JP3877550B2 - How to operate a wrought copper furnace - Google Patents

How to operate a wrought copper furnace Download PDF

Info

Publication number
JP3877550B2
JP3877550B2 JP2001189856A JP2001189856A JP3877550B2 JP 3877550 B2 JP3877550 B2 JP 3877550B2 JP 2001189856 A JP2001189856 A JP 2001189856A JP 2001189856 A JP2001189856 A JP 2001189856A JP 3877550 B2 JP3877550 B2 JP 3877550B2
Authority
JP
Japan
Prior art keywords
mass
copper
furnace
metal particles
pig iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001189856A
Other languages
Japanese (ja)
Other versions
JP2003003219A (en
Inventor
祐史郎 平井
敏博 永戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2001189856A priority Critical patent/JP3877550B2/en
Publication of JP2003003219A publication Critical patent/JP2003003219A/en
Application granted granted Critical
Publication of JP3877550B2 publication Critical patent/JP3877550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、銅製錬において溶錬炉から供給されるカワを吹錬し、粗銅を生成するための錬銅炉の操業方法に関するものである。
【0002】
【従来の技術】
従来、銅を製錬する際、その方法の一つとして、溶錬炉において原料である銅精鉱をCuS、FeSを主体とするカワとし、その後、錬銅炉においてカワから粗銅を得る方法が知られている。錬銅炉としてPS転炉が一般的に用いられている。
【0003】
転炉では、まず銅品位50〜66mass%、温度1150〜1180℃のカワにSiOを主体とする溶剤を加え、羽口から酸素富化空気を吹き込み、造カン期を行い、カワ中のFeをスラグとして炉外へ排出する。その後、Cu2Sを主体とするカワに羽口から空気あるいは酸素富化空気を吹き込み、造銅期を行い、粗銅を生成する。
【0004】
造カン期に生成するスラグは、十分炉外に排出するのに必要な流動性を得るため、スラグ温度を1300℃〜1330℃まで上げる必要がある。またスラグ中のCu含有率は4〜10mass%あり、浮遊選鉱法により、濃縮・回収し、溶錬炉・錬銅炉に繰り返す。
したがって、スラグ中のCu含有率は低い方がよい。
【0005】
【発明が解決しようとする課題】
スラグ中Cu含有率は、造カン期終点カワの銅品位に大きく影響され、造カン期終点のカワの銅品位が75mass%を超えると、スラグ中のCu含有率は飛躍的に増大し、カワ品位1mass%のアップで、スラグ中のCu含有率は0.5〜1.5mass%上昇することがよく知られている。
【0006】
実操業では、図4に示すごとくカワの銅品位1mass%のアップで、スラグ中のCu含有率は2.0〜2.5mass%上昇する。
【0007】
カワの銅品位が、63〜68mass%(但し、67から68mass%の場合は除く)の操業では、造カン期において、スラグの流動性が十分に得られる1300〜1330℃まで上昇させるには、造カン期終点のカワCu品位は、78〜80mass%となり、スラグ中Cu含有率は、レードル排出後の表層付近のサンプルで、6〜7mass%となる。
【0008】
本発明は、錬銅炉に供給されるカワの銅品位が63〜68mass%の操業において、スラグ中のCu含有率を低下させることを可能とする、錬銅炉の操業方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
そこで、以下の発明を提案する。
(1)錬銅炉に供給されるカワの銅品位が63〜68mass%(但し、67から68mass%の場合は除く)の造カン期操業において、固体のFe:70mass%以上、C:1〜5mass%含む金属粒を、カワ1 t 当り 12.5 18.75kg添加することにより、第1造カン期
の終点におけるカワの銅品位を低下させることで、スラグ中のCu含有率を低
下させる錬銅炉の操業方法。
【0010】
(2)上記(1)記載の固体の金属粒の粒径が3〜50mmφである錬銅炉の操業方法。
(3)上記(1)〜(2)の何れかに記載の金属粒のCu品位が20mass%以下である錬銅炉の操業方法。
【0011】
(4)上記(1)〜(3)の何れかに記載の固体の金属粒が、銑鉄である錬銅炉の操業方法。
(5)上記(1)〜(4)の何れかに記載の固体の金属粒が、一般廃棄物、産業廃棄物又は、産業廃棄物から産出したものを溶融還元した銅を含む銑鉄である錬銅炉の操業方法。
【0012】
以下、本発明の構成を詳しく説明する。通常、カワの銅品位が、63〜68mass%(但し、67から68mass%の場合は除く)の操業においては、1150〜1180℃から1300〜1330℃への温度上昇の熱源として、造カン期前半には、主にカワ中の溶融状態のFeSの酸化反応熱が、造カン期後半には主に溶融状態のCuSの酸化反応熱が利用される。この反応に必要な酸素は、炉内に供給される空気あるいは酸素富化空気中の酸素である。
【0013】
吹き込み酸素1Nm3あたりの反応熱量からカラミ・ガス等の反応生成物質の顕熱量を差し引いた値を有効熱量とすると、送風酸素濃度28vol%の場合、溶融状態のFeSの吹き込み酸素1Nm3あたりの有効熱量は、1、750Kcal/Nm3−O2、また、溶融状態のCuSの吹き込み酸素1Nm3あたりの有効熱量は650Kcal/Nm3−O2である。
【0014】
一方、固体の金属粒は、Fe:70mass%以上、C:1〜5mass%含むものが望ましい。この範囲に入る金属粒は発熱量が適当であり、本発明の目的であるスラグ中のCu含有率を低下させる為に望ましいからである。さらに、金属粒が、たとえば一般ゴミの「直接溶融・資源化プラント」から発生した銑鉄粒では、組成がFe80mass%、C 4mass%、Si 4mass%、Cu 4mass%の銑鉄粒の、送風酸素濃度28vol%での吹き込み酸素1Nm3あたりの有効熱量は3,020Kcal/Nm3−O2と、溶融状態のFeSの約1.7倍、溶融状態のCuSの約4.6倍となっている。
【0015】
PS転炉では、吹込み酸素量が律速であり、吹き込み酸素1Nm3あたりの有効熱量が大きい固体銑鉄粒の利用により、湯温上昇速度を早めることで、スラグの流動性が十分に得られる1300〜1330℃まで昇温するのに必要な酸素量を減少し、造カン期終点のカワ品位を低下させ、スラグ中のCu含有率低下を可能とする。
【0016】
カワの銅品位が、63〜68mass%(但し、67から68mass%の場合は除く)の操業において、カワ1t当り金属粒5〜20kgを利用することにより、1300℃に達する時点でのカワの銅品位は、計算上、Fe:70mass%以上、C:1〜5mass%含む金属粒を利用しない場合の78〜80%から、76〜78%に低下する。
【0017】
PS転炉にカワ装入口から固体銑鉄粒を投入する場合、装入口付近のガス速度は8〜10Nm/secであり、上記金属粒を飛散させないためには経験的に粒径3mmφ以上が必要である。また、表面積を多く確保し反応を促進させ、更には、上記金属粒を溶湯中に漂わせ、炉底への滞積を防止するためには、経験的に50mmφ以下が必要である。
【0018】
Cu等有価物が含まれるものであれば、有価物の回収に繋がり、更に好適である。しかし、Cu品位が20mass%より多く、鉄分が70mass%未満となると、発熱量が減少し、溶融状態のFeSに対しての優位性がなくなる。
【0019】
【作用】
本発明により、錬銅炉に固体の上記金属粒を添加することにより、スラグ中のCu含有率を低下させることができる。
【0020】
【実施例】
実施例(1)
第一造カン期、カワの銅品位65mass%のカワ160tを、送風空気量580Nm3/minと酸素濃度90vol%の酸素 70Nm3/minを混合した酸素濃度28.3vol%の送風650Nm3/minで吹錬している途中に、銑鉄粒2t(銑鉄粒 2000kg /カワ 160 t= 12.5 kg / t)を投入した実施例を図1に示す。
【0021】
投入した銑鉄粒は、一般ゴミの「直接溶融・資源化プラント」から発生した銑鉄粒で、組成がFe82mass%、C3.8mass%、Si4.6mass%、Cu4.2mass%であった。
【0022】
送風開始17〜19分に銑鉄粒2tを投入し、送風空気量580Nm3/minと酸素濃度90vol%の酸素 70Nm3/minを混合した酸素濃度28.3vol%の送風650Nm3/minで吹錬した場合、カラミ温度の上昇は図1の通りである。(カラミ温度は、転炉羽口より消耗型熱電対を差し込み、測定した。)カラミの流動性が良好となる1300℃に達する送風時間は、銑鉄粒装入なしの場合の40分に対して、本実施例では36分に短縮した。同様の試験を3回実施し、造カン期終点のカワ品位は、76.9mass%となり、スラグ中Cu含有率は平均で4.0mass%であった。
【0023】
実施例(2)
第一造カン期、カワの銅品位65mass%のカワ160tを、送風空気量580Nm3/minと酸素濃度90vol%の酸素 70Nm3/minを混合した酸素濃度28.3vol%の送風650Nm3/minで吹錬している途中に、銑鉄粒3t(銑鉄粒 3000kg /カワ 160 t= 18.75 kg / t)を投入した実施例を図2に示す。
【0024】
投入した銑鉄粒は、一般ゴミの「直接溶融・資源化プラント」から発生した銑鉄粒で、組成がFe82mass%、C3.8mass%、Si4.6mass%、Cu4.2mass%であった。
【0025】
送風開始17〜19分に銑鉄粒3tを投入し、送風空気量580Nm3/minと酸素濃度90vol%の酸素 70Nm3/minを混合した酸素濃度28.3vol%の送風650Nm3/minで吹錬した場合、カラミ温度の上昇は図2の通りである。カラミの流動性が良好となる1300℃に達する送風時間は、銑鉄粒装入なしの場合の40分に対して、本実施例では35分に短縮した。同様の試験を3回実施し、造カン期終点のカワの銅品位は、75.6mass%となり、スラグ中Cu含有率は平均で3.0mass%であった。
【0026】
比較例(1)
第一造カン期、カワの銅品位65mass%のカワ160tを、送風空気量580Nm3/minと酸素濃度90vol%の酸素 70Nm3/minを混合した酸素濃度28.3vol%の送風650Nm3/minで吹錬した場合、カラミ温度の上昇は図3の通りで、送風時間41分でカラミの流動性が良好となる1300℃に達した。
【0027】
造カン期終点のカワの銅品位は、78.3mass%となり、スラグ中Cu含有率は5.0mass%であった。このことにより、実施例1及び2に比べると、それぞれ1mass%、2mass%スラグ中のCuロスが多いことが把握される。
【0028】
【発明の効果】
以上の結果から、PS転炉に供給されるカワの銅品位が63mass%から68mass%(但し、67から68mass%の場合は除く)の条件で操業を行う場合、酸素1Nm3当たりの有効熱量が大きい固体の前記金属粒特に銑鉄粒の利用により、昇温速度を早め、錬銅炉での第1造カン期の終点におけるカワの銅品位を低下させることで、錬銅炉でのスラグ中のCu含有率を1〜2mass%低下させることができる。
【図面の簡単な説明】
【図1】本発明の一態様である銑鉄粒2t装入時の第1造カン期の温度推移を示す。
【図2】本発明の一態様である銑鉄粒3t装入時の第1造カン期の温度推移を示す。
【図3】従来技術による銑鉄粒を装入しない一態様の第1造カン期の温度推移を示す。
【図4】錬銅炉でのカワの銅品位とカラミ中のCu含有率の関係を示す。
[0001]
[Industrial application fields]
The present invention, a matte supplied from the smelting furnace in a copper smelting and blowing, it relates to operation methods Nedo furnace for producing blister copper.
[0002]
[Prior art]
Conventionally, when the smelting of copper, as one of the method, the copper concentrate as a raw material and river mainly Cu 2 S, the FeS in smelting furnace, then obtain a blister copper from matte in Nedo furnace The method is known. A PS converter is generally used as a wrought copper furnace.
[0003]
The converter copper grade 50~66Mass%, a solvent mainly composed of SiO 2 in the river temperature 1,150 to 1,180 ° C. was added first, blowing oxygen enriched air from the tuyere, performs granulation cans phase, Fe in river Is discharged out of the furnace as slag. Then, blowing air or oxygen-enriched air from the tuyere to matte consisting mainly of Cu2S, performs granulation copper phase, to produce blister copper.
[0004]
In order to obtain the fluidity necessary for the slag produced during the can-making stage to be sufficiently discharged outside the furnace, it is necessary to raise the slag temperature to 1300 ° C to 1330 ° C. Moreover, Cu content rate in slag is 4-10 mass%, it concentrates and collect | recovers with a flotation method, and it repeats to a smelting furnace and a wrought copper furnace.
Therefore, the lower the Cu content in the slag, the better.
[0005]
[Problems to be solved by the invention]
Cu content in the slag is greatly influenced by the copper grade of concrete cans phase endpoint River, the river copper grade of concrete Kang period ending exceeds 75 mass%, Cu content in the slag dramatically increases, river It is well known that the Cu content in the slag increases by 0.5 to 1.5 mass% when the quality is increased by 1 mass%.
[0006]
In actual operation, at river copper grade 1 mass% of up as shown in FIG. 4, Cu content in the slag increases 2.0~2.5mass%.
[0007]
To increase the copper grade of Kawa to 63 to 68 mass% (except for 67 to 68 mass%) , to 1300 to 1330 ° C where the fluidity of slag is sufficiently obtained in the can-making stage The Kawa Cu quality at the end of the can-making stage is 78 to 80 mass%, and the Cu content in the slag is 6 to 7 mass% in the sample in the vicinity of the surface layer after ladle discharge.
[0008]
The present invention, in operation copper grade of 63~68Mass% of river supplied to Nedo furnace, makes it possible to reduce the Cu content in the slag, providing operations methods Nedo furnace It is the purpose.
[0009]
[Means for Solving the Problems]
Therefore, the following invention is proposed.
(1) Nedo furnace copper grade is from 63 to 6 8mass% of river supplied to (except in the case of 68Mass% from 67) in the forming cans phase operation of solid Fe: 70 mass% or more, C: 1 the metal particles containing ~5mass%, by adding river 1 t per 12.5 ~ 18.75kg, first forming the can life
The operation method of the wrought copper furnace which reduces the Cu content rate in slag by reducing the copper grade of the river in the end point of .
[0010]
(2) A method for operating a wrought copper furnace, wherein the solid metal particles according to (1) have a particle size of 3 to 50 mmφ.
(3) A method for operating a wrought copper furnace in which the Cu quality of the metal particles according to any one of (1) to (2) is 20 mass% or less.
[0011]
(4) A method for operating a wrought copper furnace, wherein the solid metal particles according to any one of (1) to (3) are pig iron.
(5) The smelting that the solid metal particle in any one of said (1)-(4) is pig iron containing the copper which melted and reduced what was produced from general waste, industrial waste, or industrial waste How to operate a copper furnace.
[0012]
Hereinafter, the configuration of the present invention will be described in detail. Usually, copper grade of leather, 63~ 68mass% (except in the case of 68Mass% from 67) in the operation of, as a heat source of the temperature rise of the 1,300-1,330 ° C. from 1,150-1,180 ° C., granulated cans phase half the mainly oxidation reaction heat of FeS in the molten state in the river is, oxidation reaction heat of Cu 2 S primarily molten in the second half forming the can-life is used. The oxygen necessary for this reaction is oxygen in the air or oxygen-enriched air supplied into the furnace.
[0013]
If the value obtained by subtracting the sensible heat of reaction products such as calami and gas from the amount of reaction per 1 Nm 3 of blown oxygen is the effective heat, the effective amount per 1 Nm 3 of blown oxygen of FeS in the molten state when the blown oxygen concentration is 28 vol% heat quantity, 1,750Kcal / Nm 3 -O 2, also available heat per oxygen 1 Nm 3 blowing Cu 2 S in a molten state is 650Kcal / Nm 3 -O 2.
[0014]
On the other hand, it is preferable that the solid metal particles include Fe: 70 mass% or more and C: 1 to 5 mass%. This is because the metal particles falling within this range have a suitable calorific value and are desirable for reducing the Cu content in the slag, which is the object of the present invention. Further, in the case of pig iron particles generated from, for example, a “direct melting / recycling plant” for general waste, the blown oxygen concentration of 28 vol.% Of pig iron particles having a composition of Fe 80 mass%, C 4 mass%, Si 4 mass%, and Cu 4 mass% available heat per oxygen 1 Nm 3 blown at% and 3,020Kcal / Nm 3 -O 2, about 1.7 times the FeS in the molten state, which is about 4.6 times the Cu 2 S in the molten state .
[0015]
In PS converter, the amount of oxygen blown is rate-limiting, and by using solid pig iron particles with a large effective heat per 1 Nm 3 of blown oxygen, the fluidity of slag can be sufficiently obtained by increasing the hot water temperature rising speed 1300 ~1330 reduces the amount of oxygen necessary to warm to ° C., to reduce the matte quality of concrete cans phase endpoint, allowing reduction Cu content in the slag.
[0016]
Copper grade of leather, from 63 to 6 8mass% (except in the case of 68Mass% from 67) in the operation of, by using the matte 1t per metal particle 5 to 20 kg, the river at the time of reaching 1300 ° C. Copper quality falls to 76-78% from 78-80% when not using the metal grain which contains Fe: 70 mass% or more and C: 1-5 mass% in calculation.
[0017]
When you put the solid pig iron grains from kava charging hole to the PS converter, the gas velocity in the vicinity spout is 8 to 10 nm / sec, in order not to scatter the metal particles is required empirically or particle size 3mmφ is there. Further, in order to secure a large surface area and promote the reaction, and further to float the metal particles in the molten metal and prevent the accumulation in the furnace bottom, it is necessary to have 50 mmφ or less empirically.
[0018]
If valuables such as Cu are contained, it will lead to recovery of valuables, and is more preferable. However, when the Cu quality is more than 20 mass% and the iron content is less than 70 mass%, the calorific value is reduced and the superiority to the molten FeS is lost.
[0019]
[Action]
According to the present invention, the Cu content in the slag can be reduced by adding the solid metal particles to the wrought copper furnace.
[0020]
【Example】
Example (1)
First forming cans period, the copper grade 65Mass% of river 160t of river, blowing air volume 580 nm 3 / min and the oxygen concentration 90 vol% of oxygen 70 Nm 3 / min was mixed with the oxygen concentration 28.3Vol% of the blower 650 nm 3 / min FIG. 1 shows an embodiment in which pig iron particles 2t (pig iron particles 2000 kg / kawa 160 t = 12.5 kg / t) were added during the blowing process.
[0021]
The injected pig iron grains were pig iron grains generated from the “direct melting / resource recycling plant” of general garbage, and the composition was Fe82 mass%, C 3.8 mass%, Si 4.6 mass%, Cu 4.2 mass%.
[0022]
Pig iron grains 2t put into the start of air blowing 17-19 minutes, blowing in blowing air volume 580 nm 3 / min and the oxygen concentration 90 vol% of oxygen 70 Nm 3 / min was mixed with the oxygen concentration 28.3Vol% of the blower 650 nm 3 / min In this case, the increase in the calami temperature is as shown in FIG. (The calami temperature was measured by inserting a consumable thermocouple from the converter tuyere.) The air blowing time to reach 1300 ° C. at which the fluidity of the calami is good is 40 minutes when no pig iron particles are charged. In this example, the time was shortened to 36 minutes. The same test was carried out three times, the river quality at the end of the can-making period was 76.9 mass%, and the Cu content in the slag was 4.0 mass% on average.
[0023]
Example (2)
First forming cans period, the copper grade 65Mass% of river 160t of river, blowing air volume 580 nm 3 / min and the oxygen concentration 90 vol% of oxygen 70 Nm 3 / min was mixed with the oxygen concentration 28.3Vol% of the blower 650 nm 3 / min FIG. 2 shows an example in which 3 t of pig iron particles ( 3000 kg of pig iron particles / 160 t = 18.75 kg / t) was added during the blowing process.
[0024]
The injected pig iron grains were pig iron grains generated from the “direct melting / resource recycling plant” of general garbage, and the composition was Fe82 mass%, C 3.8 mass%, Si 4.6 mass%, Cu 4.2 mass%.
[0025]
Pig iron grains 3t was placed in the start of air blowing 17-19 minutes, blowing in blowing air volume 580 nm 3 / min and the oxygen concentration 90 vol% of oxygen 70 Nm 3 / min was mixed with the oxygen concentration 28.3Vol% of the blower 650 nm 3 / min In this case, the increase in the calami temperature is as shown in FIG. The blowing time to reach 1300 ° C. at which the flowability of the calami is good was shortened to 35 minutes in this example, compared to 40 minutes in the case without pig iron grain charging. Similar tests were conducted three times, matte copper grade of concrete Kang phase endpoint, becomes 75.6Mass%, the Cu content in the slag was 3.0 mass% on average.
[0026]
Comparative Example (1)
First forming cans period, the copper grade 65Mass% of river 160t of river, blowing air volume 580 nm 3 / min and the oxygen concentration 90 vol% of oxygen 70 Nm 3 / min was mixed with the oxygen concentration 28.3Vol% of the blower 650 nm 3 / min In the case of blowing, the increase in the calami temperature was as shown in FIG. 3, and reached 1300 ° C. at which the fluidity of the calami became good after 41 minutes.
[0027]
Kawa copper grade of concrete Kang phase endpoint, becomes 78.3mass%, Cu content in the slag was 5.0 mass%. From this, it is understood that the Cu loss in the 1 mass% and 2 mass% slag is larger than that in Examples 1 and 2, respectively.
[0028]
【The invention's effect】
These results, 6 8mass% copper grade of matte to be fed to the PS converter from 63mass% (except in the case of 68Mass% from 67) When performing operations in conditions of available heat of oxygen per 1 Nm 3 by the metal particles, especially the use of pig iron grains is large solids, accelerate the rate of temperature increase, by reducing the copper grade leather at the end of the first forming cans life in Nedo furnace slag in Nedo furnace Cu content can be reduced by 1 to 2 mass%.
[Brief description of the drawings]
FIG. 1 shows a temperature transition in a first canning period when 2t pig iron particles according to one embodiment of the present invention are charged.
FIG. 2 is a graph showing the temperature transition in the first can-making period when 3t of pig iron particles according to one embodiment of the present invention is charged.
FIG. 3 is a graph showing a temperature transition in a first can-making period in one embodiment in which pig iron particles are not charged according to the prior art.
Figure 4 shows the relationship between the matte copper grade and Cu content in Karami of at Nedo furnace.

Claims (5)

錬銅炉に供給されるカワの銅品位が63〜68mass%(但し、67から68mass%の場合は除く)の造カン期操業において、固体のFe:70mass%以上、C:1〜5mass%含む金属粒を、カワ1 t 当り 12.5 18.75kg添加することにより、第1造カン期の終点におけるカワの銅品位を低下させることで、スラグ中のCu含有率を低下させることを特徴とする錬銅炉の操業方法。Copper grade is from 63 to 6 8mass% of river supplied to Nedo furnace (except in the case of 68Mass% from 67) in the forming cans phase operation of solid Fe: 70 mass% or more, C: 1~5mass% the metal particles comprising, by adding river 1 t per 12.5 ~ 18.75kg, by decreasing the copper grade leather at the end of the first forming cans period, characterized by decreasing the Cu content in the slag How to operate a wrought copper furnace. 固体の金属粒の粒径が3〜50mmφであることを特徴とする請求項1記載の錬銅炉の操業方法。The method for operating a wrought copper furnace according to claim 1, wherein the solid metal particles have a particle size of 3 to 50 mmφ. 固体の金属粒のCu品位が20mass%以下であることを特徴とする請求項1〜2記載の錬銅炉の操業方法。The method for operating a wrought copper furnace according to claim 1 or 2, wherein the Cu quality of the solid metal particles is 20 mass% or less. 固体の金属粒が、銑鉄であることを特徴とする請求項1〜3記載の錬銅炉の操業方法。The method for operating a wrought copper furnace according to claim 1, wherein the solid metal particles are pig iron. 固体の金属粒が、一般廃棄物、産業廃棄物又は、産業廃棄物から産出したもの等を溶融還元した銅を含む銑鉄であることを特徴とする請求項1〜4記載の錬銅炉の操業方法。5. The operation of a wrought copper furnace according to claim 1, wherein the solid metal particles are pig iron containing copper obtained by melting and reducing general waste, industrial waste, or industrial waste. Method.
JP2001189856A 2001-06-22 2001-06-22 How to operate a wrought copper furnace Expired - Lifetime JP3877550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001189856A JP3877550B2 (en) 2001-06-22 2001-06-22 How to operate a wrought copper furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001189856A JP3877550B2 (en) 2001-06-22 2001-06-22 How to operate a wrought copper furnace

Publications (2)

Publication Number Publication Date
JP2003003219A JP2003003219A (en) 2003-01-08
JP3877550B2 true JP3877550B2 (en) 2007-02-07

Family

ID=19028715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001189856A Expired - Lifetime JP3877550B2 (en) 2001-06-22 2001-06-22 How to operate a wrought copper furnace

Country Status (1)

Country Link
JP (1) JP3877550B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3921511B2 (en) * 2002-02-28 2007-05-30 Dowaメタルマイン株式会社 Operation method of copper converter

Also Published As

Publication number Publication date
JP2003003219A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
RU2510419C1 (en) Method of making blister copper directly from copper concentrate
WO2019071788A1 (en) Manufacturing method using copper and iron containing mixing slag
WO2019071796A1 (en) Method for recovering valuable components from mixed slag containing nickel and iron
CN104313227B (en) Utilize the method and system carrying out carbon thermal reduction containing fusant waste heat
WO2019071794A1 (en) Method for recovering valuable components from mixed slag containing copper and iron
JP2001247922A (en) Method for operating copper smelting furnace
JP3877550B2 (en) How to operate a wrought copper furnace
US4614542A (en) Method of operating a copper converter
JP4751100B2 (en) Copper recovery method by flotation
JP2001073021A (en) Flux for refining metal and production thereof
JP3747155B2 (en) How to operate a wrought copper furnace
CN111780558B (en) Continuous production device and production method for niobium-iron alloy
JP4525453B2 (en) Slag fuming method
KR100226897B1 (en) Agglomerate method of pre-reduction fine ore for molten pig iron
CN109371251B (en) Treatment method of dust containing chromium and nickel
JP4761937B2 (en) Blowing method for converter
JP4761938B2 (en) Blowing method for converter
JP4112523B2 (en) Dissolution treatment method of hydrous fine iron-containing material in copper PS converter
JP2002317230A (en) Method for recovering copper from slag of copper converter
JP3817601B2 (en) Calami treatment method of wrought copper furnace in copper smelting
CN110205432B (en) Method for producing iron-sulfur alloy
JP2003064427A (en) Operating method for copper refining furnace
Hundermark et al. Process description and short history of Polokwane Smelter
WO1997012066A1 (en) Chromium ore smelting reduction process
WO2020208768A1 (en) Highly efficient molten iron alloy refining method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3877550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term