磁波としてマイクロ波を用いる構成であるとき、供給される電力レベル情報を前記発信信号に付加して送信し、前記異常有無判定手段が、前記電力レベルが所定レベル以上であるとき異常なしと判定し、前記電力レベルが所定レベル未満であるとき異常ありと判定する構成とした。
【0018】
かかる構成では、遮断桿に異常がなければ受電手段は十分なレベルのマイクロ波を受信し、発信手段に所定レベル以上の電力が供給される。一方、遮断桿が折損或いは屈曲した場合、受電手段のマイクロ波を受信レベルが低下し、発信手段に供給される電力レベルが低下する。異常有無判定手段は、発信信号に付加して送信される電力レベル情報に基づいて電力レベルが所定以上であれば遮断桿正常と判定し、電力レベルが所定未満であれば遮断桿異常と判定する。
【0019】
請求項の発明では、前記発信手段を、前記遮断桿に沿って間隔を設けて複数配置し、各発信手段に固有のID情報を設定し、発信信号に前記ID情報を付加して送信する構成とした。
かかる構成では、遮断桿が折損した個所から遮断桿先端までの発信手段からは、正常な発信信号が発信されなくなる。異常有無判定手段は、受信されるID情報に基づいて折損個所を特定することができるようになる。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
図1は、遮断機の第1の参考例を示す。
図1において、遮断機1の遮断桿2の先端部付近には、電気機器3(例えばLED、センサ等)が配置される。遮断桿2内部には、前記電気機器3に電磁波を利用して電力を供給する電力供給システムが設けられる。この電力供給システムは、遮断桿2の根本付近に配置されて電磁波としてマイクロ波を送出する送電器10と、遮断桿2の先端部付近に配置されて前記送電器10から送出されたマイクロ波を受信して電気機器3に供給する電力を生成する受電器20とを備えて構成される。
【0021】
前記遮断桿2は、EMCの問題を生じないように、その内面及び外面の少なくとも一方の面に電磁波漏洩防止手段として電磁波吸収体又は電磁波反射体を塗布して、外部に電磁波が漏れないようにする。また、先端側端部は、受電器20を取付け易いよう開閉できるように別部材で閉塞するよう構成する。
前記送電器10は、図2に示すように、マイクロ波を発信するマイクロ波発信器11と、マイクロ波発信器11から入力するマイクロ波を電力増幅するマイクロ波増幅器12と、マイクロ波増幅器12で電力増幅されたマイクロ波を送出する送電手段としての送電アンテナ13とを備える。即ち、送電器10は、電源からマイクロ波増幅器12に供給される電力をマイクロ波に変換して電磁エネルギとして遮断桿2内部空間に送出する。
【0022】
前記受電器20は、図2に示すように、遮断桿2内部空間を伝搬するマイクロ波を受信する受電手段としての受電アンテナ21と、受電アンテナ21の出力を整流して電気機器3に供給するための電力Poを生成する電力生成手段としての整流回路22とを備えて構成される。この場合、前記整流回路22は電源回路に相当する。
【0023】
かかる参考例では、電気機器3に動作用電力を供給する場合、送電器10の送電アンテナ13からマイクロ波を送出する。送出されたマイクロ波は、遮断桿2の内部空間を伝搬して受電器20の受電アンテナ21で受信される。この受信出力が整流回路22で整流されて電力Poが生成される。生成された電力Poは、動作用電力として電気機器3に供給される。
【0024】
かかるマイクロ波を利用した電力供給システムによれば、遮断桿2の電気機器3に非接触で電力を送電できるので、接触不良の問題がない。また、電力線を敷設する手間を省ける。更に、太陽電池のように日射量等の環境条件に左右されることなく安定して電力を供給できる。
尚、遮断桿2がアルミニウム等の導電体で構成されていれば、遮断桿2が電磁波の導波管として機能して高効率で電力を伝送できる。特に、遮断桿2の形状等で定まる導波管としての遮断周波数以上の電波で高効率伝送となる。遮断桿2が導電体でなくとも遮断桿表面に導電物質を塗布することで高効率の送電が可能である。
【0025】
電磁波はマイクロ波に限らず、他の周波数帯でもよく、例えば可視光でもよい。
図3及び図4に、電磁波として可視光を用いた第2の参考例を示す。尚、第1の参考例と同一要素には同一符号を付してある。
図において、この参考例は、遮断桿2内部の根本付近に電磁波として光を出射する送電器30を配置し、遮断桿2の先端部付近には送電器30からの光を受光して電気機器3の動作用電力Poを生成する受電器40が配置される。
【0026】
前記送電器30は、図4に示すように、可視光を発光する発光器(例えば白熱灯、LED等)31と、電源の供給により前記発光器31に駆動電力を出力する発光回路32とを備える。受電器40は、図4に示すように、発光器31からの光を受光して発電する太陽電池41と、太陽電池41で生成された電力を安定化して電気機器3に供給する電源回路42とを備える。
【0027】
かかる参考例では、電気機器3に動作用電力を供給する場合、送電器30の発光回路32により発光器31を発光させる。送出された光は、遮断桿2の内部空間を介して受電器40の太陽電池41で受光され電力が生成される。生成された電力は、電源回路42で安定化され、安定した電力Poとして電気機器3に供給される。
【0028】
かかる構成によれば、光による電力伝送を遮断桿2の内部空間を利用して行う構成としたので、雨、霧等の気象条件や空中の汚染物質等に起因して太陽電池41の受光量が変動することがなく、第1の参考例と同様に常時安定した電力供給ができる。
次に、本発明の電力供給システムについて説明する。
【0029】
本実施形態は、電磁波による電力供給と太陽光発電を併用する構成であり、図1の遮断機に適用した場合について説明する。
図5は実施形態の要部を示す図で、本実施形態は、太陽電池51と、太陽電池51で生成される電力を安定化する電源回路52と、電源回路52からの電力Po’と受電器20からの電力Poを合成して電力Po”を電気機器3に供給する電力合成回路53とを、図1の電力供給システムの構成に付加した。尚、前記太陽電池51は、太陽光を受光できるように遮断桿2の外側に設置されることは言うまでもない。
【0030】
前記電力合成回路53は、電源回路52から供給される太陽光による電力量を検出し、検出データを太陽光発電の電力量情報として無線により送電器10側に送信する機能を有する。この場合、本実施形態の送電器10は、前記電力量情報に基づいてマイクロ波増幅器12の増幅度を制御回路(図示せず)等を設けて制御する構成である。
【0031】
次に動作を説明する。
送電器10側からのマイクロ波により受電器20から電力Poが生成されて電力合成回路53に入力される。電力合成回路53は、電力Po’の電力量を検出し、検出データを送電器10側の制御回路に送信する。電力Po’の量が、電気機器3の動作に要求される電力量を上回っている場合は、制御回路は、マイクロ波増幅器12を停止制御して送電器10側からのマイクロ波送出を停止する。これにより、電力合成回路53は、太陽電池51の電力Po’を電力Po”として電気機器3に供給する。
【0032】
一方、電力Po’の量が、電気機器3の動作に要求される電力量に対して不足している場合は、制御回路はその不足分を補うようにマイクロ波増幅器12の出力を制御する。これにより、マイクロ波を受信した受電器20から前記不足分に相当する電力Poが生成されて電力合成回路53に入力する。電力合成回路53は、太陽電池51の電力Po’と受電器20の電力Poを合成して電力Po”として電気機器3に供給する。
【0033】
図3及び図4の構成にも同様に適用できることは言うまでもなく、この場合は、検出データに基づいて制御回路により発光回路32の出力を制御すればよい。
かかる電力供給システムによれば、太陽光発電の不足分を電磁波による電力供給で補う構成としたので、電磁波による電力供給システムの稼動を必要最小限に抑えることができ、省電力化を図ることができる。受電側にバッテリを設備して余剰電力を蓄えるようにすれば、より一層省電力化を図れる。
【0034】
尚、上記実施形態では、受電側に太陽光発電設備を配置する構成としたが、送電側に配置してもよい。この場合は、送電アンテナ13や発光器31への出力を一定に制御すればよく、受電側からの電力量情報の送信は不要である。
また、上記実施形態では、送電器及び受電器全体を遮断桿2の内部に配置する構成を示したが、少なくともマイクロ波や光等の電磁波の送受部である送受電アンテナ、発光器、太陽電池だけを遮断桿2の内部に配置するようにしてもよい。
【0035】
次に、上述した電力供給システムを利用した本発明の遮断機について説明する。
図6は、遮断機に設けた折損防止装置に本発明の電力供給システムを適用した遮断機の実施形態の要部構成図である。
図6において、遮断機1の遮断桿2の外面の車両や通行人等から視認できる位置に、n個の発光装置60−1〜60−nを列設する。各発光装置60−1〜60−nは、図7に示すように発光回路60A及び発光器(例えばLED等)60Bを備える。遮断桿2内部には、その根本付近に図2の送電器10を設置し、各発光装置60−1〜60−nと対応する位置に図5の受電器20−1〜20−nを配置し、各受電器20−1〜20−nから各発光装置60−1〜60−nの各発光回路60Aに電力Poを供給する。
【0036】
かかる構成では、送電器10の送電アンテナ13から送出されたマイクロ波が、遮断桿2の内部空間を伝搬してそれぞれの受電器20−1〜20−nの各受電アンテナ21で受電され、各発光装置60−1〜60−nの発光回路60Aに電力が供給される。これにより、各発光回路60Aの出力で発光装置60−1〜60−nの各発光器60Bが発光する。各発光器60Bが発光することで遮断桿2の視認性が向上し、運転者等に遮断桿2の存在を知らせることができので、遮断桿2の折損防止に有効である。発光回路60Aが、周期的なパルス信号を出力する構成であれば、発光器60Bを点滅させることができ、より一層視認性を向上できる。
【0037】
尚、図6の構成において電磁波として光を用いる図3の構成を適用する場合には、受電器40−1〜40−nの各太陽電池41が送電器30の発光器31からの光を受光できるよう、各太陽電池41の位置を互いにずらして配置すればよい。
かかる構成によれば、発光装置60−1〜60−nに電力を供給するための電力線を敷設する必要がなく、既存の遮断機にこの種の折損防止装置を設備する際の設備作業が容易となる。
【0038】
次に、電磁波による電力供給システムを折損検出装置に適用した遮断機の例を示す。
遮断桿の折損検出装置には、本出願人により提案した特願2000−355593号の技術が有効であり、以下に、特願2000−355593号の遮断桿折損検出装置に電磁波による電力供給システムを適用した遮断機の実施形態について説明する。
【0039】
図8に、本発明の遮断機における折損検出装置の第1実施形態の簡略構成図を示す。
図8において、遮断機100は、例えば地上に起立して設けられる遮断機本体101に回動軸102を介して回動可能に遮断桿103が取付けられる。遮断桿103は、遮断機本体101内に設けられた図示しない駆動モータや減速機構を含む遮断桿駆動機構により、図9の矢印のように地上に対して略水平方向の遮断位置と略鉛直方向の非遮断位置の間を、回動軸102を中心として回動可能に構成される。遮断桿103の先端部近傍には、その先端部位置TPを検出する位置検出手段として例えばGPS(Global Positioning System)センサ104が設けられる。
【0040】
電気機器である前記GPSセンサ104の動作用電力は、遮断桿103の内部空間を利用した図1〜図5に示したような電磁波による電力供給システムを用いて供給される。
異常有無判定手段105は、GPSセンサ104で検出された遮断桿先端部TPの位置情報を入力しこの位置情報に基づいて遮断桿103の異常の有無を判定する。
【0041】
次に、異常有無判定の具体的方法を示すが、遮断桿の回動中心を基点CPとする座標系で説明する方が分かり易いので、以下ではCPを基点として説明する。原理的には、座標系の方式や基点の選び方に下記の判定方法は依存しない。
第1実施形態の異常有無判定手段105では、固定点である回動軸102の回動中心を基点CPとし、この基点CPと遮断桿先端部TPの両位置座標からCP−TP間の距離Lを算出し、この距離Lは基点CPから遮断桿先端部TPまでの長さL0に相当し略一定であることから、距離Lが所定範囲、即ち、正常時の長さL0を含んで設定される図10の破線で示す(L0−α)〜(LO+α)の範囲であるか否かを判定し、(L0−α)〜(LO+α)の範囲内のときに遮断桿正常と判定する。
【0042】
図11のフローチャートに基づいて第1実施形態の異常有無判定手段の異常検出動作を更に詳述する。
ステップ1(図中、S1と記し、以下同様とする)では、基点CPと先端部TPの位置座標を入力する。基点CPの座標は、固定点であるので、例えば、予め測定した値をメモリに記憶させておき、メモリから読み込めばよい。先端部TPの座標は、GPSセンサ104で検出されその測定値を入力する。
【0043】
ステップ2では、先端部TPの座標をCPを基点とする座標に変換する。このことは、CPからTPへのベクトルCT(以下、→CTと記す)を算出することに相当する。これにより、CP−TP間の距離L=|→CT|となる。
ステップ3では、距離Lが所定範囲か否かを判定する。そして、所定範囲(L0−α)〜(LO+α)であればYESと判定し、ステップ4に進み遮断桿103は正常と判定し、ステップ1に戻る。一方、所定範囲外であればNOと判定し、ステップ5に進み遮断桿103は異常と判定し、異常検出動作を終了する。
【0044】
かかる第1実施形態の構成によれば、GPSセンサ104により遮断桿先端部TPの位置を検出し、検出した位置情報に基づいて逐次基点CPから遮断桿先端部TPまでが所定の距離範囲、言い換えれば、所定長さ範囲であるか否かを監視しているので、例えば遮断桿103が折損して正常時より短くなれば、直ちに遮断桿103の異常を検出でき、遮断桿103の異常をリアルタイムに検出できる。また、GPSセンサ104を、遮断桿103の先端部等の所望の部位に取付ければよいので、既設の遮断機にも容易に適用できる。しかも、GPSセンサ104への電力供給に、電磁波による電力供給システムを用いることで、遮断桿に電力線を敷設する作業が不要である。
【0045】
次に第2実施形態について説明する。
第2実施形態は、装置構成は図8に示す第1実施形態と同様であり、異常有無判定手段105の異常有無の判定アルゴリズムが異なるだけであるので、以下では、遮断桿異常有無の判定アルゴリズムについてのみ、図12のフローチャートを参照して説明する。
【0046】
ステップ11、12では、ステップ1、2と同様にして基点CPと先端部TPの位置座標を入力し、先端部TPの座標をCPを基点とする座標に変換し、→CTを算出する。
ステップ13では、→CTの角度が予め設定した基準方向、例えば真下方向を角度0度として所定角度以上か否かを判定する。即ち、遮断桿103が折損すると、多くの場合は遮断桿103の先端部TPは地面に落下するので、遮断桿先端部TPが正常時の遮断位置(地面と略平行方向)より下がる。従って、遮断桿のしなりや撓み等を考慮して異常判定用の所定角度を正常時の遮断位置より若干小さい値に設定し、この所定角度以上か否かを判定することで遮断桿103の異常を検出できる。→CTの角度が所定角度以上であればYESと判定し、ステップ14に進み遮断桿103は正常と判定し、ステップ11に戻る。一方、所定角度以上でなければNOと判定し、ステップ15に進み遮断桿103は異常と判定し、異常検出動作を終了する。
【0047】
次に第3実施形態について説明する。
第3実施形態も、装置構成は図8に示す第1実施形態と同様であり、異常有無判定手段105の異常有無の判定アルゴリズムが異なるだけであり、以下では、遮断桿異常有無の判定アルゴリズムについてのみ、図13及び図14を参照して説明する。
【0048】
遮断桿は、図13の(A)に示すように、遮断位置と非遮断位置の間、即ち、基準方向として真下方向を角度0度として角度φ1〜φ2(φ1<φ2)の間を移動し、先端部TPの軌跡は図示のように円弧状になる。また、同図(B)のように遮断桿103を上方から見た時、遮断桿103はしなりや撓みを考慮すると基点CPから見て先端部TPは水平方向においてある角度範囲に存在する。このような考えに基づいて第3実施形態では、図14のフローチャートのような異常判定アルゴリズムにより、遮断桿103の異常を判定している。
【0049】
ステップ21、22は、ステップ1、2と同様であり、説明を省略する。
ステップ23では、→CTの昇降方向の角度が予め設定した基準方向、例えば真下方向を角度0度として所定角度範囲か否かを判定する。ここで、前記所定角度範囲は、遮断桿103のしなりや撓みを考慮して図13(A)のように(φ1−Δφ1)〜(φ2+Δφ2)のように設定する。→CTの角度が(φ1−Δφ1)〜(φ2+Δφ2)の範囲であればYESと判定し、ステップ24に進む。
【0050】
ステップ24では、→CTの水平方向の角度が予め設定した基準方向、例えば図13(B)に示す基準方向を角度0度として所定角度範囲か否かを判定する。ここで、前記所定角度範囲は、遮断桿103のしなりや撓みを考慮して図13(B)のようにθ1〜θ2(θ1<θ2)のように設定する。→CTの角度がθ1〜θ2の範囲であればYESと判定し、ステップ25に進む。
【0051】
ステップ25では、遮断桿103は正常と判定し、ステップ21に戻る。
一方、ステップ23,24のいずれかでNOと判定されれば、ステップ26に進み遮断桿103は異常と判定し、異常検出動作を終了する。
かかる第3実施形態によれば、遮断桿103が折損して先端部が地面に落下したような場合だけでなく、先端部が横方向に曲がった場合にも異常が検出できるようになる。
【0052】
次に第4実施形態について説明する。
第4実施形態も、装置構成は図8に示す第1実施形態と同様であり、異常有無判定手段105の異常有無の判定アルゴリズムが異なるだけであり、以下では、遮断桿異常有無の判定アルゴリズムについてのみ、図15及び図16を参照して説明する。
【0053】
第4実施形態は、→CTが図15の破線で囲まれた所定範囲EXか否かを判定して遮断桿の異常判定を行う。所定範囲EXは、→CTの大きさ(長さ)及び角度を規定することで定まる。従って、第4実施形態は、第1及び第3実施形態の組み合わせである。
図16に、第4実施形態の判定動作のフローチャートを示す。
【0054】
ステップ31、32は、ステップ1、2と同様であり、説明を省略する。
ステップ33では、→CTが所定範囲EXか否かを判定する。具体的には、第1実施形態の図11のステップ3と同様に距離L(=|→CT|)が所定範囲(L0−α)〜(LO+α)か否かを判定し、第3実施形態の図14のステップ23、24と同様に→CTの昇降方向の角度が予め設定した所定角度範囲(φ1−Δφ1)〜(φ2+Δφ2)か否か、及び、→CTの水平方向の角度が予め設定した所定角度範囲θ1〜θ2か否かを判定する。これらの判定が全てYESであれば→CTは所定範囲EXであり、ステップ33の判定がYESとなり、ステップ34に進む。
【0055】
ステップ34では、遮断桿103は正常と判定しステップ31に戻る。
一方、ステップ33において、距離L及び昇降及び水平の各方向の角度のうち1つでも所定範囲外であればNOと判定され、ステップ35に進み遮断桿103は異常と判定し、異常検出動作を終了する。
第1実施形態のように遮断桿の長さに基づいて異常検出する場合、例えば遮断桿の根本折損のように遮断桿長さが余り変化しない異常の場合には検出が難しい。また、第2及び第3実施形態のように遮断桿の角度に基づいて異常検出する場合、例えば遮断桿が上方に湾曲するような異常の場合はリアルタイムな異常検出が難しい。
【0056】
しかし、第4実施形態のように遮断桿の長さと角度の両方を組み合わせて異常検出すれば、前述のいずれの場合もリアルタイムに異常を検出することが可能である。
次に第5実施形態について説明する。
図17において、異常有無判定手段105は、図8の構成に加え遮断機本体101から遮断桿103の駆動状態を示す駆動状態信号を入力し、この駆動状態信号とGPSセンサ104からの位置情報に基づいて異常検出を行う構成である。
【0057】
異常有無判定手段105は、駆動状態信号により遮断桿先端部TPが存在すべき位置を予想できる。ここで、駆動状態信号は、例えば遮断桿103の回動軸102の回動角度を検出する例えばエンコーダからの角度信号でもよく、駆動指令を出力する制御回路からの指令信号でもよい。ただし、指令信号は回動角度信号を含むものとする。これにより、図18の一点鎖線で示すような遮断桿先端部TPが存在することが予想される狭い予想範囲FXを設定できる。従って、第5実施形態の異常有無判定手段105は、→CTが前記予想範囲FXか否かを判定して異常検出する。
【0058】
図19に、第5実施形態の判定動作のフローチャートを示す。
ステップ41、42は、ステップ1、2と同様であり、説明を省略する。
ステップ43では、駆動状態信号に基づいて現時点の遮断桿先端部TPの存在すべき予想範囲FXを設定する。
ステップ44では、→CTが予想範囲FXか否かを判定する。具体的な判定動作は、第4実施形態と同様にして→CTの角度及び長さが予想範囲FXか否かを判定する。ステップ44の判定がYESであれば、ステップ45に進む。
【0059】
ステップ45では、遮断桿103は正常と判定しステップ41に戻る。
一方、ステップ44でNOと判定されれば、ステップ46に進み遮断桿103は異常と判定し、異常検出動作を終了する。
尚、ステップ44の判定において→CTの角度だけの判定としてもよい。
かかる第5実施形態のように駆動状態信号を用いれば、遮断桿駆動機構等の故障により、例えば遮断桿103が回動できず遮断すべき時に遮断位置にないような異常が検出できる。ただし、この異常を検出するには駆動状態信号として、回動軸102の回動角度検出用のエンコーダからの信号ではなく指令信号を入力する必要がある。即ち、指令信号が遮断を示している時に遮断桿先端部TPが遮断位置における所定範囲又は所定角度以上か否かを判定すればよい。
【0060】
次に第6実施形態について説明する。
遮断桿103の折損は、ほとんどの場合が遮断位置で生じる。従って、第6実施形態は、駆動状態信号に基づいて遮断桿103が遮断位置にある時のみ異常判定処理を実行する構成とした。
図20に第6実施形態の異常判定動作フローチャートを示す。
【0061】
ステップ51では、遮断機本体101から駆動状態信号を入力する。
ステップ52では、入力した駆動状態信号に基づいて遮断桿103が遮断位置か否かを判定する。判定がYESであれば、ステップ53に進み、判定がNOであればステップ51に戻る。尚、入力される駆動状態信号により、遮断桿103が遮断位置か否かを判定できればよいので、駆動状態信号は必ずしも角度情報を含まなくてよい。
【0062】
ステップ53では、遮断桿103の異常検出処理を実行する。ここでの異常判定処理動作は、第1〜第5の各実施形態のいずれの判定アルゴリズムを用いてもよい。
次に、図21に本発明の第7実施形態を示す。尚、図8の第1実施形態と同一要素には同一符号を付してある。
【0063】
図21において、遮断桿103の先端部のGPSセンサ104に加えて中間位置MPに別のGPSセンサ106を設ける。異常有無判定手段105は、GPS104,106からの位置情報に基づいてCPを基点とした各座標位置MP、TPを得てそれぞれの部位について上述の各実施形態で述べた異常判定アルゴリズムを用いて正常か否かを判定する構成である。尚、このように、遮断桿に複数のGPSセンサ等の位置検出手段を設ける場合には、図6で示した構成で電力供給すればよい。
【0064】
かかる構成では、例えば、中間位置MPが正常と判定され先端部TPが異常と判定された場合には、遮断桿103のMP〜TP間で折損等の異常が生じたと推定できる。また、中間位置MP及び先端部TPが共に異常と判定された場合には、遮断桿103のCP〜MP間で折損等の異常が生じたと推定できる。
第7実施形態のように、遮断桿の複数箇所にGPSセンサ等の位置センサを設ければ、異常発生個所を推定でき、その後の処置の緊急度決定の一助となる。
【0065】
図21のように、遮断桿103の複数部位の位置を検出することで、図17及び図18に示した範囲FXを設けて行う遮断桿異常検出を、駆動状態信号を用いずに行うことができる。図21で、遮断桿103が正常であれば、先端部TPは、CPを基点とするMP座標で示される→CM(CPからMPへのベクトル)の延長線上であって、且つ、CPから所定距離に存在するはずである。従って、図19のステップ43の予想範囲FXは、→CMで示される角度情報と予め定まっている|→CT|(=L0)に遮断桿103のしなりや撓み等を加味して設定できる。もしも遮断桿103が折損等すれば、図19の判定アルゴリズムにより異常を検出できる。また、MPについても、遮断桿103が正常であれば、図19のステップ43の予想範囲FXは、→CTで示される角度情報と予め定まっている|→CM|に遮断桿103のしなりや撓み等を加味して設定でき、同様に正常/異常の判定を行うことができる。例えば、MPとTP間で折損が生じると、→CMの延長線上にTPは存在せず、→CTの延長線上にMPは存在しなくなり(CPとMPで定まるTP存在予想範囲内にTPは存在せず、また、CPとTPで定まるMP存在予想範囲内にMPは存在しないので)、遮断桿103の異常が検出される。また、CPとMP間で折損が生じた場合も同様である。このように、MP及びTPの少なくとも一方について正常/異常判定を行うことで、遮断桿103の異常を検出できる。言い換えれば、上記の判定は、遮断桿103が異常な折れ曲がり状態にあるか否かを判定しているとも言える。ただし、上記では、CP位置で折損が生じると発見できない。そこで、CP近傍の遮断桿部分を取付け金具等で補強する等して、遮断桿103の折損位置がCPと異なる位置で生じるようにすることが望ましい。尚、上記の判定で、角度情報のみでの判定としても構わない。
【0066】
図22に、本発明の第8実施形態として屈折式の遮断桿に適用した例を示す。尚、図8の第1実施形態と同一要素には同一符号を付してある。
図22において、遮断桿103は、第1遮断桿103A先端部に第2遮断桿103Bが回動可能に取付けられ、非遮断位置へ回動する際に第1遮断桿103Aの回動に伴い第2遮断桿103Bが第1遮断桿103Aに対して回動し、非遮断位置で略直角に屈折する構成である。
【0067】
尚、本実施形態の場合の電力供給方法としては、例えばGPSセンサ106付近に、遮断桿根本付近に配置した送電器からの電磁波を受信する受電器と、GPSセンサ104に電力供給するための送電器とを設け、電磁波を受信した受電器からGPSセンサ106と送電器にそれぞれ電力を供給し、電力供給を受けた送電器からGPSセンサ104付近に配置した受電器に電磁波により電力を供給するようにすればよい。
【0068】
かかる実施形態の場合も、第2遮断桿103Bの先端部TPに図示のようにGPSセンサ104を取付けて異常有無判定手段105で遮断桿103の異常を検出できる。この場合、遮断桿103は正常状態で屈折する構成であるので、第1実施形態のような距離(遮断桿長さ)だけで異常判定する判定アルゴリズムは適用できないが、その他の各実施形態で説明した判定アルゴリズムは適用できる。
【0069】
また、図中破線で示すように第1及び第2遮断桿103Aと103Bの連結部である屈折位置TP′にもGPSセンサ106を取付け、CPを基点としたそれぞれの位置TP、TP′について遮断桿の正常性を判定すれば、第7実施形態と同様に異常発生個所を特定できる。
また、CPを基点として位置TP′の正常性を確認し、位置TP′を基点として位置TPの正常性を確認する構成とすれば、第1実施形態のような距離(遮断桿長さ)だけで異常判定する判定アルゴリズムによる異常判定処理も適用できる。
【0070】
尚、以上の各実施形態では、遮断桿の所定部位の位置を検出する位置検出手段としてGPSセンサを用いたが、位置検出手段はこれに限らず遮断桿の所定部位の位置を検出できればよい。例えば、撮像手段を用いて遮断桿の所定部位を撮影し、画像処理技術を利用して撮影画像内の位置変化等に基づいて遮断桿の所定部位の位置を検出するようにしてもよい。GPSセンサの場合、屋内での適用には難があるが、画像技術を利用すれば屋内の駐車場の遮断機等にも適用できる。この場合、遮断桿の前記所定部位に、LED等の発光装置を取付けておけば、画像処理による位置同定が極めて容易となる。発光装置への電力供給は本発明の電力供給システムにより供給すればよい。
【0071】
位置検出手段としてGPSセンサを用いる場合、GPSセンサを測定点(上記の各実施形態では遮断桿の先端部等)と基準点にそれぞれ設け、基準点の位置データを基に座標を補正するDGPS(Differential GPS)方式を採用すれば位置精度を向上でき、異常判定精度を向上できる。例えば、図8の基点CPを基準点としてそこにGPSセンサを設ければよい。尚、基準点は固定点であればよく基点CP以外でもよいが、基準点を基点CPとしてGPSセンサを設ければ、基点CPの座標も同時に測定できることになるので望ましい。
【0072】
尚、位置検出手段により位置情報が得られない場合、例えばGPSセンサから位置情報が得られないときも、遮断桿に異常有りと判定するのが望ましいことは言うまでもない。
また、電力線の敷設の手間を省くことを考慮すれば、位置検出手段から異常有無判定手段に通報する位置情報も無線で行うことが望ましい。このため、位置検出手段と異常有無判定手段のそれぞれに送受信回路を設ければよい。
【0073】
図23は、この種の送受信回路の構成例であり、位置データや図21、図22のように位置検出手段が複数ある場合に必要なID情報等を変調して送信するための変調回路111及び送信回路112と指令等を受信するための受信回路113と、データ復調のための復調回路114と、送受信を切換える送受信切換回路115と、送受信切換回路115を介して送信回路112又は受信回路113に切換接続する送受信アンテナ116とを備える。これらの各回路の動作用電力は、本発明の電力供給システムを利用して供給する。
【0074】
尚、データの送受信に、PHS等の公衆無線回線を利用してもよく、その場合、位置検出手段にはPHS用の送受信回路を搭載し、PHSプロトコルで通信が行われる。異常有無判定回路側は、PHS用の送受信回路を設けてデータを送受信してもよく、公衆用PHS回線と有線で接続してデータを送受信すればよい。
図24に、遮断桿折損検出装置の別の構成例を示す。
【0075】
図24において、本実施形態の遮断桿折損検出装置は、遮断桿103の先端付近に応答器120と、異常有無判定回路105とを備える。そして、前記応答器120には、送電器10からのマイクロ波を受信して電力を生成する受電器20から電力を供給する構成とする。尚、電力送電のための電磁波としてマイクロ波の代わりに図3のような光を用いる構成でも良いことは言うまでもない。
【0076】
前記応答器120は、例えば図23の変調回路111、送信回路112及び送信アンテナ116からなる通信装置を備え、定期的或いは連続的に特定の通知信号を異常有無判定手段105に送信する。ここで、応答器は発信手段に相当する。
異常有無判定手段105は、応答器120からの通知信号の有無に基づいて遮断桿の正常/異常を判定する。
【0077】
かかる構成では、遮断桿103が折損した場合、送電器10からのマイクロ波が受電器20側で受信されなくなり、応答器120への電力供給が停止する。これにより、応答器120からの通知信号が停止するため、異常有無判定手段105で遮断桿が異常であると判定できる。
かかる構成によれば、遮断桿位置を検出する必要がなく、GPS信号を受信できない屋内等に設置する遮断機に好適である。
【0078】
尚、マイクロ波を用いる構成では、遮断桿が屈曲した程度では送電器10からのマイクロ波が受電器20側で受信される可能性がある。しかし、この場合、受電器20の受電レベルが遮断桿正常時の場合に比較して低下するので、応答器120からの通知信号に受電レベルのデータを付加して送信すればよい。これにより、異常有無判定手段105は受信した受電レベル情報に基づいて正常/異常を判定できる。
【0079】
また、図6と同様の構成にして、遮断桿103の複数箇所に応答器120を設置する構成とすれば、遮断桿が折損した場合に、折損個所から先端までの応答器の通知信号が異常を示すので、各応答器に固有のID情報を設定して通信信号にID情報を付加して送信することにより、異常有無判定手段105でID情報に基づいて折損個所が特定でき、折損事故が発生した場合の対処の緊急度を定める場合に有効である。尚、ID情報の代わりに、各応答器の通知信号送出時刻を重複なく予め定めておき、各時刻での通知信号の有無により、異常発生個所を特定する構成も考えられる。
【0080】
また、本出願人により先に提案された特願2001−305223号の遮断桿折損検出装置にも、電磁波による電力供給システムが適用できる。
この遮断桿折損検出装置は、遮断桿が閉じた状態であることを検知部で検知し、検知部から遮断桿の検知出力が発生している時に、遮断桿先端に設けた送信部の送信信号が、地上側に設けた受信部で受信されれば遮断桿正常と判断し、受信されなければ遮断桿折損と判断する構成である。また、2台の遮断機が対向配置されるような場合においては、受信部を他方の遮断桿先端に配置する構成とし、遮断桿が閉じた状態であることを検知部で検知している時に、一方の遮断桿先端に設けた送信部の送信信号が、他方の遮断桿に設けた受信部で受信されれば遮断桿正常と判断し、受信されなければ遮断桿折損と判断する構成である。
【0081】
かかる遮断桿折損検出装置における、送信部や受信部の動作用電力の供給に、電磁波による電力供給システムを適用することができる。
【0082】
【発明の効果】
以上説明したように本発明の電力供給システムによれば、遮断桿に取付ける電機機器に非接触で電力を供給することができるので、電力供給系における接続不良の問題ない。また、環境条件に影響されず常時安定した電力供給が可能である。更に、電力線の敷設作業を省けるので、特に既存の遮断機に対して遮断桿への電気機器の設置が容易になる。
【0083】
また、太陽光発電との併用により電磁波送出動作を必要最小限に抑えることができるので、省電力化を図ることができる。
請求項の発明によれば、電磁波にマイクロ波を用いた場合でも、EMCの問題を解消できる。
請求項の本発明の遮断機によれば、遮断桿の視認性が向上し、車両運転者や通行人等に注意を促すことができ、遮断桿への衝突事故を抑制して遮断桿の折損を未然に防止できる。また、遮断桿への発光装置設置作業時の電力線敷設作業が不要になり、発光装置の設置作業が容易になる。
【0084】
請求項6の本発明の遮断機によれば、遮断桿の視認性をより向上できる。
請求項の発明の遮断機によれば、遮断桿の位置検出手段の取付け位置を逐次監視して遮断桿の異常の有無を判定しているので、遮断桿の異常をリアルタイムに検出できる。また、特に既存の遮断桿に位置検出手段を取付ける場合に、電力線敷設作業が不要になり、取付け作業が容易になる。
【0085】
請求項の発明の遮断機によれば、遮断桿の発信手段からの発信信号の受信の有無だけで遮断桿の正常/異常を判定できるので、遮断桿の位置を検出する必要がなく位置情報を用いた判定処理を行う必要がなく、判定処理が簡素化できる。また、折損には至らない屈曲したような遮断桿の僅かな異常でも検出できる。
【0086】
請求項の発明によれば、遮断桿の折損個所の特定が可能になる。
【図面の簡単な説明】
【図1】電磁波による電力供給システムを備えた遮断機の第1の参考例の構成図
【図2】同上第1の参考例の送電器及び受電器の回路図
【図3】電磁波による電力供給システムを備えた遮断機の第2の参考例の構成図
【図4】同上第2の参考例の送電器及び受電器の回路図
【図5】本発明に係る電力供給システムの実施形態の要部回路構成図
【図6】本発明に係る折損防止装置を備えた遮断機の実施形態の要部構成図
【図7】発光装置の回路図
【図8】本発明に係る折損検出装置を備えた遮断機の第1実施形態の概略構成図
【図9】遮断桿の遮断位置と非遮断位置の説明図
【図10】同上実施形態の判定アルゴリズムの説明図
【図11】同上実施形態の判定動作を示すフローチャート
【図12】本発明の第2実施形態の判定動作を示すフローチャート
【図13】本発明の第3実施形態の判定アルゴリズムの説明図
【図14】同上実施形態の判定動作を示すフローチャート
【図15】本発明の第4実施形態の判定アルゴリズムの説明図
【図16】同上実施形態の判定動作を示すフローチャート
【図17】本発明の第5実施形態の概略構成図
【図18】同上実施形態の判定アルゴリズムの説明図
【図19】同上実施形態の判定動作を示すフローチャート
【図20】本発明の第6実施形態の判定動作を示すフローチャート
【図21】本発明の第7実施形態の概略構成図
【図22】本発明の第8実施形態の概略構成図
【図23】本発明に適用する送受信回路例を示す回路図
【図24】本発明に係る別の折損検出装置を備えた遮断機の要部構成図
【符号の説明】
1 遮断機
2、103 遮断桿
3 電気機器
10、30 送電器
11 マイクロ波発信器
12 マイクロ波増幅器
13 送電アンテナ
20、40 受電器
21 受電アンテナ
22 整流回路
31 発光器
32 発光回路
41、51 太陽電池
42、52 電源回路
53 電力合成回路
60−1〜60−n 発光装置
101 遮断機本体
102 回動軸
104、106 GPSセンサ
105 異常有無判定手段
120 応答器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric power supply system for supplying electric power to an electric device attached to a breaker of a breaker installed at a railroad crossing, a parking lot entrance and the like, and a breaker using this system.
[0002]
[Prior art]
A railroad crossing is provided with a circuit breaker to ensure the safety of traffic for cars and people and to facilitate the operation of trains and traffic for cars and people. Moreover, the parking lot etc. are provided with the circuit breaker in order to reduce a burden of an administrator, and to use a user smoothly.
In such a circuit breaker, the passage of a person or a vehicle is restricted by a barrier, thereby preventing a collision accident of a train or a vehicle or automating a parking lot management operation. For this reason, the occurrence of an abnormality such as a breakage in the breaker may cause a serious accident or increase the management cost.
[0003]
For this reason, conventionally, a circuit breaker has been proposed in which an electric device for preventing breakage or detecting breakage is attached to a breaker.
An example of a circuit breaker in which an electric device for preventing breakage of a breaker is attached to the breaker is, for example, a light emitter such as an LED attached to the breaker to improve the visibility of the breaker especially at night, Some of them are designed to prevent breakage of the barriers.
[0004]
An example of a circuit breaker in which an electric device for detecting breakage breakage is attached to the breaker is the one proposed by the present applicant (Japanese Patent Application No. 2000-355593). Is attached to the breaker and a breakage of the breaker is detected by determining whether or not the breaker is in a normal operating range based on position information from a GPS sensor.
[0005]
[Problems to be solved by the invention]
By the way, in this kind of conventional circuit breaker, the power supply is used for the electric equipment attached to the circuit breaker. For this reason, especially when installed outdoors, the connection part of the power line is easily corroded by the influence of rain, etc. In addition, especially in a crossing circuit breaker, the screw of the connection part is easily loosened or detached due to vibrations etc. due to passing through the train. There is a problem that contact failure of the connecting portion of the power line is likely to occur. Moreover, it is necessary to lay a power line along the barrier, especially when an LED or GPS sensor is retrofitted to an existing breaker, it takes time to lay the power line.
[0006]
As a circuit breaker lighting device, a technique for supplying power to a light source using a solar cell and a battery is disclosed (Japanese Patent Laid-Open No. 11-59424). Thus, if a solar cell and a battery are utilized, it is not necessary to lay a power line when supplying electric power to the electrical device of a breaker, and the above-described problems when supplying power with the power line can be solved. However, it is conceivable that the amount of power generated by solar cells may be insufficient at night or when the amount of solar radiation is low. In this case, when the battery power is exhausted, the operation of the electric device stops, and the function of preventing breakage or detecting breakage stops. Have a problem.
[0007]
The present invention has been made paying attention to the above-mentioned problems. A power supply system that can stably supply power without using a power line and is not affected by surrounding environmental conditions, and a breaker using this system. The purpose is to provide.
[0008]
[Means for Solving the Problems]
  For this reason, the present invention is an electric power supply system for supplying electric power to an electric device attached to a barrier rod,SendA power transmitter including a power transmitting means for outputting, a power receiver including a power receiving means for receiving electromagnetic waves, and a power generating means for generating power to be supplied to the electrical equipment based on an output of the power receiving means, and The electromagnetic wave transmitted from the means is propagated along the barrier and received by the power receiving means.In addition, a photovoltaic power generation means that receives external light and generates electric power is detected, the electric energy generated by the photovoltaic power generation means is detected, and the detected electric energy is compared with the electric energy required by the electric device. When there is a shortage, the shortage is supplied by the power receiver.
[0009]
  In such a configuration, electric power can be supplied in a non-contact manner to the electrical equipment attached to the breaker, so that no power line laying work is required. In addition, stable power supply is possible without being affected by environmental conditions like solar power generation.
  According to a second aspect of the present invention, the power transmission unit and the power reception unit may be disposed in the blocking bar so that the electromagnetic wave propagates through the inner space of the blocking bar.
[0010]
  Of claim 3As beforeA configuration may be adopted in which the electromagnetic wave transmission amount of the power transmission means is controlled so as to compensate for the shortage based on the detection information of the electric energy generated by the recording power generation means.
[0011]
  In such a configuration, when the amount of power generated by solar power generation is sufficient, such as in the daytime when the weather is good, the operation of the power supply system using electromagnetic waves can be stopped, and power saving can be achieved.
  MaIf using microwaves, claims4As described above, it is preferable to provide electromagnetic leakage prevention means for preventing leakage of electromagnetic waves on at least one of the inside and outside of the barrier.Yes.
[0012]
  In such a configuration, it is possible to suppress the microwave propagating inside the barrier rod from leaking to the outside of the barrier rod, and to solve the problem of EMC (Elector Magnetic Compatibility).
  Moreover, the claim using the electric power supply system of this invention5The circuit breaker of the present invention is provided with a light-emitting device on the outer surface of a barrier that can be visually recognized by a driver or a passerby,4It was set as the structure supplied using the electric power supply system as described in any one of these.
[0013]
  In such a configuration, the light emission from the light emitting device improves the visibility of the barrier rod and can notify the driver or passerby of the presence of the barrier rod, so that the barrier rod can be prevented from being broken. In addition, when installing the light-emitting device, the installation work of the power line is unnecessary, and the installation operation of the light-emitting device is easy.
  Claim6As described above, when a plurality of the light emitting devices are arranged at intervals along the barrier, the power receiver may be provided for each light emitting device.
[0014]
  The circuit breaker of the invention of claim 7Is a shieldPosition detecting means for detecting the position coordinates of the mounting position attached to the breaking rod provided rotatably on the disconnecting machine body and displacing with the breaking rod turning operation, and outputting the position coordinate information, and the position detecting means An abnormality presence / absence determining means for determining the presence / absence of an abnormality of the blocking rod based on the position coordinate information of the power, and a power transmitter including a power transmission means for transmitting the electromagnetic wave and power reception for receiving the electromagnetic wave. An electromagnetic wave transmitted from the power transmission means is propagated along the blocking bar. And a power receiver including power generation means for generating electric power to be supplied to the position detection means based on the output of the power reception means. Thus, the power is supplied using the power supply system configured to receive by the power receiving means.
[0015]
  In such a configuration, the position detection means attached to the barrier rod is the installation position of itself.CoordinateDetect its positionCoordinateOutput information. The abnormality presence / absence determining means is the position of the position detecting means.CoordinateBased on the information, the presence or absence of abnormalities in the blocking gutter is detected. Also in this case, when the position detecting means is attached to the breaker, it is not necessary to install a power line for supplying the operating power for the position detecting means.
[0016]
  Claim8The circuit breaker of the invention is an abnormality that is attached to the barrier and transmits a signal periodically or continuously, and an abnormality that determines whether there is an abnormality of the barrier based on the reception state of the transmission signal from the transmitter Presence / absence determining means, and supplying power for operation of the transmitting means to the transmitting means based on a power transmitter having power transmitting means for transmitting electromagnetic waves, power receiving means for receiving electromagnetic waves, and output of the power receiving means A power receiving system including power generating means for generating power, and supplying the power using a power supply system configured to propagate the electromagnetic wave transmitted from the power transmitting means along the blocking bar and receive the power by the power receiving means. WhenWhen the power supply system is configured to use microwaves as electromagnetic waves, the supplied power level information is added to the transmission signal and transmitted, and the abnormality presence / absence determining means is configured so that the power level is equal to or higher than a predetermined level. It is determined that there is no abnormality when there is, and it is determined that there is an abnormality when the power level is below a predetermined level.
[0018]
  In such a configuration, if there is no abnormality in the blocking rod, the power receiving means receives a sufficient level of microwaves, and electric power of a predetermined level or higher is supplied to the transmitting means. On the other hand, when the breaker is broken or bent, the reception level of the microwave of the power receiving means is lowered, and the power level supplied to the transmitting means is lowered. Abnormality presence determination means,OutgoingBased on the power level information transmitted in addition to the signal, if the power level is equal to or higher than a predetermined level, it is determined that the interruption is normal, and if the power level is lower than the predetermined level, it is determined that the interruption is abnormal.
[0019]
  Claim9In the invention, a plurality of the transmitting means are arranged at intervals along the barrier, the ID information unique to each transmitting means is set, and the ID information is added to the transmission signal for transmission. .
  In such a configuration, a normal transmission signal is not transmitted from the transmitting means from the portion where the blocking rod is broken to the tip of the blocking rod. The abnormality presence / absence determining means can identify the broken part based on the received ID information.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
  FIG.First example of circuit breakerIndicates.
  In FIG. 1, an electric device 3 (for example, an LED, a sensor, or the like) is disposed near the tip of a breaker bar 2 of the breaker 1. A power supply system that supplies electric power to the electric device 3 using electromagnetic waves is provided inside the barrier 2. This power supply system includes a power transmitter 10 that is disposed near the root of the barrier 2 and transmits microwaves as electromagnetic waves, and a microwave that is disposed near the tip of the barrier 2 and is transmitted from the power transmitter 10. And a power receiver 20 that generates power to be received and supplied to the electrical device 3.
[0021]
The shield 2 is coated with an electromagnetic wave absorber or electromagnetic wave reflector as an electromagnetic wave leakage prevention means on at least one of its inner surface and outer surface so as not to cause EMC problems, so that electromagnetic waves do not leak outside. To do. Moreover, the front end side end is configured to be closed with a separate member so that the power receiver 20 can be easily opened and closed.
As shown in FIG. 2, the power transmitter 10 includes a microwave transmitter 11 that transmits a microwave, a microwave amplifier 12 that amplifies the microwave input from the microwave transmitter 11, and a microwave amplifier 12. And a power transmission antenna 13 as power transmission means for transmitting the power-amplified microwave. That is, the power transmitter 10 converts the electric power supplied from the power source to the microwave amplifier 12 into a microwave and sends it to the interior space of the barrier 2 as electromagnetic energy.
[0022]
As shown in FIG. 2, the power receiver 20 rectifies the power receiving antenna 21 as a power receiving means for receiving the microwave propagating in the interior space of the barrier 2 and supplies the output to the electric device 3. And a rectifier circuit 22 as power generation means for generating power Po for the above. In this case, the rectifier circuit 22 corresponds to a power supply circuit.
[0023]
  TakeReference exampleThen, when operating power is supplied to the electrical device 3, a microwave is transmitted from the power transmission antenna 13 of the power transmitter 10. The transmitted microwave propagates through the internal space of the barrier 2 and is received by the power receiving antenna 21 of the power receiver 20. This received output is rectified by the rectifier circuit 22 to generate electric power Po. The generated power Po is supplied to the electric device 3 as operating power.
[0024]
According to such a power supply system using microwaves, power can be transmitted in a non-contact manner to the electrical device 3 of the barrier 2, so there is no problem of poor contact. Also, it saves the trouble of laying power lines. Furthermore, it is possible to stably supply power without being affected by environmental conditions such as solar radiation as in the case of solar cells.
If the barrier rod 2 is made of a conductor such as aluminum, the barrier rod 2 functions as an electromagnetic wave waveguide and can transmit power with high efficiency. In particular, high-efficiency transmission is performed with radio waves having a cutoff frequency or higher as a waveguide determined by the shape of the cutoff rod 2 and the like. Even if the barrier rod 2 is not a conductor, high-efficiency power transmission is possible by applying a conductive material to the surface of the barrier rod.
[0025]
  The electromagnetic waves are not limited to microwaves, but may be other frequency bands, for example, visible light.
  In FIGS. 3 and 4, visible light was used as electromagnetic waves.Second reference exampleIndicates. still,First reference exampleThe same elements are denoted by the same reference numerals.
  In the figure,This reference exampleHas a power transmitter 30 that emits light as an electromagnetic wave in the vicinity of the root inside the barrier 2 and receives light from the power transmitter 30 in the vicinity of the tip of the barrier 2 to operate power Po of the electric device 3. Is received.
[0026]
As shown in FIG. 4, the power transmitter 30 includes a light emitter (for example, an incandescent lamp, an LED, etc.) 31 that emits visible light, and a light emitting circuit 32 that outputs driving power to the light emitter 31 by supplying power. Prepare. As shown in FIG. 4, the power receiver 40 includes a solar battery 41 that receives light from the light emitter 31 and generates power, and a power supply circuit 42 that stabilizes the power generated by the solar battery 41 and supplies the power to the electrical device 3. With.
[0027]
  TakeReference exampleThen, when operating power is supplied to the electrical device 3, the light emitter 31 is caused to emit light by the light emitting circuit 32 of the power transmitter 30. The transmitted light is received by the solar cell 41 of the power receiver 40 through the internal space of the barrier 2 and electric power is generated. The generated electric power is stabilized by the power supply circuit 42 and supplied to the electric device 3 as the stable electric power Po.
[0028]
  According to such a configuration, since power transmission by light is performed using the internal space of the shut-off fence 2, the amount of light received by the solar cell 41 due to weather conditions such as rain and fog, airborne contaminants, and the like Does not fluctuate,First reference exampleAs with, stable power supply is always possible.
  Next, the power supply system of the present invention will be described.
[0029]
  This embodiment is a configuration that uses both electric power supply by electromagnetic waves and solar power generation,Fig. 1 BreakerThe case where it applies to is demonstrated.
  FIG.BookIn the figure which shows the principal part of embodiment, this embodiment is based on the solar cell 51, the power supply circuit 52 which stabilizes the electric power produced | generated with the solar cell 51, the electric power Po 'from the power supply circuit 52, and the power receiver 20. A power combining circuit 53 that combines the electric power Po and supplies the electric power Po ″ to the electric device 3;The power supply system of FIG.Added to the configuration. Needless to say, the solar cell 51 is installed outside the barrier 2 so that it can receive sunlight.
[0030]
The power combining circuit 53 has a function of detecting the amount of power from sunlight supplied from the power supply circuit 52 and wirelessly transmitting detection data to the power transmitter 10 side as power amount information of solar power generation. In this case, the power transmitter 10 of the present embodiment is configured to control the amplification degree of the microwave amplifier 12 by providing a control circuit (not shown) or the like based on the power amount information.
[0031]
Next, the operation will be described.
The power Po is generated from the power receiver 20 by the microwave from the power transmitter 10 side and is input to the power combining circuit 53. The power combining circuit 53 detects the amount of power Po ′ and transmits the detected data to the control circuit on the power transmitter 10 side. When the amount of electric power Po ′ exceeds the amount of electric power required for the operation of the electric device 3, the control circuit stops the microwave amplifier 12 and stops the microwave transmission from the power transmitter 10 side. . As a result, the power combining circuit 53 supplies the electric power Po ′ of the solar battery 51 to the electric device 3 as electric power Po ″.
[0032]
On the other hand, when the amount of power Po ′ is insufficient with respect to the amount of power required for the operation of the electrical device 3, the control circuit controls the output of the microwave amplifier 12 to compensate for the shortage. As a result, the power Po corresponding to the shortage is generated from the power receiver 20 that has received the microwave and is input to the power combining circuit 53. The power combining circuit 53 combines the power Po ′ of the solar battery 51 and the power Po of the power receiver 20 and supplies the combined power Po ″ to the electric device 3.
[0033]
  Configuration of FIGS. 3 and 4Needless to say, the present invention can be similarly applied. In this case, the output of the light emitting circuit 32 may be controlled by the control circuit based on the detection data.
  TakeAccording to the power supply system, With a configuration that compensates for the shortage of solar power generation with power supply by electromagnetic wavesBecauseThe operation of the power supply system using electromagnetic waves can be suppressed to the minimum necessary, and power saving can be achieved. If a battery is installed on the power receiving side so as to store surplus power, further power saving can be achieved.
[0034]
  still,the aboveIn the embodiment, the solar power generation facility is arranged on the power receiving side, but may be arranged on the power transmission side. In this case, the output to the power transmission antenna 13 and the light emitter 31 may be controlled to be constant, and transmission of power amount information from the power receiving side is unnecessary.
  Also,the aboveIn the embodiment, a configuration is shown in which the entire power transmitter and power receiver are arranged inside the interrupter 2. However, at least only the power transmitting and receiving antenna, the light emitter, and the solar cell that are transmitting and receiving units of electromagnetic waves such as microwaves and light are blocked. You may make it arrange | position inside the cage | basket 2. FIG.
[0035]
  Next, the circuit breaker of the present invention using the above-described power supply system will be described.
  FIG. 6 is a main part configuration diagram of an embodiment of a circuit breaker in which the power supply system of the present invention is applied to a breakage prevention device provided in the circuit breaker.
  In FIG. 6, n light emitting devices 60-1 to 60-n are arranged in a row at a position that can be visually recognized by a vehicle, a passerby, or the like on the outer surface of the barrier 2 of the breaker 1. Each of the light emitting devices 60-1 to 60-n includes a light emitting circuit 60A and a light emitter (such as an LED) 60B as shown in FIG. In the inside of the barrier 2 near the rootFIG.Are installed at positions corresponding to the light emitting devices 60-1 to 60-n.FIG.Power receivers 20-1 to 20-n are arranged, and power Po is supplied from the power receivers 20-1 to 20-n to the light emitting circuits 60A of the light emitting devices 60-1 to 60-n.
[0036]
In such a configuration, the microwave transmitted from the power transmission antenna 13 of the power transmitter 10 propagates through the internal space of the barrier 2 and is received by each power receiving antenna 21 of each power receiver 20-1 to 20-n. Electric power is supplied to the light emitting circuit 60A of the light emitting devices 60-1 to 60-n. Thereby, each light emitter 60B of the light emitting devices 60-1 to 60-n emits light at the output of each light emitting circuit 60A. Since each light emitting device 60B emits light, the visibility of the barrier rod 2 is improved and the driver or the like can be notified of the presence of the barrier rod 2, which is effective in preventing breakage of the barrier rod 2. If the light emitting circuit 60A is configured to output a periodic pulse signal, the light emitter 60B can be blinked, and the visibility can be further improved.
[0037]
When the configuration of FIG. 3 using light as electromagnetic waves is applied in the configuration of FIG. 6, each solar cell 41 of the power receivers 40-1 to 40-n receives light from the light emitter 31 of the power transmitter 30. What is necessary is just to arrange | position the position of each solar cell 41 mutually so that it can do.
According to such a configuration, it is not necessary to lay a power line for supplying power to the light emitting devices 60-1 to 60-n, and the facility work when installing this type of breakage prevention device in an existing breaker is easy. It becomes.
[0038]
  next,Power supply system using electromagnetic waves as breakage detection deviceAn example of the applied circuit breaker is shown.
  The technology of Japanese Patent Application No. 2000-355593 proposed by the present applicant is effective for the breakage detection device of the breaker, and hereinafter, the breakage breakage detection device of Japanese Patent Application 2000-355593 will be described.By electromagnetic wavesAn embodiment of a circuit breaker to which a power supply system is applied will be described.
[0039]
In FIG. 8, the simplified block diagram of 1st Embodiment of the breakage detection apparatus in the circuit breaker of this invention is shown.
In FIG. 8, a circuit breaker 103 is attached to a circuit breaker main body 101 that is provided upright on the ground, for example, via a rotation shaft 102. The breaking bar 103 is arranged in a substantially horizontal direction with respect to the ground as shown by an arrow in FIG. 9 by a breaking bar driving mechanism including a drive motor and a speed reduction mechanism (not shown) provided in the breaker body 101. It is comprised so that it can rotate centering | focusing on the rotating shaft 102 between the non-blocking positions. For example, a GPS (Global Positioning System) sensor 104 is provided in the vicinity of the distal end portion of the blocking rod 103 as position detecting means for detecting the distal end portion position TP.
[0040]
  As shown in FIGS. 1 to 5, the electric power for operation of the GPS sensor 104 that is an electrical device uses the internal space of the blocking rod 103.PowerIt is supplied using a power supply system using magnetic waves.
  Abnormality presence / absence determination means 105 receives positional information of the blocking rod tip TP detected by the GPS sensor 104, and determines whether the blocking rod 103 is abnormal based on this positional information.
[0041]
Next, a specific method for determining the presence / absence of an abnormality will be described. Since it is easier to explain in the coordinate system having the center of rotation of the barrier rod as the base point CP, the following description will be made with CP as the base point. In principle, the following determination method does not depend on the method of the coordinate system or how to select the base point.
In the abnormality presence / absence determining means 105 of the first embodiment, the rotation center of the rotation shaft 102 which is a fixed point is set as a base point CP, and a distance L between CP and TP from both position coordinates of the base point CP and the blocking rod tip TP. This distance L corresponds to the length L0 from the base point CP to the blocking rod tip TP and is substantially constant, so the distance L is set to include a predetermined range, that is, the normal length L0. It is determined whether or not it is within the range of (L0-α) to (L0 + α) indicated by the broken line in FIG. 10, and when it is within the range of (L0-α) to (L0 + α), it is determined that the interruption is normal.
[0042]
Based on the flowchart of FIG. 11, the abnormality detection operation of the abnormality presence / absence determining means of the first embodiment will be described in further detail.
In step 1 (denoted as S1 in the figure and the same shall apply hereinafter), the position coordinates of the base point CP and the tip TP are input. Since the coordinates of the base point CP are fixed points, for example, a value measured in advance may be stored in a memory and read from the memory. The coordinates of the tip TP are detected by the GPS sensor 104 and the measured values are input.
[0043]
In step 2, the coordinates of the tip TP are converted into coordinates with CP as a base point. This corresponds to calculating a vector CT from CP to TP (hereinafter referred to as “→ CT”). Thereby, the distance L between CP and TP becomes L = | → CT |.
In step 3, it is determined whether the distance L is within a predetermined range. And if it is predetermined range (L0- (alpha))-(LO + (alpha)), it will determine with YES, will progress to step 4, will determine with the interruption | blocking rod 103 being normal, and will return to step 1. On the other hand, if it is out of the predetermined range, it is determined as NO, the process proceeds to step 5, where the blocking rod 103 is determined to be abnormal, and the abnormality detection operation is terminated.
[0044]
According to the configuration of the first embodiment, the position of the blocking rod tip TP is detected by the GPS sensor 104, and the range from the base point CP to the blocking rod tip TP is determined within a predetermined distance range based on the detected position information. For example, since it is monitored whether or not it is within the predetermined length range, for example, if the blocking rod 103 breaks and becomes shorter than normal, the abnormality of the blocking rod 103 can be detected immediately, and the abnormality of the blocking rod 103 can be detected in real time. Can be detected. Moreover, since the GPS sensor 104 should just be attached to desired parts, such as the front-end | tip part of the cutoff rod 103, it can be easily applied also to the existing circuit breaker. In addition, the use of an electromagnetic wave power supply system for supplying power to the GPS sensor 104 eliminates the need for laying a power line on the barrier.
[0045]
Next, a second embodiment will be described.
In the second embodiment, the apparatus configuration is the same as that of the first embodiment shown in FIG. 8, and only the abnormality presence / absence determination algorithm of the abnormality presence / absence determination means 105 is different. Only will be described with reference to the flowchart of FIG.
[0046]
In Steps 11 and 12, as in Steps 1 and 2, the position coordinates of the base point CP and the tip portion TP are input, the coordinates of the tip portion TP are converted into coordinates having the CP as the base point, and → CT is calculated.
In Step 13, it is determined whether or not the angle of CT is equal to or larger than a predetermined angle with a reference direction set in advance, for example, a direction directly below as 0 degree. That is, when the blocking rod 103 breaks, in many cases, the tip TP of the blocking rod 103 falls to the ground, and thus the blocking rod tip TP is lowered from the normal blocking position (in a direction substantially parallel to the ground). Accordingly, the predetermined angle for abnormality determination is set to a value slightly smaller than the normal blocking position in consideration of the bending or bending of the blocking rod, and it is determined whether or not the angle is greater than the predetermined angle. Anomalies can be detected. → If the angle of CT is equal to or greater than the predetermined angle, it is determined YES, the process proceeds to step 14, it is determined that the blocking rod 103 is normal, and the process returns to step 11. On the other hand, if the angle is not greater than the predetermined angle, it is determined as NO, the process proceeds to step 15, where the blocking rod 103 is determined to be abnormal, and the abnormality detection operation ends.
[0047]
Next, a third embodiment will be described.
In the third embodiment, the apparatus configuration is the same as that of the first embodiment shown in FIG. 8, except that the abnormality presence / absence determination means 105 has a different determination algorithm for the presence / absence of abnormality. Only will be described with reference to FIGS.
[0048]
As shown in FIG. 13A, the blocking rod moves between the blocking position and the non-blocking position, that is, between the angle φ1 and φ2 (φ1 <φ2) with the direction directly below as the reference direction and an angle of 0 degrees. The locus of the tip TP is arcuate as shown. Further, when the blocking rod 103 is viewed from above as shown in FIG. 5B, the tip portion TP exists in a certain angle range in the horizontal direction when viewed from the base point CP, considering bending and bending. Based on this idea, in the third embodiment, the abnormality of the blocking bar 103 is determined by an abnormality determination algorithm as shown in the flowchart of FIG.
[0049]
Steps 21 and 22 are the same as steps 1 and 2, and a description thereof will be omitted.
In step 23, it is determined whether or not the angle in the up-and-down direction of CT is within a predetermined angle range with a reference direction set in advance, for example, a downward direction as an angle of 0 degrees. Here, the predetermined angle range is set as (φ1−Δφ1) to (φ2 + Δφ2) as shown in FIG. 13A in consideration of the bending and bending of the blocking bar 103. → If the CT angle is in the range of (φ1−Δφ1) to (φ2 + Δφ2), it is determined as YES, and the process proceeds to step 24.
[0050]
In step 24, it is determined whether or not the angle in the horizontal direction of CT is within a predetermined angle range with a reference direction set in advance, for example, the reference direction shown in FIG. Here, the predetermined angle range is set as θ1 to θ2 (θ1 <θ2) as shown in FIG. 13B in consideration of the bending and bending of the blocking rod 103. → If the CT angle is in the range of θ1 to θ2, it is determined YES and the process proceeds to step 25.
[0051]
In step 25, it is determined that the blocking rod 103 is normal, and the process returns to step 21.
On the other hand, if it is determined NO in either step 23 or 24, the process proceeds to step 26, where the blocking rod 103 is determined to be abnormal, and the abnormality detection operation is terminated.
According to the third embodiment, an abnormality can be detected not only when the blocking bar 103 breaks and the tip part falls on the ground, but also when the tip part bends in the lateral direction.
[0052]
Next, a fourth embodiment will be described.
In the fourth embodiment, the apparatus configuration is the same as that of the first embodiment shown in FIG. 8, except that the abnormality presence / absence determination unit 105 is different in the determination algorithm for abnormality presence / absence. Only, it demonstrates with reference to FIG.15 and FIG.16.
[0053]
In the fourth embodiment, it is determined whether or not CT is within a predetermined range EX surrounded by a broken line in FIG. The predetermined range EX is determined by defining the size (length) and angle of the CT. Therefore, the fourth embodiment is a combination of the first and third embodiments.
FIG. 16 shows a flowchart of the determination operation of the fourth embodiment.
[0054]
Steps 31 and 32 are the same as steps 1 and 2, and a description thereof will be omitted.
In step 33, it is determined whether or not CT is within a predetermined range EX. Specifically, as in step 3 of FIG. 11 of the first embodiment, it is determined whether the distance L (= | → CT |) is within a predetermined range (L0−α) to (LO + α), and the third embodiment. As in steps 23 and 24 of FIG. 14, whether or not the angle of the CT ascending / descending direction is within a predetermined range (φ1−Δφ1) to (φ2 + Δφ2) set in advance, and the angle in the horizontal direction of CT is set in advance It is determined whether or not the predetermined angle range θ1 to θ2. If all these determinations are YES, CT is within the predetermined range EX, the determination in step 33 is YES, and the process proceeds to step 34.
[0055]
In step 34, it is determined that the blocking bar 103 is normal, and the process returns to step 31.
On the other hand, if at least one of the distance L and the angle in each of the up and down directions and the horizontal direction is outside the predetermined range in step 33, it is determined NO, the process proceeds to step 35, the blocking rod 103 is determined to be abnormal, and the abnormality detection operation is performed. finish.
In the case of detecting an abnormality based on the length of the barrier rod as in the first embodiment, for example, in the case of an abnormality in which the barrier rod length does not change much, such as a fundamental breakage of the barrier rod, detection is difficult. In addition, when detecting an abnormality based on the angle of the blocking rod as in the second and third embodiments, for example, when the blocking rod is bent upward, it is difficult to detect the abnormality in real time.
[0056]
However, if the abnormality is detected by combining both the length and the angle of the blocking rod as in the fourth embodiment, it is possible to detect the abnormality in real time in any of the cases described above.
Next, a fifth embodiment will be described.
In FIG. 17, in addition to the configuration of FIG. 8, the abnormality presence / absence determination means 105 inputs a drive state signal indicating the drive state of the barrier rod 103 from the breaker body 101, and uses this drive state signal and the position information from the GPS sensor 104. This is a configuration for performing abnormality detection based on the above.
[0057]
The abnormality presence / absence determining means 105 can predict the position where the blocking rod tip TP should be present based on the driving state signal. Here, the drive state signal may be, for example, an angle signal from an encoder that detects the rotation angle of the rotation shaft 102 of the blocking rod 103, or a command signal from a control circuit that outputs a drive command. However, the command signal includes a rotation angle signal. As a result, it is possible to set a narrow expected range FX where it is expected that the blocking rod tip TP is present as shown by the one-dot chain line in FIG. Therefore, the abnormality presence / absence determining means 105 of the fifth embodiment determines whether or not CT is within the expected range FX and detects an abnormality.
[0058]
FIG. 19 shows a flowchart of the determination operation of the fifth embodiment.
Steps 41 and 42 are the same as steps 1 and 2 and will not be described.
In step 43, an expected range FX where the current blocking rod tip TP should exist is set based on the driving state signal.
In step 44, it is determined whether or not CT is within the expected range FX. The specific determination operation is the same as in the fourth embodiment, and it is determined whether or not the CT angle and length are within the expected range FX. If the determination in step 44 is yes, the process proceeds to step 45.
[0059]
In step 45, it is determined that the blocking bar 103 is normal, and the process returns to step 41.
On the other hand, if NO is determined in step 44, the process proceeds to step 46, where the blocking rod 103 is determined to be abnormal, and the abnormality detection operation is terminated.
In the determination at step 44, only the angle of CT may be determined.
If the driving state signal is used as in the fifth embodiment, for example, an abnormality such that the blocking rod 103 cannot rotate and is not in the blocking position due to a failure of the blocking rod driving mechanism or the like can be detected. However, in order to detect this abnormality, it is necessary to input a command signal instead of a signal from the encoder for detecting the rotation angle of the rotation shaft 102 as a drive state signal. That is, it is only necessary to determine whether the blocking rod tip TP is equal to or greater than a predetermined range or a predetermined angle at the blocking position when the command signal indicates blocking.
[0060]
Next, a sixth embodiment will be described.
In most cases, breakage of the blocking rod 103 occurs at the blocking position. Accordingly, in the sixth embodiment, the abnormality determination process is executed only when the blocking bar 103 is in the blocking position based on the driving state signal.
FIG. 20 shows an abnormality determination operation flowchart of the sixth embodiment.
[0061]
In step 51, a drive state signal is input from the circuit breaker body 101.
In step 52, it is determined based on the input driving state signal whether the blocking bar 103 is in the blocking position. If the determination is yes, the process proceeds to step 53, and if the determination is no, the process returns to step 51. Note that the driving state signal does not necessarily include angle information because it is only necessary to determine whether or not the blocking bar 103 is in the blocking position based on the input driving state signal.
[0062]
In step 53, an abnormality detection process for the blocking bar 103 is executed. The abnormality determination processing operation here may use any of the determination algorithms of the first to fifth embodiments.
Next, FIG. 21 shows a seventh embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same element as 1st Embodiment of FIG.
[0063]
In FIG. 21, another GPS sensor 106 is provided at the intermediate position MP in addition to the GPS sensor 104 at the tip of the blocking bar 103. The abnormality presence / absence determination means 105 obtains the coordinate positions MP and TP based on the CP based on the position information from the GPS 104 and 106, and uses the abnormality determination algorithm described in each of the above embodiments for each part. It is the structure which determines whether or not. In this way, in the case where a plurality of position detecting means such as GPS sensors are provided on the blocking bar, power may be supplied with the configuration shown in FIG.
[0064]
In such a configuration, for example, when the intermediate position MP is determined to be normal and the tip portion TP is determined to be abnormal, it can be estimated that an abnormality such as breakage has occurred between MP and TP of the blocking rod 103. When it is determined that both the intermediate position MP and the tip TP are abnormal, it can be estimated that an abnormality such as breakage has occurred between CP and MP of the blocking rod 103.
If position sensors, such as GPS sensors, are provided at a plurality of locations on the barrier rod as in the seventh embodiment, the location where an abnormality has occurred can be estimated, which helps to determine the urgency of the subsequent treatment.
[0065]
As shown in FIG. 21, by detecting the positions of a plurality of parts of the barrier rod 103, the barrier rod abnormality detection performed by providing the range FX shown in FIGS. 17 and 18 can be performed without using the drive state signal. it can. In FIG. 21, if the blocking rod 103 is normal, the distal end portion TP is on the extension line of CM (vector from CP to MP) indicated by MP coordinates with CP as a base point, and predetermined from CP. Should exist at a distance. Therefore, the expected range FX in step 43 in FIG. 19 can be set by adding the bending or bending of the blocking rod 103 to the angle information indicated by → CM and the predetermined | → CT | (= L0). If the blocking bar 103 breaks, an abnormality can be detected by the determination algorithm shown in FIG. Further, for the MP, if the blocking bar 103 is normal, the expected range FX in step 43 in FIG. 19 is the angle information indicated by → CT and the predetermined range | → CM | It can be set in consideration of bending or the like, and normal / abnormal determination can be performed in the same manner. For example, when a break occurs between MP and TP, → TP does not exist on the extension line of CM, and MP no longer exists on the extension line of CT (TP exists within the expected TP existence range determined by CP and MP) In addition, since MP does not exist within the expected MP existence range determined by CP and TP), an abnormality of the blocking rod 103 is detected. The same applies when breakage occurs between CP and MP. As described above, the abnormality of the blocking rod 103 can be detected by performing the normality / abnormality determination on at least one of MP and TP. In other words, it can be said that the above determination determines whether or not the blocking rod 103 is in an abnormal bent state. However, in the above, it cannot be found if breakage occurs at the CP position. Therefore, it is desirable that the breaking position of the blocking rod 103 is generated at a position different from the CP by reinforcing the blocking rod portion near the CP with a mounting bracket or the like. In the above determination, the determination may be made based only on the angle information.
[0066]
FIG. 22 shows an example in which the present invention is applied to a refraction type barrier as an eighth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same element as 1st Embodiment of FIG.
In FIG. 22, the second blocking rod 103B is rotatably attached to the tip of the first blocking rod 103A, and when the first blocking rod 103A rotates, The two blocking rods 103B rotate with respect to the first blocking rod 103A and are refracted substantially at a right angle at the non-blocking position.
[0067]
As a power supply method in the present embodiment, for example, near the GPS sensor 106, a power receiver that receives electromagnetic waves from a power transmitter disposed near the cutoff Sone, and a power supply for supplying power to the GPS sensor 104 are used. A power receiver is provided to supply power to the GPS sensor 106 and the power transmitter from the power receiver that has received the electromagnetic wave, and the power is supplied to the power receiver disposed in the vicinity of the GPS sensor 104 by the electromagnetic wave. You can do it.
[0068]
Also in this embodiment, the GPS sensor 104 is attached to the tip TP of the second blocking rod 103B as shown in the figure, and the abnormality presence / absence determining means 105 can detect the abnormality of the blocking rod 103. In this case, since the blocking rod 103 is configured to refract in a normal state, the determination algorithm for determining an abnormality based only on the distance (blocking rod length) as in the first embodiment cannot be applied, but will be described in each of the other embodiments. The determined algorithm can be applied.
[0069]
In addition, as indicated by the broken line in the figure, a GPS sensor 106 is also attached to the refraction position TP ′, which is the connecting portion between the first and second blocking rods 103A and 103B, and the positions TP and TP ′ with CP as the base point are blocked. If the normality of wrinkles is determined, the location where an abnormality has occurred can be identified as in the seventh embodiment.
Further, if the normality of the position TP ′ is confirmed from the CP as a base point, and the normality of the position TP is confirmed from the position TP ′ as a base point, only the distance (the length of the blocking rod) as in the first embodiment. An abnormality determination process using a determination algorithm for determining an abnormality can be applied.
[0070]
In each of the embodiments described above, the GPS sensor is used as the position detecting means for detecting the position of the predetermined part of the blocking rod. However, the position detecting means is not limited to this, as long as it can detect the position of the predetermined part of the blocking rod. For example, a predetermined part of the blocking eyelid may be imaged using an imaging unit, and the position of the predetermined part of the blocking eyelid may be detected based on a position change in the captured image using an image processing technique. In the case of a GPS sensor, it is difficult to apply indoors, but if image technology is used, it can also be applied to an indoor parking lot breaker. In this case, if a light emitting device such as an LED is attached to the predetermined portion of the barrier rod, position identification by image processing becomes extremely easy. What is necessary is just to supply the electric power supply to a light-emitting device with the electric power supply system of this invention.
[0071]
When a GPS sensor is used as the position detection means, a GPS sensor is provided at each of the measurement point (the tip of the blocking rod in each of the above embodiments) and the reference point, and the DGPS (which corrects the coordinates based on the position data of the reference point) By adopting the “Differential GPS” method, the position accuracy can be improved, and the abnormality determination accuracy can be improved. For example, a GPS sensor may be provided on the base point CP in FIG. 8 as a reference point. The reference point may be a fixed point and may be other than the base point CP. However, if a GPS sensor is provided with the reference point as the base point CP, it is desirable that the coordinates of the base point CP can be measured simultaneously.
[0072]
Needless to say, it is desirable to determine that there is an abnormality in the barrier when the position information cannot be obtained by the position detecting means, for example, when the position information cannot be obtained from the GPS sensor.
In consideration of saving the trouble of laying the power line, it is desirable that the position information notified from the position detection means to the abnormality presence / absence determination means is also performed wirelessly. For this reason, a transmission / reception circuit may be provided in each of the position detection means and the abnormality presence / absence determination means.
[0073]
FIG. 23 shows a configuration example of this type of transmission / reception circuit, and a modulation circuit 111 for modulating and transmitting position data and ID information required when there are a plurality of position detection means as shown in FIGS. And a receiving circuit 113 for receiving commands and the like with the transmitting circuit 112, a demodulating circuit 114 for demodulating data, a transmission / reception switching circuit 115 for switching transmission / reception, and the transmission circuit 112 or the receiving circuit 113 via the transmission / reception switching circuit 115. And a transmission / reception antenna 116 for switching connection. The power for operation of each of these circuits is supplied using the power supply system of the present invention.
[0074]
Note that a public wireless line such as PHS may be used for data transmission / reception. In this case, the position detection means is equipped with a PHS transmission / reception circuit, and communication is performed using the PHS protocol. The abnormality presence / absence determination circuit side may be provided with a PHS transmission / reception circuit to transmit / receive data, or may be connected to a public PHS line by wire to transmit / receive data.
FIG. 24 shows another configuration example of the breakage breakage detection device.
[0075]
In FIG. 24, the breaker breakage detecting device of the present embodiment includes a responder 120 and an abnormality presence / absence determination circuit 105 in the vicinity of the tip of the breaker rod 103. And it is set as the structure which supplies electric power to the said responder 120 from the power receiving device 20 which receives the microwave from the power transmission device 10, and produces | generates electric power. Needless to say, the configuration shown in FIG. 3 may be used instead of microwaves as electromagnetic waves for power transmission.
[0076]
  The responder 120 includes a communication device including, for example, the modulation circuit 111, the transmission circuit 112, and the transmission antenna 116 shown in FIG.IssueIt transmits to the abnormality presence / absence determination means 105. Here, the responder corresponds to a transmission means.
  Abnormality presence / absence determining means 105 determines the normality / abnormality of the blocking rod based on the presence / absence of a notification signal from responder 120.
[0077]
In such a configuration, when the breaking bar 103 is broken, the microwave from the power transmitter 10 is not received on the power receiver 20 side, and the power supply to the responder 120 is stopped. Thereby, since the notification signal from the responder 120 stops, the abnormality presence / absence determination means 105 can determine that the blocking rod is abnormal.
According to such a configuration, it is not necessary to detect the position of the barrier and is suitable for a breaker installed indoors where GPS signals cannot be received.
[0078]
In the configuration using microwaves, there is a possibility that the microwaves from the power transmitter 10 may be received on the power receiver 20 side as long as the breaking bar is bent. However, in this case, since the power reception level of the power receiver 20 is lower than that when the interruption is normal, the power reception level data may be added to the notification signal from the responder 120 and transmitted. Thereby, the abnormality presence / absence determining means 105 can determine normality / abnormality based on the received power reception level information.
[0079]
In addition, if the responder 120 is installed at a plurality of locations on the breaker bar 103 in the same configuration as in FIG. 6, when the breaker bar breaks, the notification signal from the breaker to the tip is abnormal. Therefore, by setting ID information unique to each responder and adding the ID information to the communication signal and transmitting it, the failure determination means 105 can identify the breakage location based on the ID information, and a breakage accident can occur. This is effective for determining the urgency of countermeasures when it occurs. A configuration is also conceivable in which instead of the ID information, the notification signal transmission time of each responder is determined in advance without duplication, and the location where the abnormality has occurred is identified by the presence or absence of the notification signal at each time.
[0080]
  In addition, in the breakage breakage detection device of Japanese Patent Application No. 2001-305223 previously proposed by the present applicant,By electromagnetic wavesA power supply system can be applied.
  This breaker breakage detection device detects when the breaker is closed by the detector, and when the breaker detection output is generated from the detector, the transmission signal of the transmitter provided at the tip of the breaker However, if it is received by the receiving unit provided on the ground side, it is determined that the interruption is normal, and if it is not received, it is determined that the interruption is broken. In the case where two breakers are arranged opposite to each other, the receiving unit is arranged at the tip of the other blocking rod, and the detection unit detects that the blocking rod is closed. If the transmission signal of the transmitter provided at the tip of one of the blocking rods is received by the receiving unit provided at the other blocking rod, it is determined that the blocking rod is normal, and if it is not received, it is determined that the blocking rod is broken. .
[0081]
  In such a breakage breakage detection device, for supplying power for operation of the transmitter and the receiver,By electromagnetic wavesA power supply system can be applied.
[0082]
【The invention's effect】
As described above, according to the power supply system of the present invention, it is possible to supply electric power in a non-contact manner to the electrical equipment attached to the breaker, so there is no problem of poor connection in the power supply system. In addition, stable power supply is always possible without being affected by environmental conditions. Furthermore, since the installation work of the power line can be omitted, it is easy to install the electric device on the breaker especially for the existing breaker.
[0083]
  Also,Since the electromagnetic wave transmission operation can be suppressed to the minimum necessary by the combined use with solar power generation, power saving can be achieved.
  Claim4According to this invention, even when microwaves are used for electromagnetic waves, the problem of EMC can be solved.
  Claim5According to the breaker of the present invention, the visibility of the breaker can be improved, the vehicle driver and the passerby can be alerted, and the breakage of the breaker can be prevented by suppressing a collision accident with the breaker. Can be prevented. Moreover, the power line laying work at the time of installing the light emitting device on the barrier rod becomes unnecessary, and the installing operation of the light emitting device becomes easy.
[0084]
  According to the circuit breaker of the present invention, the visibility of the circuit breaker can be further improved.
  Claim7According to the circuit breaker of the invention, the mounting position of the position detection means of the blocking rod is sequentially monitored to determine whether or not the blocking rod is abnormal, so that the abnormality of the blocking rod can be detected in real time. In particular, when the position detecting means is attached to an existing breaker, no power line laying work is required, and the mounting work is facilitated.
[0085]
  Claim8According to the circuit breaker of the present invention, it is possible to determine the normality / abnormality of the barrier rod only by the presence / absence of the transmission signal from the transmitter of the barrier rod, so that it is not necessary to detect the position of the barrier rod and position information is used. It is not necessary to perform the determination process, and the determination process can be simplified.Also,It is possible to detect even a slight abnormality of a blocking barrier that does not cause breakage.
[0086]
  Claim9According to this invention, it becomes possible to specify the breakage part of the barrier rod.
[Brief description of the drawings]
FIG. 1 includes a power supply system using electromagnetic wavesFirst example of circuit breakerConfiguration diagram
[Figure 2] Same as aboveFirst reference exampleOf power transmitter and receiver
FIG. 3 includes a power supply system using electromagnetic waves.Second reference example of circuit breakerConfiguration diagram
[Fig. 4] Same as aboveSecond reference exampleOf power transmitter and receiver
FIG. 5 is a power supply system according to the present invention.The fruitMain part circuit configuration diagram of the embodiment
FIG. 6 is a configuration diagram of a main part of an embodiment of a circuit breaker provided with a breakage prevention device according to the present invention.
FIG. 7 is a circuit diagram of a light emitting device.
FIG. 8 is a schematic configuration diagram of a first embodiment of a circuit breaker provided with a breakage detection device according to the present invention.
FIG. 9 is an explanatory diagram of the blocking position and non-blocking position of the blocking rod
FIG. 10 is an explanatory diagram of a determination algorithm according to the embodiment.
FIG. 11 is a flowchart showing a determination operation according to the embodiment.
FIG. 12 is a flowchart showing a determination operation according to the second embodiment of the present invention.
FIG. 13 is an explanatory diagram of a determination algorithm according to the third embodiment of this invention.
FIG. 14 is a flowchart showing a determination operation according to the embodiment;
FIG. 15 is an explanatory diagram of a determination algorithm according to the fourth embodiment of this invention.
FIG. 16 is a flowchart showing a determination operation according to the embodiment;
FIG. 17 is a schematic configuration diagram of a fifth embodiment of the present invention.
FIG. 18 is an explanatory diagram of a determination algorithm according to the embodiment;
FIG. 19 is a flowchart showing a determination operation according to the embodiment.
FIG. 20 is a flowchart showing a determination operation according to the sixth embodiment of the present invention.
FIG. 21 is a schematic configuration diagram of a seventh embodiment of the present invention.
FIG. 22 is a schematic configuration diagram of an eighth embodiment of the present invention.
FIG. 23 is a circuit diagram showing an example of a transmission / reception circuit applied to the present invention.
FIG. 24 is a main part configuration diagram of a circuit breaker provided with another breakage detection device according to the present invention.
[Explanation of symbols]
1 Breaker
2, 103 Barrier
3 Electrical equipment
10, 30 Power transmitter
11 Microwave transmitter
12 Microwave amplifier
13 Transmission antenna
20, 40 Power receiver
21 Power receiving antenna
22 Rectifier circuit
31 Light emitter
32 Light emitting circuit
41, 51 Solar cell
42, 52 Power circuit
53 Power Synthesis Circuit
60-1 to 60-n light emitting device
101 Breaker body
102 Rotating shaft
104, 106 GPS sensor
105 Abnormality presence / absence judging means
120 transponder

Claims (9)

遮断桿に取付ける電気機器に電力を供給する電力供給システムであって、電磁波を送出する送電手段を備える送電器と、電磁波を受信する受電手段及び該受電手段の出力に基づいて前記電気機器に供給するための電力を生成する電力生成手段を備える受電器とを備え、前記送電手段から送出した電磁波を前記遮断桿に沿って伝搬させて前記受電手段で受信するよう構成すると共に、
外光を受光して電力を生成する光発電手段を設け、該光発電手段で生成された電力量を検出し、前記電気機器で要求される電力量に対して前記検出電力量が不足するときに、その不足分を前記受電器により供給する構成としたことを特徴とする電力供給システム。
A power supply system for supplying electric power to an electric device attached to a breaker, wherein the electric device is provided with a power transmission means for transmitting electromagnetic waves, a power receiving means for receiving electromagnetic waves, and supplied to the electric equipment based on an output of the power receiving means And a power receiver that includes power generation means for generating electric power, and configured to propagate the electromagnetic wave transmitted from the power transmission means along the barrier and receive the power by the power reception means.
When a photovoltaic power generation means that receives external light to generate electric power is provided, the electric energy generated by the photovoltaic power generation means is detected, and the detected electric energy is insufficient with respect to the electric energy required by the electric device Further, the power supply system is configured to supply the shortage by the power receiver.
前記送電手段及び前記受電手段を前記遮断桿内に配置し、前記電磁波を前記遮断桿内部空間を伝搬させる構成である請求項1に記載の電力供給システム。  2. The power supply system according to claim 1, wherein the power transmission unit and the power receiving unit are arranged in the blocking bar and the electromagnetic wave propagates through the inner space of the blocking bar. 前記光発電手段で生成された電力量の検出情報に基づいて前記不足分を補うように前記送電手段の電磁波送出量を制御する構成である請求項1又は2に記載の電力供給システム。  3. The power supply system according to claim 1, wherein an electromagnetic wave transmission amount of the power transmission unit is controlled to compensate for the shortage based on detection information of the electric energy generated by the photovoltaic power generation unit. 遮断桿の内側及び外側の少なくとも一方の側に、電磁波の漏洩を防止する電磁波漏洩防止手段を設けた請求項2又は3に記載の電力供給システム。  The power supply system according to claim 2 or 3, wherein an electromagnetic wave leakage prevention means for preventing leakage of electromagnetic waves is provided on at least one of the inside and the outside of the barrier rod. 運転者や通行人が視認可能な遮断桿外面に発光装置を設け、該発光装置の動作用電力を、請求項1〜4のいずれか1つに記載の電力供給システムを用いて供給する構成としたことを特徴とする遮断機。  A configuration in which a light emitting device is provided on an outer surface of a barrier that can be visually recognized by a driver or a passerby, and power for operation of the light emitting device is supplied using the power supply system according to any one of claims 1 to 4. A breaker characterized by that. 前記発光装置を遮断桿に沿って間隔を設けて複数配置するとき、発光装置毎に前記受電器を設ける構成とした請求項5に記載の遮断機。  The circuit breaker according to claim 5, wherein the power receiver is provided for each light emitting device when a plurality of the light emitting devices are arranged at intervals along the circuit breaker. 遮断機本体に回動可能に設けられる遮断桿に取付けられ遮断桿回動動作に伴って変位する取付け位置の位置座標を検出して当該位置座標情報を出力する位置検出手段と、該位置検出手段の位置座標情報に基づいて遮断桿の異常の有無を判定する異常有無判定手段とを備え、前記位置検出手段の動作用電力を、電磁波を送出する送電手段を備える送電器と電磁波を受信する受電手段及び該受電手段の出力に基づいて前記位置検出手段に供給するための電力を生成する電力生成手段を備える受電器とを備えて前記送電手段から送出した電磁波を前記遮断桿に沿って伝搬させて前記受電手段で受信するよう構成した電力供給システムを用いて供給する構成としたことを特徴とする遮断機。  Position detecting means for detecting a position coordinate of an attachment position that is attached to a breaking rod provided rotatably on the breaker body and displaced in accordance with the turning rod turning operation, and outputs the position coordinate information, and the position detecting means An abnormality presence / absence determining means for determining the presence / absence of an abnormality of the blocking rod based on the position coordinate information of the power, and a power transmitter including a power transmission means for transmitting the electromagnetic wave and power reception for receiving the electromagnetic wave. An electromagnetic wave transmitted from the power transmission means is propagated along the blocking bar. And a power receiver including power generation means for generating electric power to be supplied to the position detection means based on the output of the power reception means. A circuit breaker configured to supply power using a power supply system configured to receive the power by the power receiving unit. 遮断桿に取付けられ定期的又は連続的に信号を発信する発信手段と、該発信手段からの前記発信信号の受信状態に基づいて遮断桿の異常の有無を判定する異常有無判定手段とを備え、前記発信手段の動作用電力を、電磁波を送出する送電手段を備える送電器と電磁波を受信する受電手段及び該受電手段の出力に基づいて前記発信手段に供給するための電力を生成する電力生成手段を備える受電器とを備えて前記送電手段から送出した電磁波を前記遮断桿に沿って伝搬させて前記受電手段で受信するよう構成した電力供給システムを用いて供給する構成とし、
前記電力供給システムが電磁波としてマイクロ波を用いる構成であるとき、供給される電力レベル情報を前記発信信号に付加して送信し、前記異常有無判定手段が、前記電力レベルが所定レベル以上であるとき異常なしと判定し、前記電力レベルが所定レベル未満であるとき異常ありと判定する構成としたことを特徴とする遮断機。
Transmitting means that is attached to the blocking rod and periodically or continuously transmits a signal, and an abnormality presence / absence determining means that determines whether there is an abnormality of the blocking rod based on the reception state of the transmission signal from the transmitting means, The power generation means for generating the power to be supplied to the transmitting means based on the output of the power transmitting means including the power transmitting means for transmitting the electromagnetic waves, the power receiving means for receiving the electromagnetic waves, and the output of the power receiving means. And a power supply system configured to propagate the electromagnetic wave transmitted from the power transmission means along the blocking bar to be received by the power reception means .
When the power supply system is configured to use microwaves as electromagnetic waves, the supplied power level information is added to the transmission signal and transmitted, and the abnormality presence / absence determining means is when the power level is equal to or higher than a predetermined level. A circuit breaker configured to determine that there is no abnormality and to determine that there is an abnormality when the power level is less than a predetermined level .
前記発信手段を、前記遮断桿に沿って間隔を設けて複数配置し、各発信手段に固有のID情報を設定し、前記発信信号に前記ID情報を付加して送信する構成とした請求項に記載の遮断機。Said transmitting means, said plurality arranged spaced along the blocking rod, to set the unique ID information to each transmission means, the oscillation signal to claim was configured to send by adding the ID information 8 Breaker as described in.
JP2001361386A 2001-11-27 2001-11-27 Power supply system and circuit breaker using the system Expired - Fee Related JP3878464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361386A JP3878464B2 (en) 2001-11-27 2001-11-27 Power supply system and circuit breaker using the system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361386A JP3878464B2 (en) 2001-11-27 2001-11-27 Power supply system and circuit breaker using the system

Publications (2)

Publication Number Publication Date
JP2003164076A JP2003164076A (en) 2003-06-06
JP3878464B2 true JP3878464B2 (en) 2007-02-07

Family

ID=19172059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361386A Expired - Fee Related JP3878464B2 (en) 2001-11-27 2001-11-27 Power supply system and circuit breaker using the system

Country Status (1)

Country Link
JP (1) JP3878464B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260067B2 (en) 2011-12-20 2016-02-16 Honda Motor Co., Ltd. Onboard battery management system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005104331A1 (en) * 2004-03-30 2008-03-13 三菱電機株式会社 Rectenna solar cell hybrid panel and hybrid solar power generation system
JP5531500B2 (en) * 2009-08-21 2014-06-25 富士通株式会社 Electromagnetic wave shielding device and wireless power transmission device in wireless power transmission system
NZ702514A (en) * 2012-05-29 2016-11-25 Humavox Ltd Wireless charging device
JP6437386B2 (en) * 2015-05-21 2018-12-12 日本信号株式会社 Block shape judgment system
KR101929617B1 (en) * 2016-07-13 2018-12-14 이승현 Electronic system comprising an energy convertor, and the method of operating the same
JP6572944B2 (en) * 2017-06-23 2019-09-11 株式会社近計システム Breaker detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260067B2 (en) 2011-12-20 2016-02-16 Honda Motor Co., Ltd. Onboard battery management system

Also Published As

Publication number Publication date
JP2003164076A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
US8469319B2 (en) Railway sensor communication system and method
JP3878464B2 (en) Power supply system and circuit breaker using the system
KR20120131167A (en) Detecting the presence of a vehicle
JP2008056179A (en) Train position detection apparatus
KR101645519B1 (en) Breakdown point detection system of distribution line
KR101154817B1 (en) Lightning alert device and system for power transmission towers
US11858538B2 (en) Cable car and method for operating a cable car
CN112482265B (en) Barrier gate system, automatic driving vehicle and method for vehicle to pass through barrier gate
US20160335889A1 (en) Integrated lamp assembly and method
KR100531735B1 (en) Railroad crossing control system
EP3650260A1 (en) A diagnosis network of a plurality of electrified lines and/or of sliding contacts of a plurality of electric traction vehicles and corresponding method
CN110136377A (en) Early warning system and device are prevented invading by track
JP4070125B2 (en) Vehicle control device
JP3492780B2 (en) Train collision prevention apparatus and method
JP2011113413A (en) Obstacle warning device and obstacle warning method
CN103781263A (en) Automatic detecting method for street lamp failure, device and system thereof
KR20080086632A (en) Method and system for showing the forword traffic accident using sensor network
JP6437386B2 (en) Block shape judgment system
CN114743390B (en) Variable information board capable of interacting with unmanned vehicle information and implementation method
JP2018114791A (en) Railroad crossing control system and railway control system using optical cable
JP4112929B2 (en) Obstacle detection device and obstacle notification system
JP2005121488A (en) Obstacle detection device
CN215730202U (en) Intelligent management system for expressway service area
CN211765596U (en) Electric locomotive wrong-trip warning system
KR200367187Y1 (en) Radio Transmitter of Flashovered Tower for Overhead Transmission Line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees