JP3877293B2 - Light guide sheet - Google Patents

Light guide sheet Download PDF

Info

Publication number
JP3877293B2
JP3877293B2 JP2002031738A JP2002031738A JP3877293B2 JP 3877293 B2 JP3877293 B2 JP 3877293B2 JP 2002031738 A JP2002031738 A JP 2002031738A JP 2002031738 A JP2002031738 A JP 2002031738A JP 3877293 B2 JP3877293 B2 JP 3877293B2
Authority
JP
Japan
Prior art keywords
light
refractive index
light guide
guide sheet
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002031738A
Other languages
Japanese (ja)
Other versions
JP2003232931A (en
Inventor
由久 宇佐美
Original Assignee
富士フイルムホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルムホールディングス株式会社 filed Critical 富士フイルムホールディングス株式会社
Priority to JP2002031738A priority Critical patent/JP3877293B2/en
Publication of JP2003232931A publication Critical patent/JP2003232931A/en
Application granted granted Critical
Publication of JP3877293B2 publication Critical patent/JP3877293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、導光シートに関し、特に、導光光量の多い導光シートに関するものである。
【0002】
【従来の技術】
従来、太陽光を室内に取り込むシステムとしては、
A.キャットウォークのような通りに光反射板を設置してその光反射板により太陽光を反射させて取り込むもの(例えば、特開平10−269811号、特開平5−60964号、特開平11−25726号)、
B.天窓より直接太陽光を取り込むもの(例えば、特開平11−218720号)、
C.光ファイバーを使用するもの(例えば、特開平7−57525号、特開平7−335004号)、等、
が提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記のA、Bでは任意の場所に太陽光を導いて照明に用いるのは困難であり、Cでは多数の光ファイバーを必要とし、手軽に安価に設置することは困難であった。
【0004】
そこで、導光体としてシート状のプラスチックフィルムを用いて太陽光を所定の位置に導光することが考えられる。
【0005】
しかしながら、プラスチックフィルムとしては屈折率が1.6を越えるような高屈折率のものは実用的には存在せず、そのため導光光量を多くすることが困難である。なお、導光光量は導光体のNAに依存し、導光体のNAは導光部の屈折率が高ければ高い程大きくなる。
【0006】
本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、太陽光等を多く取り込んで任意の場所へ導くことができる導光シートを提供することである。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明の導光シートは、透明フィルムの両面に、高屈折率微粒子を有機樹脂中に混入させて屈折率を上げた塗布層であって前記透明フィルムより屈折率が高い層が形成されてなり、導光シート外に導光される光を出すことなく導光することを特徴とするものである。
【0008】
本発明においては、透明フィルムの両面に、高屈折率微粒子を有機樹脂中に混入させて屈折率を上げた塗布層であってその透明フィルムより屈折率が高い層が形成されてなり、導光光の全反射は高屈折率の塗布層と空気の界面で行われるので、開口数の大きな光も全反射されるため、透明フィルムだけの場合よりも多い光量の光が導光されることになり、太陽光等の導光光量をより多くすることができる。また、本発明のこのような導光シートは、微粒子を有機樹脂中に混入させて透明フィルムの表面に塗布するだけの簡単な方法により作成できる点も大きなメリットである。
【0009】
【発明の実施の形態】
本発明の基本は、導光シートとして、任意の屈折率の透明フィルムの両面に、高屈折率微粒子を有機樹脂中に混入させて屈折率を上げた塗布層を設けたものを用いることにより、その導光シートが導光できる導光光量を多くするようにすることである。ここで、有機樹脂中に混入する高屈折率微粒子としては、屈折率がプラスチックのそれより高いZnO(屈折率1.90)、TiO2 (屈折率2.3〜2.7)、CeO2 (屈折率1.95)、Sb2 5 (屈折率1.71)、SnO2 、ITO(屈折率1.95)、Y2 3 (屈折率1.87)、La2 3 (屈折率1.95)、ZrO2 (屈折率2.05)、Al2 3 (屈折率1.63)等の金属酸化物、金属窒素化物、金属炭化物等があり、その微粒子の粒子径は導光光の散乱を避けるためにその導光光の波長と同等以下のものを用いる。
【0010】
図1に、本発明の1実施例の導光シート1の平面図(a)と断面図(b)を示す。この導光シート1は透明有機樹脂製で比較的低屈折率の中心シート10と、その両側の面に塗布され、高屈折率微粒子12を透明有機樹脂中に混入させて屈折率を上げた比較的高屈折率の表面層11とからなるものであり、その一端に入射された太陽光等の光は、高屈折率の表面層11と空気の界面で全反射されながら導光シート1中を多重反射しながら他端へ導光される。この際、全反射は高屈折率の表面層11と空気の界面で行われるので、開口数の大きな光も全反射されるので、中心シート10だけの場合よりも多い光量の光がこの導光シート1中を導光されることになる。
【0011】
具体例としては、例えば、中心シート10に屈折率nがn≒1.5で厚さ200μmのPET(ポリエチレンテレフタレート)フィルムを用い、表面層11として、粒径0.1μmのTiO2 を20w%のPVA(ポリビニルアルコール)中に分散して厚さ50μmに塗布硬化させ屈折率nがn≒1.65の層からなるものを導光シート1として用いることができる。
【0012】
なお、導光シート1の導光部の両側面に何ら反射部材を設けない場合、その両側面から導光光が一部漏れて逃げてしまう恐れがあるので、この両側面に反射性の塗料層、低屈折率の塗料層あるいは金属反射層14を塗布等により形成することが望ましい。
【0013】
ここで、中心シート10の厚さとしては、10〜20000μmの範囲に選ぶことが好ましい。この範囲の厚さより薄すぎると、その強度が低下しすぎ、また、光の導光効率が低下してしまう。厚すぎると、設置時にフレキシブルに曲げることが困難となる。また、材料費も高価となる。この厚さの範囲は、100〜10000μmの範囲がさらに好ましく、150〜2000μmの範囲が最も好ましい。
【0014】
また、表面層11の厚さとしては1〜200μmの範囲が好ましい。この範囲の厚さより薄すぎると、微粒子12を混入した表面層11を塗布によって形成し難くなる。厚すぎると、層形成が困難になるばりでなく、導光シート1を曲げたときに表面層11が割れる等の破壊の問題が起きやすくなる。この厚さの範囲は、5〜100μmの範囲がさらに好ましい。
【0015】
さらに、表面層11中に混入させる高屈折率微粒子12の粒径としは、導光する光の波長にも依存するが、1〜1000nmの範囲に選ぶことが好ましく、5〜500nmの範囲がさらに好ましく、10〜300nmの範囲が最も好ましい。
【0016】
なお、図1の形態では、導光シート1の高屈折率の表面層11の表面側では空気との界面で全反射が起こり表面層11間の内部を導光光が導かれるものであるが、この界面に異物等が付着したり接触するとその全反射条件が崩れ外部に光が漏れる恐れがあるので、図2に断面図を示すように、表面層11の表面側にもクラッドの作用をする低屈折率透明層13を設けるようにしてもよい。
【0017】
図3は、上記のような導光シート1を用いて太陽光を屋内の照明に利用する場合のその構成の1例を示す側面図であり、導光シート1は長尺に構成され、その長手方向の両端部2と3の所定長さ部分の同じ側面は、表面平均粗さRaのサンドブラスト処理面(凹凸面、粗面)5に加工されており、他方の面は平滑面となっている。また、その両端部2と3の間の部分4は両面共平滑面となっている。ここで、両端部2と3のサンドブラスト処理面(凹凸面、粗面)5は表面層11にのみ設けてもよいが、表面層11の凹凸面に沿うように中心シート10の表面も凹凸面になっており、中心シート10の凹凸面上に表面層11が形成されている形態でもよい。なお、表面層11あるいは中心シート10の凹凸面は、熱転写、成形(射出成形、押出成形等)において熱可塑性樹脂に型を接触させて作成したり、微細ビーズをバインダーに添加して表面に塗布したり、レジストにて形成する等、種々の方法を採用して作成することが可能である。
【0018】
図3において、導光シート1はこのような構成であり、一端部2は光導入部、中間部4は導光部、他端部3は光出射部として機能するもので、光導入部2の片面の凹凸面5に入射した光はそこで導光シート1内に散乱され、大部分の散乱光は導光シート1の両面に空気の屈折率と表面層11の屈折率の差で決まる臨界角以上の角度で入射して全反射され、導光シート1内で多重反射されて導光される光に変換され、その導光光は導光部4を経て他端の光出射部3へと導かれ、その片面の凹凸面5に入射した光はそこで大部分導光シート1外に散乱されて出射し、照明光等として利用可能になる。
【0019】
なお、光導入部2の端面、光出射部3の端面に入射した光は外部に出てしまい、有効に利用されない。そこで、少なくともこれら端面には、Ag,Al,Au,Pt,Cu等の光反射金属、白色塗料等の光反射層6を施して、それら端面に入射した導光光を反対側に反射させて有効に利用できるようにすることが望ましい。
【0020】
ここで、光導入部2及び光出射部3の片面に形成される凹凸面2の表面平均粗さRaとしては、0.1〜1000μmの範囲に選ぶことが効率的に光を導入するのに好ましく、さらには1〜100μmの範囲に選ぶことがより好ましく、その範囲が2〜50μmの範囲に選ぶことが最も好ましい。
【0021】
本発明のこのような導光シート1は、図4に模式的に示すように、家屋Hの屋根上にその光導入部2の凹凸面5が天空を向くように設置し、その光導入部2に続く導光部4を任意に曲げて家屋Hの屋内に光出射部3の凹凸面5が下方を向くように光出射部3を設置することにより、太陽Sからの太陽光を光導入部2の凹凸面5により導光シート1内に導入し、その太陽光を導光部4を経て光出射部3に導き、その光出射部3の凹凸面5から導光シート1外に出射させて屋内の照明に利用できる。
【0022】
以上、本発明の導光シートを実施例に基づいて説明してきたが、本発明はこれら実施例に限定されず種々の変形が可能である。また、その導光シートとしても、太陽光の屋内への導入に限らず他の用途にも使用できる。例えば、液晶表示装置において、バックライトの補助として外光を液晶表示装置の照明光として導くのに本発明の導光シートを利用することができる。
【0023】
以上の本発明の導光シートは、例えば次のように構成することができる。
【0024】
〔1〕 透明フィルムの両面に、高屈折率微粒子を有機樹脂中に混入させて屈折率を上げた塗布層であって前記透明フィルムより屈折率が高い層が形成されてなることを特徴とする導光シート。
【0025】
〔2〕 前記高屈折率微粒子の粒径が1000nm以下、1nm以上であり、その屈折率が1.6以上であることを特徴とする請求項1記載の導光シート。
【0026】
〔3〕 前記塗布層の表面にその屈折率より低いクラッド層が形成されていることを特徴とする請求項1又は2記載の導光シート。
【0027】
〔4〕 前記導光シートには光導入手段及び光出射手段が設けられ、該光導入手段から前記導光シートに導入された光は前記光出射手段に導かれ、前記光出射手段より光が出射されることを特徴とする請求項1から3の何れか1項記載の導光シート。
【0028】
〔5〕 太陽光の導光に用いられることを特徴とする請求項1から4の何れか1項記載の導光シート。
【0029】
【発明の効果】
以上の説明から明らかなように、本発明の導光シートにおいては、透明フィルムの両面に、高屈折率微粒子を有機樹脂中に混入させて屈折率を上げた塗布層であってその透明フィルムより屈折率が高い層が形成されてなり、導光光の全反射は高屈折率の塗布層と空気の界面で行われるので、開口数の大きな光も全反射されるため、透明フィルムだけの場合よりも多い光量の光が導光されることになり、太陽光等の導光光量をより多くすることができる。また、本発明のこのような導光シートは、微粒子を有機樹脂中に混入させて透明フィルムの表面に塗布するだけの簡単な方法により作成できる点も大きなメリットである。
【図面の簡単な説明】
【図1】 本発明の1実施例の導光シートの平面図と断面図である。
【図2】 本発明の導光シートの変形例を示す断面図である。
【図3】 本発明の導光シートを用いて太陽光を屋内の照明に利用する場合のその構成の1例を示す側面図である。
【図4】 本発明の導光シートを用いて太陽光を屋内に導光して照明に用いる例を模式的に示す図である。
【符号の説明】
1…導光シート
2…光導入部
3…光出射部
4…導光部
5…サンドブラスト処理面(凹凸面、粗面)
6…光反射層
10…中心シート
11…表面層
12…高屈折率微粒子
13…低屈折率透明層
14…反射層
H…家屋
S…太陽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light guide sheet, and particularly to a light guide sheet with a large amount of light to be guided.
[0002]
[Prior art]
Conventionally, as a system for taking sunlight into a room,
A. A light reflector is installed in a street like a catwalk, and sunlight is reflected by the light reflector and taken in (for example, JP-A-10-269811, JP-A-5-60964, JP-A-11-25726) ),
B. Taking sunlight directly from the skylight (for example, JP-A-11-218720),
C. Those using optical fibers (for example, JP-A-7-57525, JP-A-7-33004), etc.
Has been proposed.
[0003]
[Problems to be solved by the invention]
However, in the above A and B, it is difficult to guide sunlight to an arbitrary place and use it for illumination. In C, a large number of optical fibers are required, and it is difficult to install easily and inexpensively.
[0004]
Then, it is possible to guide sunlight to a predetermined position using a sheet-like plastic film as a light guide.
[0005]
However, as a plastic film, there is no practically high refractive index having a refractive index exceeding 1.6. Therefore, it is difficult to increase the amount of guided light. The amount of light guided depends on the NA of the light guide, and the NA of the light guide increases as the refractive index of the light guide increases.
[0006]
This invention is made | formed in view of such a problem of a prior art, The objective is to provide the light guide sheet which can take in much sunlight etc. and can guide | emit to arbitrary places.
[0007]
[Means for Solving the Problems]
The light guide sheet of the present invention that achieves the above object is a coating layer in which high refractive index fine particles are mixed in an organic resin on both sides of a transparent film to increase the refractive index, and has a higher refractive index than the transparent film. The light is guided without emitting light guided outside the light guide sheet.
[0008]
In the present invention, a coating layer in which high refractive index fine particles are mixed in an organic resin to increase the refractive index is formed on both surfaces of the transparent film, and a layer having a higher refractive index than the transparent film is formed. Since the total reflection of light is performed at the interface between the high refractive index coating layer and the air, light with a large numerical aperture is also totally reflected, so that a larger amount of light is guided than with a transparent film alone. Thus, the amount of light guided by sunlight or the like can be increased. Further, such a light guide sheet of the present invention has a great merit that it can be produced by a simple method in which fine particles are mixed in an organic resin and applied to the surface of a transparent film.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The basis of the present invention is that, as a light guide sheet, on both sides of a transparent film having an arbitrary refractive index, a high refractive index fine particle is mixed in an organic resin to provide a coating layer with an increased refractive index. The amount of light that can be guided by the light guide sheet is increased. Here, as the high refractive index fine particles mixed in the organic resin, ZnO (refractive index 1.90), TiO 2 (refractive index 2.3 to 2.7), CeO 2 (refractive index higher than that of plastics) are used. Refractive index 1.95), Sb 2 O 5 (refractive index 1.71), SnO 2 , ITO (refractive index 1.95), Y 2 O 3 (refractive index 1.87), La 2 O 3 (refractive index) 1.95), ZrO 2 (refractive index 2.05), Al 2 O 3 (refractive index 1.63) and other metal oxides, metal nitrides, metal carbides, etc. In order to avoid light scattering, a light having a wavelength equal to or smaller than the wavelength of the guided light is used.
[0010]
In FIG. 1, the top view (a) and sectional drawing (b) of the light guide sheet 1 of one Example of this invention are shown. This light guide sheet 1 is made of a transparent organic resin and is applied to a relatively low refractive index central sheet 10 and both sides thereof, and a high refractive index fine particle 12 is mixed in the transparent organic resin to increase the refractive index. The surface layer 11 having a high refractive index, and light such as sunlight incident on one end of the surface layer 11 is reflected in the light guide sheet 1 while being totally reflected at the interface between the high refractive index surface layer 11 and the air. The light is guided to the other end with multiple reflections. At this time, since the total reflection is performed at the interface between the surface layer 11 having a high refractive index and the air, light having a large numerical aperture is also totally reflected. The light is guided through the sheet 1.
[0011]
As a specific example, for example, a PET (polyethylene terephthalate) film having a refractive index n of n≈1.5 and a thickness of 200 μm is used for the center sheet 10, and TiO 2 having a particle diameter of 0.1 μm is used as the surface layer 11 at 20 w%. In the PVA (polyvinyl alcohol), a light guide sheet 1 can be used which is formed by coating and curing to a thickness of 50 μm and comprising a layer having a refractive index n of n≈1.65.
[0012]
If no reflecting member is provided on both side surfaces of the light guide portion of the light guide sheet 1, there is a possibility that part of the guided light leaks from both side surfaces and escapes. It is desirable to form a layer, a low refractive index paint layer, or a metal reflective layer 14 by coating or the like.
[0013]
Here, the thickness of the center sheet 10 is preferably selected in the range of 10 to 20000 μm. If the thickness is less than this range, the strength is too low, and the light guiding efficiency is reduced. If it is too thick, it will be difficult to bend it flexibly during installation. In addition, the material cost is expensive. The thickness range is more preferably in the range of 100 to 10,000 μm, and most preferably in the range of 150 to 2000 μm.
[0014]
The thickness of the surface layer 11 is preferably in the range of 1 to 200 μm. If the thickness is less than this range, it is difficult to form the surface layer 11 mixed with the fine particles 12 by coating. If it is too thick, not only is it difficult to form a layer, but a problem of destruction such as cracking of the surface layer 11 when the light guide sheet 1 is bent tends to occur. The thickness range is more preferably in the range of 5 to 100 μm.
[0015]
Further, the particle diameter of the high refractive index fine particles 12 to be mixed in the surface layer 11 depends on the wavelength of the light to be guided, but is preferably selected in the range of 1 to 1000 nm, and more preferably in the range of 5 to 500 nm. Preferably, the range of 10 to 300 nm is most preferable.
[0016]
In the form of FIG. 1, total reflection occurs at the interface with air on the surface side of the high refractive index surface layer 11 of the light guide sheet 1, and guided light is guided through the surface layer 11. If a foreign substance adheres to or contacts the interface, the total reflection condition may be lost and light may leak to the outside. Therefore, as shown in the cross-sectional view of FIG. Alternatively, the low refractive index transparent layer 13 may be provided.
[0017]
FIG. 3 is a side view showing an example of the configuration when sunlight is used for indoor lighting using the light guide sheet 1 as described above. The light guide sheet 1 is configured to be long, and The same side surface of the predetermined length portions of both end portions 2 and 3 in the longitudinal direction is processed into a sandblasted surface (uneven surface, rough surface) 5 having a surface average roughness Ra, and the other surface is a smooth surface. Yes. Further, a portion 4 between both end portions 2 and 3 is a smooth surface on both sides. Here, the sandblasted surface (uneven surface, rough surface) 5 of both end portions 2 and 3 may be provided only on the surface layer 11, but the surface of the central sheet 10 is also uneven surface along the uneven surface of the surface layer 11. The surface layer 11 may be formed on the uneven surface of the center sheet 10. The uneven surface of the surface layer 11 or the center sheet 10 is created by bringing a mold into contact with a thermoplastic resin in thermal transfer or molding (injection molding, extrusion molding, etc.), or is applied to the surface by adding fine beads to a binder. It can be created by adopting various methods such as forming with a resist.
[0018]
In FIG. 3, the light guide sheet 1 has such a configuration, the one end portion 2 functions as a light introducing portion, the intermediate portion 4 functions as a light guiding portion, and the other end portion 3 functions as a light emitting portion. The light incident on the concave / convex surface 5 on one side is then scattered in the light guide sheet 1, and most of the scattered light is determined by the difference between the refractive index of air and the refractive index of the surface layer 11 on both sides of the light guide sheet 1. The light is incident at an angle equal to or greater than the angle, is totally reflected, is converted into light that is multiple-reflected in the light guide sheet 1 and is guided, and the light guide light passes through the light guide portion 4 to the light emitting portion 3 at the other end. The light incident on the concave / convex surface 5 on one side is mostly scattered outside the light guide sheet 1 and emitted, and can be used as illumination light or the like.
[0019]
In addition, the light incident on the end face of the light introducing part 2 and the end face of the light emitting part 3 goes out and is not used effectively. Therefore, at least these end faces are provided with a light reflecting layer 6 such as a light reflecting metal such as Ag, Al, Au, Pt, or Cu, white paint, etc., and the guided light incident on these end faces is reflected to the opposite side. It is desirable to be able to use it effectively.
[0020]
Here, as the surface average roughness Ra of the concavo-convex surface 2 formed on one surface of the light introducing portion 2 and the light emitting portion 3, it is selected to be in the range of 0.1 to 1000 μm for efficiently introducing light. More preferably, it is more preferably selected in the range of 1 to 100 μm, and most preferably in the range of 2 to 50 μm.
[0021]
As schematically shown in FIG. 4, such a light guide sheet 1 of the present invention is installed on the roof of the house H so that the uneven surface 5 of the light introduction portion 2 faces the sky, and the light introduction portion. Light from the sun S is introduced by installing the light emitting part 3 in the house H so that the uneven surface 5 of the light emitting part 3 faces downwards. The light is introduced into the light guide sheet 1 by the uneven surface 5 of the portion 2, the sunlight is guided to the light emitting portion 3 through the light guide portion 4, and is emitted from the uneven surface 5 of the light emitting portion 3 to the outside of the light guide sheet 1. It can be used for indoor lighting.
[0022]
As mentioned above, although the light guide sheet of this invention was demonstrated based on the Example, this invention is not limited to these Examples, A various deformation | transformation is possible. Also, the light guide sheet can be used not only for indoor introduction of sunlight but also for other purposes. For example, in the liquid crystal display device, the light guide sheet of the present invention can be used to guide external light as illumination light for the liquid crystal display device as an auxiliary to the backlight.
[0023]
The above light guide sheet of the present invention can be configured as follows, for example.
[0024]
[1] A coating layer in which high refractive index fine particles are mixed in an organic resin to increase the refractive index on both surfaces of the transparent film, and a layer having a higher refractive index than the transparent film is formed. Light guide sheet.
[0025]
[2] The light guide sheet according to claim 1, wherein the high refractive index fine particles have a particle size of 1000 nm or less, 1 nm or more, and a refractive index of 1.6 or more.
[0026]
[3] The light guide sheet according to claim 1 or 2, wherein a clad layer having a refractive index lower than that of the coating layer is formed on the surface of the coating layer.
[0027]
[4] The light guide sheet is provided with light introducing means and light emitting means, and light introduced from the light introducing means to the light guiding sheet is guided to the light emitting means, and light is emitted from the light emitting means. The light guide sheet according to any one of claims 1 to 3, wherein the light guide sheet is emitted.
[0028]
[5] The light guide sheet according to any one of claims 1 to 4, which is used for light guide of sunlight.
[0029]
【The invention's effect】
As is clear from the above description, in the light guide sheet of the present invention, on both sides of the transparent film, high refractive index fine particles are mixed in an organic resin to increase the refractive index. A layer with a high refractive index is formed, and total reflection of guided light is performed at the interface between the high refractive index coating layer and air, so light with a large numerical aperture is also totally reflected. A larger amount of light is guided, and the amount of guided light such as sunlight can be increased. Further, such a light guide sheet of the present invention has a great merit that it can be produced by a simple method in which fine particles are mixed in an organic resin and applied to the surface of a transparent film.
[Brief description of the drawings]
FIG. 1 is a plan view and a cross-sectional view of a light guide sheet according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a modification of the light guide sheet of the present invention.
FIG. 3 is a side view showing an example of the configuration when sunlight is used for indoor illumination using the light guide sheet of the present invention.
FIG. 4 is a diagram schematically showing an example in which sunlight is guided indoors using the light guide sheet of the present invention and used for illumination.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light guide sheet 2 ... Light introducing | transducing part 3 ... Light-emitting part 4 ... Light guide part 5 ... Sandblasting surface (uneven surface, rough surface)
6 ... light reflection layer 10 ... center sheet 11 ... surface layer 12 ... high refractive index fine particles 13 ... low refractive index transparent layer 14 ... reflection layer H ... house S ... sun

Claims (1)

透明フィルムの両面に、高屈折率微粒子を有機樹脂中に混入させて屈折率を上げた塗布層であって前記透明フィルムより屈折率が高い層が形成されてなり、導光シート外に導光される光を出すことなく導光することを特徴とする導光シート。 Both surfaces of the transparent film, it is a layer having a higher refractive index than the transparent film a coating layer which increases the refractive index is mixed a high refractive index fine particles in an organic resin is formed and the light guide sheet outside guide A light guide sheet that guides light without emitting light.
JP2002031738A 2002-02-08 2002-02-08 Light guide sheet Expired - Fee Related JP3877293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002031738A JP3877293B2 (en) 2002-02-08 2002-02-08 Light guide sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002031738A JP3877293B2 (en) 2002-02-08 2002-02-08 Light guide sheet

Publications (2)

Publication Number Publication Date
JP2003232931A JP2003232931A (en) 2003-08-22
JP3877293B2 true JP3877293B2 (en) 2007-02-07

Family

ID=27775055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002031738A Expired - Fee Related JP3877293B2 (en) 2002-02-08 2002-02-08 Light guide sheet

Country Status (1)

Country Link
JP (1) JP3877293B2 (en)

Also Published As

Publication number Publication date
JP2003232931A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
KR100519238B1 (en) A Light Guide Panel With Guided-light Parts
US8057073B2 (en) Light pipe and illuminating device having the same
US11808967B2 (en) Light deflecting device, lighting device and use
JPH10246805A (en) Optical sheet for diffused light control, back light device, and liquid crystal display device
JP2008040025A (en) Manufacturing method of lighting film, lighting film and window provided with the same
JP2015525429A5 (en)
US9182531B2 (en) Surface light guide and luminaire
TWI282444B (en) Light guide plate having diffusion function
EP2141521A2 (en) Light pipe and illuminating device having the same
KR102095366B1 (en) Illuminated glass panel
JPH06148408A (en) Optical control sheet
JP2003308714A (en) Light guide film
KR20150092652A (en) Lighting device
JPH08201807A (en) Lighting system
US20220137285A1 (en) Optical structure for light-emitting diode device and light-emitting diode device for lighting application including the same
JP3877293B2 (en) Light guide sheet
JP3796663B2 (en) Planar light source device and manufacturing method thereof
JPH11271765A (en) Surface light source unit
KR100988626B1 (en) Light pipe and illuminating device comprising the same
CN114690306A (en) Luminescent glass, light inlet device and light guide prism manufacturing method
JP6318647B2 (en) Interior building material sheet and daylighting system
JP2003215348A (en) Light guide film
KR102249867B1 (en) Optical device and lighting device using the same
JP6579213B2 (en) Interior building material sheet and daylighting system
JPH09212116A (en) Display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Ref document number: 3877293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees