JP3877545B2 - Manufacturing method and apparatus for manufacturing modified cross-section pipe - Google Patents

Manufacturing method and apparatus for manufacturing modified cross-section pipe Download PDF

Info

Publication number
JP3877545B2
JP3877545B2 JP2001162415A JP2001162415A JP3877545B2 JP 3877545 B2 JP3877545 B2 JP 3877545B2 JP 2001162415 A JP2001162415 A JP 2001162415A JP 2001162415 A JP2001162415 A JP 2001162415A JP 3877545 B2 JP3877545 B2 JP 3877545B2
Authority
JP
Japan
Prior art keywords
molding material
core mold
constant
fed
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001162415A
Other languages
Japanese (ja)
Other versions
JP2002355894A (en
Inventor
徹 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2001162415A priority Critical patent/JP3877545B2/en
Publication of JP2002355894A publication Critical patent/JP2002355894A/en
Application granted granted Critical
Publication of JP3877545B2 publication Critical patent/JP3877545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、筒状芯型に成形材料を巻き付けて管を製造するに際し、その管を横断面が非円形とする異形断面管の製造方法及びその製造装置に関するものである。ここで、非円形とは、卵形、楕円形及び四角形、六角形などの多角形等をいう(以下、同じ)。
【0002】
【従来の技術】
強化プラスチック管には、繊維強化プラスチック管(以下、FRP管という)や、そのFRP管において、その中間層にレジンモルタルを配した管(以下、FRPM管という)がある。
【0003】
その強化プラスチック管の製造方法の一例として、フィラメントワインディング法があり、その方法を、この発明の一実施例を示す図1、図2を参照して説明すると、回転するマンドレル1上に紙、セロハンテープなどから成る離型テープ2を螺旋状に巻き付けて芯型を形成し、その芯型上にFRP3、レジンモルタル4、FRP5を順々に送り出し巻き付けてマンドレル1の軸方向に送り出し、加熱器8で加熱硬化させた後、引取機9により引き取って所要長さに切断し、芯型から引き抜いて強化プラスチック管Pを得る。この管PはFRPM管であって、FRP管においては、レジンモルタル4が介在されず、FRP3、5が所要層巻回される。図中、6はホッパ、7はモルタル搬送用不織布である。
【0004】
ところで、近年、コンクリート製ボックスカルバートの老朽化が進み、その更新用二次覆工材として、FRP管又はFRPM管をそのカルバート内に敷設することが行われている。そのカルバートQの横断面形状として、図8(a)乃至(j)に記載のものがあり、それらのカルバートQに敷設する二次覆工材用管Pは、流通面積の減少を極力抑える点から、でき得るかぎり、そのカルバートQの内面形状に沿ったものが好ましい。より好ましくは、相似形がよい。図中、WはカルバートQ内を流れる水位を示す。
【0005】
しかし、各カルバートQの内面形状に相似の横断面形状の管Pを製造することは、非常に困難であり、例えば、図8(h)に示すカルバートQにあっては、図9に示すように、横断面楕円形の管Pを使用する。
【0006】
その横断面楕円形の強化プラスチック管Pを製造する方法として、特公昭61−55461号公報(公報1)、特公昭61−60765号公報(公報2)及び特開平9−314581号公報(公報3)などに記載のものがある。これらは、いずれも、上述の製造方法において、管Pが硬化する前に、ローラ(ロール)又は成形板で、管P外面を押圧して、管Pの横断面形状を円形から、楕円、卵形、四角形などの多角形に変形させた後、硬化するものである。
【0007】
【発明が解決しようとする課題】
上記のローラ及び押え板による異形断面管の製造は、そのローラ装置、押え板装置を別途に必要とし、その設置スペース、コスト面で問題がある。また、ローラ、押え板による成形は、精度の面及び内部応力などの品質面で劣る。
【0008】
この発明は、管Pの成形後に変形させるのではなく、成形当初から、芯型上に異形断面管を成形するようにすることを課題とする。
【0009】
【課題を解決するための手段】
上記課題を達成するために、この発明は、まず、芯型そのものの横断面を異形としたのである。異形であれば、その芯型に成形材料が巻き付けられれば、その成形材料層からなる管も同一の異形横断面となり、巻付けであるから、その成形精度も高くなる。
【0010】
つぎに、この発明は、芯型への成形材料の送り込み量を常に一定となるようにしたのである。この送り込み量が一定であることにより、上記成形材料層の厚み、すなわち、管厚(肉厚)が一定に維持されるからである。このことから、「送り込み量を常に一定にする」とは、「管厚(肉厚)を常に一定にする」と同一の意味となる。
【0011】
【発明の実施の形態】
この発明の実施形態としては、芯型をその筒軸周りに回転させ、その芯型外面に成形材料を送り込んで芯型周りに巻き付けて成形材料層を形成し、その筒状に形成された成形材料層を芯型から引き抜いて、強化プラスチック管Pを製造する方法において、前記芯型の横断面を非円形とし、かつ、芯型への前記成形材料の送り込み量を常に一定として、前記成形材料層の厚みを一定となるようにした構成を採用し得る。
【0012】
ここで、上述のように、「送り込み量を常に一定とする」とは、「管厚(肉厚)を常に一定とする」の意味であるため、その一定とは、芯型の外面に巻き付けられる成形材料の量が一定で、管厚が一定となることをいい、その「送り込み量を常に一定とする」手段としては、▲1▼成形材料が送り込まれる点の芯型外周面周速度が一定の場合は単位時間当たりの送り込み量も一定とする、▲2▼その芯型外周面周速度が一定でない場合は単位時間当たりの送り込み量をその周速度変化に応じて変化させる、等が考えられる。芯型外面周速度が一定の場合は送り込まれる成形材料に慣性力が働かない利点がある。
【0013】
なお、周速度が変化する場合には、その変化に応じて成形材料が芯型に引かれる張力が変化し、成形材料の送り込み量に影響を与えるため、その張力は一定にすることが好ましい。特に、ガラス繊維などの帯状物に樹脂を含浸させたり、帯状不織布に樹脂(モルタル)を載せて芯型に送り込む場合には、周速度の変化によってそのガラス繊維などの帯状物への張力が変化し、その張力変化により樹脂などが絞られるなどの現象が生じて「送り込み量が常に一定」にならない。このため、この場合には、 その張力が一定になるように制御することが好ましい。
【0014】
その成形材料の送り込み量を常に一定とする具体的手段としては、▲1▼上記芯型の成形材料が送り込まれる点の外面周速度が一定になるように芯型を回転させるとともに成形材料を一定量送り込むようにしたり、▲2▼成形材料を押出機により直接又間接に芯型外面に送り込み、 その押出機による押出し量を、成形材料が送り込まれる点の外面周速度の変化に対応して調節したり、▲3▼成形材料を押出機又はホッパーから直接に芯型に送り込む場合には、周速度の変化に合わせて、その押出機又はホッパーの送り出し口の大きさをダンパー等により制御することにより、成形材料の送り込み量が常に一定になるようにしたり、さらに、▲4▼成形材料が帯状のものである場合には、その送り込み径路の途中にアキューム手段を設け、芯型を一定速度で回転させ、その芯型の成形材料が送り込まれる点の外面周速度の変化に対応して、アキューム手段により、成形材料の送り込み速度を調節する、ものなどを採用する。
【0015】
その前者の外面周速度が一定の手段から成る製造装置としては、上記芯型を回転させるその回転速度が調整可能なサーボモータと、上記成形材料を芯型外面に送り込む押出機とから成り、その押出機から成形材料を単位時間当り一定量送り込むとともに、前記サーボモータにより芯型外面周速度が一定になるような構成のものなどを採用し得る。このとき、成形材料はホッパーから押出機に供給されるが、その際、押出機から芯型に直接に送り込んだり、直接に送り込まずに不織布に成形材料を載置して送り込むようにすることもできる。また、押出機を省略して、ホッパーから自重により送り込むようにもし得る。
【0016】
後者の外面周速度が一定でない手段から成る製造装置としては、芯型を回転させる手段と、帯状成形材料を芯型外面に送り込んで巻き付ける手段と、その成形材料の送り込み径路の途中に設けたアキューム手段とから成り、そのアキューム手段は、送り込み径路の案内ローラ間に、ばねにより成形材料を径路から押し出すアキュームローラを設けたものとし、芯型の周速度変化による成形材料の巻き付け速度の変化に応じてそのアキュームローラが進退するようにした構成のものを採用し得る。アキュームローラを進退する手段としては、ばね以外に、カム、サーボモータ駆動のねじジャッキ、伸縮量調整可能な油圧シリンダなどの機械的なものを採用できる。
【0017】
上記実施形態において、成形材料を押出機又はホッパーから直接に芯型に送り込む場合においては、押出機又はホッパーの送り出し口と芯型外面の間隙が芯型の回転につれて変化するため、その送り出し口も芯型に接離可能として、送り出し口が芯型に干渉しないようにするとともに、常に、その間隙が一定になるようにしてその間隙変化が送り込み量に影響がないようにする。ただし、間隙変化を送り出し量の制御で吸収できる場合には、干渉しない程度に、その送り出し口を一定の高さにしても良い。
【0018】
なお、成形材料として樹脂等を含浸(載置)しないガラス繊維などのみの場合でもこの発明を採用し得る。
【0019】
【実施例】
図1乃至図3に一実施例を示し、この実施例は図6に示す、内面がFRP層3、中間がレジンモルタル層4、外面がFRP層5から成る横断面楕円形のFRPM管Pを製造するものであって、その管Pは、図9に示すように図8(h)のカルバートQの二次覆工材として使用する。
【0020】
その製造装置は、図1、図2に示すように、台Dに芯型となる円筒状マンドレル1が片持ち梁状に支持されて、その軸周りに回転自在となっており、図示しない駆動機により、一定角速度で回転する。マンドレル1の横断面は、その外面が図6の管Pの内面に対応する楕円形となっている。マンドレル1の軸方向にはセロハンテープ2、FRP3、レジンモルタル4及びFRP5が順々に送り込まれて巻き付けられ、それらの成形材料から成る管Pが形成される。その管Pは、マンドレル1の横断面形状と同じ楕円形となって、加熱器8で硬化した後、引取機9により引き取られて、所要の長さに切断される。
【0021】
セロハンテープ2は、図示しないボビンからマンドレル1の回転力によって引き出されて巻き付く。FRP3、5は、図3に示すように、強化繊維クロスボビン31から繊維クロス32が引き出され、そのクロス32が樹脂含浸槽33内を通って形成されてマンドレル1に至っている。この途中の案内ロール34、34間にアキューム手段40が設けられ、この手段40は、上壁に昇降自在に支持されたアキュームローラ41とそのローラ41を下方に付勢するコイルばね42とから成る。このコイルばね42の付勢力は、アキューム手段40からマンドレル1に向うクロス32の張力Tに応じてそのばね42が伸縮し、槽33からクロス32が一定速度で送り出されるようになっている。繊維クロス32に代えて、繊維ローピング、繊維テープ、繊維マットなどの種々の材料が採用できる。
【0022】
ここで、図7に示すように、楕円形のマンドレル1にクロス32を巻回する場合、マンドレル1の角速度をω、その短軸半径をr1 、長軸半径をr2 とすると、短軸の周速度V1 =r1 ・ω、長軸の周速度V2 =r2 ・ω=r2 /r1 ・V1 となる。これから、長軸の周速度V2 は短軸の周速度V1 の長短軸長さ比に比例することとなる。
【0023】
このため、長軸の周速度V2 は短軸の周速度V1 に比例して大きくなり、1/4周期を境としてその周速度の増減が変わることとなり、これに伴うクロス32などの成形材料の余長を常時吸収しなければならないこととなる。この吸収するための任意の位置での余長Liは、(V2 −V1 )・π/2ωiとなる。この余長Liがアキューム手段40によって確保されるようにする。
【0024】
これにより、槽33から送り出されるクロス32の速度は同じとなって、その樹脂含浸量も一定となり、マンドレル1へのクロス32の巻回速度が変化しても、その積層厚は一定となる。
【0025】
このアキューム手段40は、FRP3、5のみならず、不織布7に載置して送り込むモルタル4についても採用し得る。
【0026】
アキューム手段40としては、図4に示すように、樹脂含浸槽33の後段に送り出しローラ43を設けた構成とし、このローラ43によって、槽33からは一定速度でクロス32を送り出し、マンドレル1の巻き込み速度に応じて、案内ローラ34、34間のクロス32が同図実線から鎖線の間でアキュームされるようにすることができる。このとき、「最大たるみ」時が短軸径r1 の周速度に対応し、「最小たるみ(直線状)」時が長軸径r2 の周速度に対応するようにする。
【0027】
上記各実施例は、マンドレル1の回転速度(角速度)が一定の場合であったが、サーボモータなどにより、マンドレル1の角速度を可変させて、そのクロス32の巻き込み速度(マンドレル1の巻き込み点の外面周速度)が常に一定となるようにして、そのクロス32の槽33の通過時間を一定にして、その積層厚を一定とすることもできる。
【0028】
このとき、上記V1 =V2 から、r1 ω1 =r2 ω2 となり、ω2 =r1 /r2 ・ω1 となる。このため、角速度をω1 〜r1 /r2 ・ω1 に変化させればよいこととなる。任意位置の周速度は、Vi =ri ・ωi =ωi {r2 2cos2 (ωi t) +r1 2sin(ωi t) }1/2 =一定となり、このようになる様、単位時間(t)内でωi を制御する。時間は、0〜π/2ωi (s)、角速度は、r1 /r2 ・ω1 〜ω1 (rad/s)となる。
【0029】
また、図5に示すように、図4の実施例において、クロス32を掴んでその通過抵抗力を変化し得る治具45を設けて、周速度の変化に基く張力の変化に応じて、その握力を変化させ芯型からのクロス32への張力を一定にすることができる。このとき、治具45の図示矢印前後の移動によっても張力を調整しうる。握力を省略してこの前後動のみで張力を調整してもよい。
【0030】
因みに、これらの実施例において、図9に示すように、楕円管PをカルバートQの二次覆工材とする場合、その管Qの各寸法を図示のごとくとし、必要流量を1.392(m3 /s)とすると、長短軸比(短軸r1 /長軸r2 )に応じて、その流量は、表1に示す値となって、長軸半径長さr2 =1.1m以上であればよいことがわかる。なお、丸管の場合には、900mm径のものとなり、流量=π/4×0.92 ×0.2252/3 ×(1/300)1/3 /0.0012=1.132m3 /sとなって、必要流量を得ることができない。
【0031】
【表1】

Figure 0003877545
【0032】
この発明は、連続成形、バッチ成形のいずれにも採用でき、また、芯型には、回転マンドレルによるもの、固定マンドレルにダンボールなどの紙帯を巻回して形成するもの、特開平9−314581号公報に記載のように、無端スチールベルトによるもの等、周知のものを採用し得る。
【0033】
【発明の効果】
この発明は、以上のようにして、芯型に巻回される成形材料の厚みを一定にしたので、断面異形の芯型に直接にその成形材料を巻回して、異形断面管を製造できるので、その生産性がよいうえに、精度も高いものとし得る。
【図面の簡単な説明】
【図1】一実施例の概略正面図
【図2】同実施例の概略斜視図
【図3】同実施例の要部概略図
【図4】他の実施例の要部概略図
【図5】他の実施例の要部概略図
【図6】楕円管の断面図
【図7】楕円管の製造説明図
【図8】カルバートの各態様図
【図9】カルバートの二次覆工材施工説明図
【符号の説明】
1 マンドレル
2 離型テープ
3、5 FRP
4 レジンモルタル
6 ホッパー
7 不織布
31 強化繊維クロスボビン
32 強化繊維クロス
33 樹脂含浸槽
34 クロス案内ロール
40 アキューム手段
41 アキュームローラ
42 コイルばね
43 クロス送り出しローラ
44 クロス引張り治具
P 異形断面管
Q カルバート[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a modified cross-section tube having a non-circular cross section and a manufacturing apparatus therefor when a tube is manufactured by winding a molding material around a cylindrical core mold. Here, the term “non-circular” means an oval, an ellipse, a polygon such as a quadrangle, a hexagon, or the like (hereinafter the same).
[0002]
[Prior art]
The reinforced plastic pipe includes a fiber reinforced plastic pipe (hereinafter referred to as an FRP pipe) and a pipe (hereinafter referred to as an FRPM pipe) in which resin mortar is arranged in an intermediate layer of the FRP pipe.
[0003]
As an example of the manufacturing method of the reinforced plastic pipe, there is a filament winding method, which will be described with reference to FIGS. 1 and 2 showing an embodiment of the present invention. Paper and cellophane are placed on a rotating mandrel 1. A release tape 2 made of tape or the like is spirally wound to form a core mold, and FRP3, resin mortar 4 and FRP5 are sequentially fed onto the core mold and wound in the axial direction of the mandrel 1, and a heater 8 After being cured by heating, the sheet is taken out by a take-up machine 9 and cut to a required length, and is pulled out from the core mold to obtain a reinforced plastic pipe P. This pipe P is an FRPM pipe. In the FRP pipe, the resin mortar 4 is not interposed, and the FRPs 3 and 5 are wound in a required layer. In the figure, 6 is a hopper and 7 is a non-woven fabric for conveying mortar.
[0004]
By the way, in recent years, aging of concrete box culverts has progressed, and as a renewal secondary lining material, an FRP pipe or an FRPM pipe has been laid in the culvert. As the cross-sectional shape of the culvert Q, there are those shown in FIGS. 8A to 8J, and the secondary lining material pipe P laid on the culvert Q suppresses the reduction of the flow area as much as possible. Therefore, it is preferable to follow the inner shape of the culvert Q as much as possible. More preferably, a similar shape is good. In the figure, W indicates the water level flowing through the culvert Q.
[0005]
However, it is very difficult to manufacture the pipe P having a cross-sectional shape similar to the inner surface shape of each culvert Q. For example, in the culvert Q shown in FIG. 8 (h), as shown in FIG. The tube P having an elliptical cross section is used.
[0006]
As a method of manufacturing the reinforced plastic pipe P having an elliptical cross section, Japanese Patent Publication No. 61-55461 (Publication 1), Japanese Patent Publication No. 61-60765 (Publication 2) and Japanese Patent Publication No. 9-314581 (Publication 3). ) Etc. In any of the above-described manufacturing methods, before the tube P is cured, the outer surface of the tube P is pressed with a roller (roll) or a molded plate, and the cross-sectional shape of the tube P is changed from a circle to an ellipse, an egg. It is cured after being deformed into a polygon such as a shape or a quadrangle.
[0007]
[Problems to be solved by the invention]
The manufacture of the modified cross-section pipe using the roller and the pressing plate requires the roller device and the pressing plate device separately, and there is a problem in the installation space and cost. In addition, molding with a roller and a pressing plate is inferior in terms of quality such as accuracy and internal stress.
[0008]
This invention makes it a subject not to make it deform | transform after the shaping | molding of the pipe | tube P but to shape | mold a deformed cross-section pipe | tube on a core type from the shaping | molding initial stage.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, first, the cross section of the core mold itself is modified. If the shape is irregular, if the molding material is wound around the core mold, the tube made of the molding material layer also has the same irregular cross section and is wound, so that the molding accuracy is increased.
[0010]
Next, according to the present invention, the amount of the molding material fed into the core mold is always kept constant. This is because the thickness of the molding material layer, that is, the tube thickness (thickness) is maintained constant because the feed amount is constant. For this reason, “the feed amount is always constant” has the same meaning as “the tube thickness (wall thickness) is always constant”.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As an embodiment of the present invention, a core mold is rotated around its cylinder axis, a molding material is fed around the core mold outer surface and wound around the core mold to form a molding material layer, and the molding formed into the cylinder shape In the method for producing a reinforced plastic pipe P by pulling out a material layer from a core mold, the molding material is made such that the cross section of the core mold is non-circular and the amount of the molding material fed into the core mold is always constant. A configuration in which the thickness of the layer is constant may be employed.
[0012]
Here, as described above, “the feed amount is always constant” means “the tube thickness (wall thickness) is always constant”, so that the constant is wound around the outer surface of the core mold. This means that the amount of molding material to be produced is constant and the tube thickness is constant. As a means for “constant feeding amount always constant”, (1) the peripheral speed of the outer peripheral surface of the core die at the point where the molding material is fed It is considered that the feed rate per unit time is constant if it is constant, and (2) if the peripheral speed of the core type outer peripheral surface is not constant, the feed amount per unit time is changed according to the change in the peripheral speed. It is done. When the outer peripheral speed of the core die is constant, there is an advantage that inertia force does not act on the molding material to be fed.
[0013]
When the peripheral speed changes, the tension with which the molding material is pulled to the core mold changes in accordance with the change, and this affects the amount of the molding material that is fed. Therefore, the tension is preferably constant. In particular, when impregnating a strip of glass fiber with a resin or placing resin (mortar) on a strip of nonwoven fabric and feeding it into the core mold, the tension on the strip of glass fiber or the like changes due to changes in peripheral speed. However, a phenomenon such as the resin being squeezed due to the change in tension occurs and the “feed amount is not always constant”. Therefore, in this case, it is preferable to control the tension to be constant.
[0014]
Specific means for always keeping the amount of the molding material fed are as follows: (1) The core mold is rotated and the molding material is kept constant so that the outer peripheral speed at the point where the core mold molding material is fed is constant. (2) The molding material is fed directly or indirectly to the outer surface of the core by an extruder, and the extrusion amount by the extruder is adjusted according to the change in the outer peripheral speed at the point where the molding material is fed. Or when the molding material is fed directly from the extruder or hopper to the core mold, the size of the extruder or hopper delivery port is controlled by a damper or the like in accordance with the change in the peripheral speed. In this case, the amount of the molding material fed is always kept constant, and, further, (4) if the molding material is in a strip shape, an accumulating means is provided in the middle of the feeding path, Is used at a constant speed, and the feeding speed of the molding material is adjusted by the accumulating means in response to the change in the outer peripheral speed at the point where the core molding material is fed.
[0015]
The former manufacturing apparatus consisting of means having a constant outer peripheral speed comprises a servo motor capable of adjusting the rotational speed of the core mold and an extruder for feeding the molding material to the outer surface of the core mold. A configuration in which a fixed amount of molding material is fed per unit time from the extruder and the outer peripheral speed of the core die is made constant by the servo motor can be adopted. At this time, the molding material is supplied from the hopper to the extruder. At that time, the molding material may be fed directly from the extruder to the core mold, or may be placed on the nonwoven fabric without being fed directly. it can. Further, the extruder may be omitted and the hopper may be fed by its own weight.
[0016]
As the manufacturing apparatus comprising the latter means whose outer peripheral speed is not constant, there are means for rotating the core mold, means for feeding and winding the belt-shaped molding material around the outer surface of the core mold, and an accumulator provided in the middle of the feeding path of the molding material The accumulating means is provided with an accumulating roller that pushes the molding material out of the path by a spring between the guide rollers of the feeding path, and responds to changes in the winding speed of the molding material due to changes in the peripheral speed of the core mold. A configuration in which the accumulator roller advances and retreats can be adopted. As a means for advancing and retracting the accumulator roller, mechanical means such as a cam, a servo motor driven screw jack, and a hydraulic cylinder capable of adjusting the amount of expansion and contraction can be adopted in addition to the spring.
[0017]
In the above embodiment, when the molding material is fed directly from the extruder or hopper to the core mold, the gap between the extruder or hopper feed port and the core mold outer surface changes as the core mold rotates, so the feed port is also It is possible to contact and separate from the core mold so that the delivery port does not interfere with the core mold, and the gap is always kept constant so that the change in the gap does not affect the feeding amount. However, if the gap change can be absorbed by controlling the delivery amount, the delivery port may be set to a certain height so as not to interfere.
[0018]
It should be noted that the present invention can be adopted even when only a glass fiber or the like not impregnated (mounted) with a resin or the like is used as a molding material.
[0019]
【Example】
FIG. 1 to FIG. 3 show an embodiment, and this embodiment shows an FRPM pipe P having an elliptical cross section consisting of an FRP layer 3 on the inner surface, a resin mortar layer 4 on the middle, and an FRP layer 5 on the outer surface, as shown in FIG. The pipe P to be manufactured is used as a secondary lining material for the culvert Q in FIG. 8 (h) as shown in FIG.
[0020]
As shown in FIG. 1 and FIG. 2, the manufacturing apparatus has a cylindrical mandrel 1 that is supported by a base D in a cantilever shape and is rotatable about its axis. The machine rotates at a constant angular velocity. The cross section of the mandrel 1 has an oval shape whose outer surface corresponds to the inner surface of the tube P in FIG. Cellophane tape 2, FRP 3, resin mortar 4 and FRP 5 are sequentially fed and wound in the axial direction of mandrel 1 to form tube P made of these molding materials. The tube P has the same elliptical shape as the cross-sectional shape of the mandrel 1, is cured by the heater 8, is taken up by the take-up machine 9, and is cut to a required length.
[0021]
The cellophane tape 2 is drawn out by a rotating force of the mandrel 1 from a bobbin (not shown). As shown in FIG. 3, the fiber cloth 32 is drawn out from the reinforcing fiber cloth bobbin 31, and the cloth 32 is formed through the resin impregnation tank 33 to reach the mandrel 1. An accumulating means 40 is provided between the guide rolls 34 on the way. The accumulating means 40 includes an accumulating roller 41 supported by an upper wall so as to be movable up and down, and a coil spring 42 for urging the roller 41 downward. . The urging force of the coil spring 42 expands and contracts according to the tension T of the cloth 32 from the accumulator 40 toward the mandrel 1, and the cloth 32 is sent out from the tank 33 at a constant speed. Instead of the fiber cloth 32, various materials such as fiber roping, fiber tape, and fiber mat can be employed.
[0022]
Here, as shown in FIG. 7, when the cross 32 is wound around an elliptical mandrel 1, if the angular velocity of the mandrel 1 is ω, its short axis radius is r 1 , and its long axis radius is r 2 , the short axis The peripheral speed V 1 = r 1 · ω and the long axis peripheral speed V 2 = r 2 · ω = r 2 / r 1 · V 1 . From this, the long axis peripheral speed V 2 is proportional to the long / short axis length ratio of the short axis peripheral speed V 1 .
[0023]
For this reason, the peripheral speed V 2 of the long axis increases in proportion to the peripheral speed V 1 of the short axis, and the increase / decrease of the peripheral speed changes with a quarter period as a boundary. The extra length of the material must be absorbed at all times. The extra length Li at an arbitrary position for absorption is (V 2 −V 1 ) · π / 2ωi. This extra length Li is ensured by the accumulating means 40.
[0024]
Thereby, the speed of the cloth 32 sent out from the tank 33 becomes the same, the amount of the resin impregnation becomes constant, and even if the winding speed of the cloth 32 around the mandrel 1 changes, the laminated thickness becomes constant.
[0025]
The accumulating means 40 can be used not only for the FRPs 3 and 5 but also for the mortar 4 that is placed on the nonwoven fabric 7 and fed.
[0026]
As shown in FIG. 4, the accumulating means 40 has a structure in which a feed roller 43 is provided at the subsequent stage of the resin impregnation tank 33, and the cross 32 is sent out from the tank 33 at a constant speed by this roller 43, and the mandrel 1 is wound up. Depending on the speed, the cross 32 between the guide rollers 34 can be accumulated between the solid line and the chain line in FIG. At this time, the “maximum sag” time corresponds to the peripheral speed of the short shaft diameter r 1 , and the “minimum sag (linear)” time corresponds to the peripheral speed of the long axis diameter r 2 .
[0027]
In each of the above embodiments, the rotation speed (angular velocity) of the mandrel 1 is constant. However, the angular velocity of the mandrel 1 is varied by a servo motor or the like, and the winding speed of the cross 32 (the winding point of the mandrel 1 is changed). The outer circumferential speed) is always constant, the passage time of the cloth 32 through the tank 33 is constant, and the lamination thickness can be constant.
[0028]
At this time, from V 1 = V 2 , r 1 ω 1 = r 2 ω 2 and ω 2 = r 1 / r 2 · ω 1 . Therefore, so that the may be changed angular velocity to ω 1 ~r 1 / r 2 · ω 1. The peripheral speed at an arbitrary position is V i = r i · ω i = ω i {r 2 2 cos 2i t) + r 1 2 sin (ω i t)} 1/2 = constant, and thus Similarly, ω i is controlled within a unit time (t). The time is 0 to π / 2ω i (s), and the angular velocity is r 1 / r 2 · ω 1 to ω 1 (rad / s).
[0029]
In addition, as shown in FIG. 5, in the embodiment of FIG. 4, a jig 45 that can grasp the cross 32 and change its passing resistance force is provided, and according to the change in tension based on the change in the peripheral speed, The gripping force can be changed to keep the tension from the core mold to the cloth 32 constant. At this time, the tension can also be adjusted by the movement of the jig 45 before and after the illustrated arrow. The grip force may be omitted and the tension may be adjusted only by this longitudinal movement.
[0030]
Incidentally, in these embodiments, as shown in FIG. 9, when the elliptical pipe P is used as the secondary lining material of the culvert Q, the dimensions of the pipe Q are set as shown, and the required flow rate is 1.392 ( m 3 / s), according to the long / short axis ratio (short axis r 1 / long axis r 2 ), the flow rate becomes the value shown in Table 1, and the long axis radius length r 2 = 1.1 m. It can be seen that the above is sufficient. In the case of a round tube, the diameter is 900 mm, and the flow rate = π / 4 × 0.9 2 × 0.225 2/3 × (1/300) 1/3 /0.0012=1.132 m 3 / S and the required flow rate cannot be obtained.
[0031]
[Table 1]
Figure 0003877545
[0032]
The present invention can be employed for both continuous molding and batch molding. The core mold is formed by a rotating mandrel, the core is formed by winding a paper strip such as cardboard around a fixed mandrel, Japanese Patent Application Laid-Open No. 9-314581 As described in the official gazette, a known one such as an endless steel belt may be employed.
[0033]
【The invention's effect】
In the present invention, since the thickness of the molding material wound around the core mold is made constant as described above, it is possible to manufacture the irregular cross-section tube by winding the molding material directly on the core mold having an irregular section. The productivity is good and the accuracy can be high.
[Brief description of the drawings]
FIG. 1 is a schematic front view of an embodiment. FIG. 2 is a schematic perspective view of the embodiment. FIG. 3 is a schematic view of a main portion of the embodiment. ] Schematic diagram of the main part of another embodiment [FIG. 6] Cross-sectional view of an elliptical tube [FIG. 7] Manufacturing explanatory diagram of the elliptical tube [FIG. 8] Each aspect of culvert [FIG. 9] Construction of secondary lining material of culvert Illustration [Explanation of symbols]
1 Mandrel 2 Release tape 3, 5 FRP
4 Resin mortar 6 Hopper 7 Non-woven fabric 31 Reinforced fiber cross bobbin 32 Reinforced fiber cloth 33 Resin impregnation tank 34 Cross guide roll 40 Accumulating means 41 Accumulating roller 42 Coil spring 43 Cross feeding roller 44 Cross tension jig P Deformed cross section pipe Q Calvert

Claims (6)

芯型をその筒軸周りに回転させ、その芯型外面に成形材料3、4、5を送り込んで芯型周りに巻き付けて成形材料層を形成し、その筒状に形成された成形材料層を芯型から引き抜いて、強化プラスチック管Pを製造する方法において、
上記成形材料を押出機により直接に上記芯型外面に送り込むとともに、上記芯型の横断面を非円形とし、かつ、その押出機による押出し送り込み量を、前記成形材料が送り込まれる点の外面周速度の変化に対応して調節し、前記芯型への前記成形材料の送り込み量を常に一定として、上記成形材料層の厚みが一定となるようにしたことを特徴とする異形断面管の製造方法。
The core mold is rotated around the cylinder axis, the molding materials 3, 4, and 5 are fed around the core mold and wound around the core mold to form a molding material layer, and the molding material layer formed in the cylindrical shape is In the method of manufacturing the reinforced plastic pipe P by pulling it out from the core mold,
The molding material directly to the core type outer surface feed write free and together by an extruder, a cross section of the core-type and non-circular, and the outer surface of that extrusion infeed amount of the extruder, the molding material is fed Production of a modified cross-section tube characterized in that the thickness of the molding material layer is made constant by always adjusting the amount of the molding material fed to the core mold to be constant in accordance with the change in peripheral speed. Method.
芯型をその筒軸周りに回転させ、その芯型外面に成形材料3、4、5を送り込んで芯型周りに巻き付けて成形材料層を形成し、その筒状に形成された成形材料層を芯型から引き抜いて、強化プラスチック管Pを製造する方法において、
上記成形材料をホッパーから自重により直接に上記芯型外面に送り込むとともに、上記芯型の横断面を非円形とし、かつ、前記ホッパーからの送り込み量を、前記成形材料が送り込まれる点の外面周速度の変化に対応して調節し、前記芯型への前記成形材料の送り込み量を常に一定として、上記成形材料層の厚みが一定となるようにしたことを特徴とする異形断面管の製造方法。
The core mold is rotated around the cylinder axis, the molding materials 3, 4, and 5 are fed around the core mold and wound around the core mold to form a molding material layer, and the molding material layer formed in the cylindrical shape is In the method of manufacturing the reinforced plastic pipe P by pulling it out from the core mold,
The molding material directly to the core type outer surface feed write free and both by its own weight from the hopper, the cross section of the core type is non-circular, and the outer surface of the feed amount from the hopper, that the molding material is fed Production of a modified cross-section tube characterized in that the thickness of the molding material layer is made constant by always adjusting the amount of the molding material fed to the core mold to be constant in accordance with the change in peripheral speed. Method.
請求項1又は2に記載の異形断面管の製造方法において、上記押出機又はホッパーからの送り込み量を、前記成形材料が送り込まれる点の外面周速度の変化に対応して調節することに代えて、上記芯型の上記成形材料が送り込まれる点の外面周速度が一定になるように芯型を回転させるとともに、成形材料を単位時間当り一定量送り込むようにして、上記成形材料の送り込み量を常に一定としたことを特徴とする異形断面管の製造方法。  In the manufacturing method of the irregular cross-section pipe according to claim 1 or 2, instead of adjusting the amount of feeding from the extruder or hopper according to the change in the outer peripheral speed of the point at which the molding material is fed. The core mold is rotated so that the outer peripheral speed at the point at which the molding material of the core mold is fed is constant, and the molding material is fed at a constant amount per unit time so that the amount of the molding material fed is always reduced. A method of manufacturing a modified cross-section tube characterized by being constant. 芯型をその筒軸周りに回転させ、その芯型外面に成形材料3、4、5を送り込んで芯型周りに巻き付けて成形材料層を形成し、その筒状に形成された成形材料層を芯型から引き抜いて、強化プラスチック管Pを製造する方法において、
上記芯型の横断面を非円形とし、上記成形材料が帯状のものである場合には、その送り込み径路の途中にアキューム手段40を設け、芯型を一定速度で回転させ、その芯型の上記成形材料が送り込まれる点の外面周速度の変化に対応して、前記アキューム手段により、前記成形材料の送り込み速度を調節して、前記芯型への前記成形材料の送り込み量を常に一定として、前記成形材料層の厚みが一定となるようにしたことを特徴とする異形断面管の製造方法。
The core mold is rotated around the cylinder axis, the molding materials 3, 4, and 5 are fed around the core mold and wound around the core mold to form a molding material layer, and the molding material layer formed in the cylindrical shape is In the method of manufacturing the reinforced plastic pipe P by pulling it out from the core mold,
When the cross-section of the core mold is non-circular and the molding material is strip-shaped, accumulating means 40 is provided in the middle of the feeding path, the core mold is rotated at a constant speed, and the core mold Corresponding to the change in the outer peripheral speed of the point at which the molding material is fed, the accumulating means adjusts the feeding speed of the molding material so that the feeding amount of the molding material to the core mold is always constant, A method of manufacturing a modified cross-section tube, characterized in that the thickness of the molding material layer is constant.
請求項3で引用する請求項1に記載の異形断面管の製造方法をなす装置において、上記芯型を回転させるその回転速度が調整可能なサーボモータにより上記芯型外面周速度が一定になるようにしたことを特徴とする異形断面管の製造装置。  4. An apparatus for manufacturing a modified cross-section pipe according to claim 1 cited in claim 3, wherein said core mold outer peripheral speed is made constant by a servo motor capable of adjusting the rotation speed of said core mold. An apparatus for manufacturing a modified cross-section pipe, characterized in that 請求項4に記載の異形断面管の製造方法をなす装置において、芯型を回転させる手段と、帯状成形材料を芯型外面に送り込んで巻き付ける手段と、その成形材料の送り込み径路の途中に設けたアキューム手段とから成り、そのアキューム手段は、送り込み径路の案内ローラ間に、ばねにより成形材料を径路から押し出すアキュームローラを設けたものとし、芯型の周速度変化による成形材料の巻き付け速度の変化に応じてそのアキュームローラが進退するようにしたことを特徴とする異形断面管の製造装置。  In the apparatus which makes the manufacturing method of the unusual cross-section pipe of Claim 4, it provided in the middle of the means to rotate a core mold | type, the means to send and wind a strip | belt-shaped molding material on an outer surface of a core mold, and the feeding path of the molding material The accumulating means includes an accumulating roller that pushes the molding material out of the path by a spring between the guide rollers of the feeding path, and changes the winding speed of the molding material due to a change in the peripheral speed of the core mold. The apparatus for producing a modified cross-section tube, wherein the accumulator roller is advanced and retracted accordingly.
JP2001162415A 2001-05-30 2001-05-30 Manufacturing method and apparatus for manufacturing modified cross-section pipe Expired - Lifetime JP3877545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001162415A JP3877545B2 (en) 2001-05-30 2001-05-30 Manufacturing method and apparatus for manufacturing modified cross-section pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001162415A JP3877545B2 (en) 2001-05-30 2001-05-30 Manufacturing method and apparatus for manufacturing modified cross-section pipe

Publications (2)

Publication Number Publication Date
JP2002355894A JP2002355894A (en) 2002-12-10
JP3877545B2 true JP3877545B2 (en) 2007-02-07

Family

ID=19005542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001162415A Expired - Lifetime JP3877545B2 (en) 2001-05-30 2001-05-30 Manufacturing method and apparatus for manufacturing modified cross-section pipe

Country Status (1)

Country Link
JP (1) JP3877545B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011002840A1 (en) * 2011-01-18 2012-07-19 Sgl Carbon Se Fiber-reinforced composite component and method for producing a fiber-reinforced composite component
CN113858662B (en) * 2021-08-26 2023-10-20 大连理工大学 Temperature difference energy deep sea water taking pipeline and preparation method thereof

Also Published As

Publication number Publication date
JP2002355894A (en) 2002-12-10

Similar Documents

Publication Publication Date Title
EP0516673B1 (en) Fibre reinforced composites
RU2087301C1 (en) Method of helical cutting of tubular material
US4395298A (en) Method and apparatus for making toothed belts and belt made employing same
JP4326112B2 (en) Manufacturing method of tire carcass
CN102632609A (en) Continuous molding device for fiber reinforced composite pipes
US4412882A (en) Method for producing composite pipes
US4028164A (en) Process and apparatus for the continuous obtainment by displacement of cylindrical or prismatic hollow bodies produced with fibre-reinforced synthetic resins
EP3683036B1 (en) Apparatus and method for continuously producing reinforced plastic pipe using transfer film
JP3877545B2 (en) Manufacturing method and apparatus for manufacturing modified cross-section pipe
JPH0335099B2 (en)
KR102147369B1 (en) Facility for manufacturing the composite pole
JPH0358589B2 (en)
JPH08187797A (en) Method and apparatus for producing cylindrical fiber reinforced plastic
CN107416582A (en) A kind of carbon fibre initial rinse tow backing paper stripping means and device
CN107336448A (en) Vertical pulling winds the process units of combined glass steel pipe
CA1281621C (en) Apparatus for laying a continuous strip of elastomeric material onto a surface
US4295917A (en) Winding of fibres
JPS62776B2 (en)
JP2012516238A (en) Apparatus and method for winding a strip with varying strip thickness, in particular a metal strip
JPH04229238A (en) Manufacture of rubber strip reinforced as intermediate material for tire production and its device
US3414453A (en) Apparatus for making laminated webs of filamentary reinforcing material
JP4007827B2 (en) Method and apparatus for manufacturing synthetic resin rod
JP2552641B2 (en) Long pipe winding accumulator made of resin
JPH09239850A (en) Production of reinforced resin pipe
TWI233882B (en) Apparatus and method for producing a tube of varying cross-section

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3877545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

EXPY Cancellation because of completion of term