JP3876755B2 - Wind tunnel equipment - Google Patents

Wind tunnel equipment Download PDF

Info

Publication number
JP3876755B2
JP3876755B2 JP2002116642A JP2002116642A JP3876755B2 JP 3876755 B2 JP3876755 B2 JP 3876755B2 JP 2002116642 A JP2002116642 A JP 2002116642A JP 2002116642 A JP2002116642 A JP 2002116642A JP 3876755 B2 JP3876755 B2 JP 3876755B2
Authority
JP
Japan
Prior art keywords
diffusion cylinder
wind tunnel
cylinder
diffusion
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002116642A
Other languages
Japanese (ja)
Other versions
JP2003315206A (en
Inventor
靖博 富岡
誠一 澤口
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP2002116642A priority Critical patent/JP3876755B2/en
Publication of JP2003315206A publication Critical patent/JP2003315206A/en
Application granted granted Critical
Publication of JP3876755B2 publication Critical patent/JP3876755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、風洞装置に関し、特に、エジェクタを有する風洞に用いて好適な風洞装置に関するものである。
【0002】
【従来の技術】
超大型旅客機や超音速輸送機等の開発には、高マッハ数気流を発生する風洞装置が必須の試験設備である。この種の風洞装置では、高マッハ数を実現するために供給空気圧を上げることが一般的である。この空気圧を確保するための貯気設備は、厚生労働省安全規則の適用を受ける必要がない5MPa以下とすることが望ましいため、上記超音速風洞では下流側にエジェクタを設置して空気圧の不足分を吸引効果で補っている。そして発生させた気流を整流胴で整流した後に、飛行体の模型等の供試体を設置した測定胴で風洞実験を行う。測定胴を通過した高速の気流は、流路が拡がった拡散胴で減速される。
【0003】
従来、上記の風洞装置で拡散胴を複数設ける場合、例えば第一拡散胴及び第二拡散胴を設ける場合には、長さ方向に直列に接続する構造や、曲がり部を設けて略L字状に接続する構造が採られている。
【0004】
【発明が解決しようとする課題】
しかしながら、上述したような従来の風洞装置には、以下のような問題が存在する。
第一、第二拡散胴を直列に接続した場合、収納建物が極端に細長いものとなり、敷地の有効利用を阻害することになる。また、曲がり部を設けて接続した場合、曲がり部は性能に寄与しない余分な部分となり、しかも装置全体が大型になるため、コスト増及びレイアウト上の制約が新たに生じるという問題があった。
【0005】
本発明は、以上のような点を考慮してなされたもので、複数の拡散胴を設ける場合でも小型化及び敷地の有効利用を可能にする風洞装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために本発明は、以下の構成を採用している。
請求項1記載の風洞装置は、気流の進行方向に沿って流路が拡径する第一拡散胴及び第二拡散胴が順次配置された風洞装置であって、前記第二拡散胴は、前記第一拡散胴との間で、前記気流の進行方向を前記第一拡散胴に対して反転させた前記流路を形成することを特徴とするものである。
【0007】
従って、本発明の風洞装置では、第一拡散胴と前記第二拡散胴とを直列に接続しないため、建物を大きくする必要がなくなり敷地の有効利用を図ることができる。また、本発明では、曲がり部を設けずに進行方向を反転させた流路形成に第一拡散胴を用いるため装置の大型化を防ぐことができる。
【0008】
請求項2記載の風洞装置は、請求項1記載の風洞装置において、前記第一拡散胴と前記第二拡散胴とが略同心に配置されることを特徴とするものである。
【0009】
従って、本発明の風洞装置では、第一拡散胴と前記第二拡散胴との間の流路幅を一定にすることができる。
【0010】
請求項3記載の風洞装置は、請求項1または2記載の風洞装置において、前記第二拡散胴は、前記第一拡散胴を包含するように、前記第一拡散胴の外側に間隔をあけて配置されて前記第一拡散胴との間に流路を形成し、前記第一拡散胴の外側に形成された流路には、当該流路が拡径する方向に流体を導入するノズルが設けられていることを特徴とするものである。
【0011】
従って、本発明の風洞装置では、流路に流体を導入した際の吸引効果によって、供給空気圧の不足分を補うことができる。
【0012】
【発明の実施の形態】
以下、本発明の風洞装置の実施の形態を、図1及び図2を参照して説明する。
図1は、風洞装置の概略構成図である。
この風洞装置は、高圧ガスを貯溜した高圧タンク(貯気槽)1、高圧タンク1からの高圧ガスを加熱するヒータ(蓄熱器)2、噴射された高圧ガスを整流する整流胴3、極超音速ノズル4、高速飛行体の翼等の供試体を設置して流力性能を測定するための測定胴5、高圧ガスの気流速度を超音速から亜音速に減速する第二スロート6、亜音速に減速された高圧ガスの気流をさらに減速させる第一拡散胴7及び第二拡散胴8、第二拡散胴8に直結されて高圧ガスの排気を行うとともに、所定の騒音値まで騒音レベルを低減させる消音棟9を主体に構成されている。
【0013】
第一拡散胴7は、高圧ガス気流の進行方向(図1中、左方向)に沿って漸次拡径する流路7aを形成しており、流路7aの開口部近傍には気流と直交する方向に沿って対向壁10が設けられている。対向壁10の外周部は第二拡散胴8に繋がっている。第二拡散胴8は、対向壁10から消音棟9へ図1中右方向に向かうに従って漸次拡径しており、第一拡散胴7を包含するように、第一拡散胴7の外側に間隔をあけて配置されることで、第一拡散胴7との間に高圧ガスの流路8aを形成する。この流路8aは、対向壁10により進行方向が反転した高圧ガスの進行方向(図1中右側)に沿って流路幅が漸次拡径する断面リング状に形成されており、第二拡散胴8が第一拡散胴7と略同心に配置されることで周方向に沿って流路幅が一定に形成される。
【0014】
また、流路8aの上流部には、高速流体を流路8aに導入するノズル(ヘッダー)11が複数(例えば8本)配設されている。ノズル11は、高圧ガスの進行方向に高速流体を導入することで、吸引効果によって高圧タンク1の供給空気圧の不足分を補うエジェクタ機能として作用する。
【0015】
上記構成の風洞装置では、高圧タンク1から噴射された高圧ガスはヒータ2で所定の温度に加熱され整流胴3で整流された後に、ノズル11から高速流体が導入されて吸引効果が作用するとともに、極超音速ノズル4を通過することにより、高マッハ数(例えばマッハ5)の極超音速となって測定胴5に流入する。測定道5においては、供試体の表面に発生する圧力分布を測定したり、供試体の周囲に生じる流れの様子を観察することが可能である。
【0016】
測定胴5を通過した高圧ガスは、第二スロート6を通過することで気流速度が超音速から亜音速に減速され、拡径する第一拡散胴7の流路7aを通過することでさらに減速される。第一拡散胴7を通過した高圧ガスは、対向壁10で進路が塞がれているため、進行方向を曲げて第二拡散胴8の流路8aに流入し、第一拡散胴7に対して進路を反転させた方向に進行する。第二拡散胴8において高圧ガスは、ノズル11から高速流体が導入されるエジェクタ作用で加速されるものの、進行方向に沿って拡径し、一定の流路幅を有する断面リング状の流路8aを通ることでさらに減速されながら図中右方向へ進行し、消音棟9に流入する。なお、流路8aは断面がリング状であるが、所定量の断面積が確保されていれば、所定のエジェクタ機能を達成することが可能である。そして、高圧ガスは、消音棟9において所定の騒音値まで騒音レベルを低減されて排気される。
【0017】
このように、本実施の形態では、高圧ガスの進行方向を反転させ、第一拡散胴7と第二拡散胴8との間に減速用流路8aを形成しているので、第一拡散胴7と第二拡散胴8とを接続する場合にも直列に接続したり、曲がり部を設ける必要がなくなる。そのため、建物が大きくなり敷地の有効利用が図れないといった事態や、曲がり部の存在で装置全体が大きくなりコスト増やレイアウト上の制約が生じるといった事態を未然に防ぐことが可能になる。また、第一拡散胴7と第二拡散胴8とを略同心に配置することで、流路8aにおける流路幅を周方向で一定にすることができ、安定した気流を形成することができる。さらに、本実施の形態では、ノズル11を設置してエジェクタ機能を備えることで、吸引効果により供給ガス圧の不足分を補って高マッハ数を実現することができる。また、本実施の形態では、第二拡散胴8と消音棟9とを直結することで、より装置の小型化を図ることができる。
【0018】
なお、上記実施の形態において、ノズル11の位置は、流路8aの上流側としたが、これに限定されるものではなく、流路8aに配置すればどこにあってもよい。
【0019】
また、上記実施の形態では、第一拡散胴7と対向壁10との間で流路断面積が急激に大きくなるため、図2に示すように、対向壁10に突部10aを設けることで断面積の変化を抑制してもよい。このとき、第一拡散胴7を通過した高圧ガスが円滑に流路8aに導かれるように、突部10aに傾斜面を設けることが好ましい。
【0020】
【発明の効果】
以上説明したように、本発明では、建物が大きくなり敷地の有効利用が図れないといった事態や、曲がり部の存在で装置全体が大きくなりコスト増やレイアウト上の制約が生じるといった事態を未然に防ぐことが可能になる。また、本発明では、安定した気流を形成できるとともに、高マッハ数を実現できるという効果が得られる。
【図面の簡単な説明】
【図1】 本発明の実施の形態を示す図であって、風洞装置の概略構成図である。
【図2】 別の実施形態の風洞装置の概略構成図である。
【符号の説明】
7 第一拡散胴
8 第二拡散胴
8a 流路
11 ノズル(ヘッダー)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wind tunnel device, and more particularly to a wind tunnel device suitable for use in a wind tunnel having an ejector.
[0002]
[Prior art]
A wind tunnel device that generates a high Mach number airflow is an essential test facility for the development of ultra-large passenger aircraft and supersonic transport aircraft. In this type of wind tunnel device, it is common to increase the supply air pressure in order to achieve a high Mach number. It is desirable that the air storage facility for securing the air pressure is 5 MPa or less, which does not require the application of the Ministry of Health, Labor and Welfare safety regulations. Therefore, in the supersonic wind tunnel, an ejector is installed on the downstream side to reduce the air pressure shortage. Compensated by the suction effect. Then, after the generated airflow is rectified by the rectifying cylinder, a wind tunnel experiment is performed using a measuring cylinder in which a test body such as a flying object model is installed. The high-speed airflow that has passed through the measurement cylinder is decelerated by the diffusion cylinder whose channel has expanded.
[0003]
Conventionally, when a plurality of diffusion cylinders are provided in the above-described wind tunnel device, for example, when a first diffusion cylinder and a second diffusion cylinder are provided, a structure that is connected in series in the length direction or a bent portion is provided so as to be substantially L-shaped. The structure to connect to is adopted.
[0004]
[Problems to be solved by the invention]
However, the conventional wind tunnel device as described above has the following problems.
When the first and second diffusion cylinders are connected in series, the storage building becomes extremely long and obstructs the effective use of the site. Further, when a bent portion is provided and connected, the bent portion becomes an extra portion that does not contribute to performance, and the entire apparatus becomes large, resulting in a problem of increased cost and new restrictions on layout.
[0005]
The present invention has been made in consideration of the above points, and an object of the present invention is to provide a wind tunnel device that enables downsizing and effective use of a site even when a plurality of diffusion cylinders are provided.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following configuration.
The wind tunnel device according to claim 1 is a wind tunnel device in which a first diffusion cylinder and a second diffusion cylinder in which a flow path expands along an advancing direction of an air flow are sequentially arranged, and the second diffusion cylinder includes the second diffusion cylinder, The flow path is formed between the first diffusion cylinder and the flow direction of the airflow reversed with respect to the first diffusion cylinder.
[0007]
Therefore, in the wind tunnel device of the present invention, since the first diffusion cylinder and the second diffusion cylinder are not connected in series, it is not necessary to enlarge the building and the site can be effectively used. Moreover, in this invention, since a 1st diffuser cylinder is used for the flow path formation which reversed the advancing direction without providing a bending part, the enlargement of an apparatus can be prevented.
[0008]
A wind tunnel device according to claim 2 is characterized in that, in the wind tunnel device according to claim 1, the first diffusion cylinder and the second diffusion cylinder are arranged substantially concentrically.
[0009]
Therefore, in the wind tunnel device of the present invention, the flow path width between the first diffusion cylinder and the second diffusion cylinder can be made constant.
[0010]
The wind tunnel device according to claim 3 is the wind tunnel device according to claim 1 or 2, wherein the second diffusion drum is spaced apart from the first diffusion drum so as to include the first diffusion drum. A flow path is formed between the first diffusion cylinder and the flow path formed outside the first diffusion cylinder , and a nozzle for introducing a fluid in a direction in which the flow path expands is provided. It is characterized by being.
[0011]
Therefore, in the wind tunnel device of the present invention, the shortage of the supply air pressure can be compensated by the suction effect when the fluid is introduced into the flow path.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a wind tunnel device of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 is a schematic configuration diagram of a wind tunnel device.
This wind tunnel device includes a high-pressure tank (storage tank) 1 that stores high-pressure gas, a heater (heat accumulator) 2 that heats high-pressure gas from the high-pressure tank 1, a rectifying cylinder 3 that rectifies the injected high-pressure gas, A sonic nozzle 4, a measuring cylinder 5 for measuring a hydrodynamic performance by installing a specimen such as a wing of a high-speed flying vehicle, a second throat 6 for reducing the flow velocity of high-pressure gas from supersonic to subsonic, subsonic The high-pressure gas flow that has been decelerated further is directly connected to the first diffusion cylinder 7, the second diffusion cylinder 8, and the second diffusion cylinder 8 to exhaust the high-pressure gas and reduce the noise level to a predetermined noise level. The muffler building 9 is mainly composed.
[0013]
The first diffusion cylinder 7 forms a channel 7a that gradually increases in diameter along the traveling direction of the high-pressure gas stream (left direction in FIG. 1), and is orthogonal to the stream near the opening of the channel 7a. An opposing wall 10 is provided along the direction. The outer peripheral portion of the facing wall 10 is connected to the second diffusion cylinder 8. The second diffusion cylinder 8 gradually increases in diameter from the facing wall 10 toward the muffler building 9 in the right direction in FIG. 1, and is spaced outside the first diffusion cylinder 7 so as to include the first diffusion cylinder 7. The high-pressure gas flow path 8 a is formed between the first diffusion cylinder 7 and the first diffusion cylinder 7. The flow path 8a is formed in a cross-sectional ring shape in which the flow path width gradually increases along the traveling direction (right side in FIG. 1) of the high-pressure gas whose traveling direction is reversed by the facing wall 10. 8 is arranged substantially concentrically with the first diffusion cylinder 7 so that the flow path width is constant along the circumferential direction.
[0014]
In addition, a plurality (for example, eight) of nozzles (headers) 11 for introducing a high-speed fluid into the flow path 8a are disposed upstream of the flow path 8a. The nozzle 11 acts as an ejector function that compensates for the shortage of the supply air pressure of the high-pressure tank 1 by the suction effect by introducing a high-speed fluid in the traveling direction of the high-pressure gas.
[0015]
In the wind tunnel device configured as described above, the high-pressure gas injected from the high-pressure tank 1 is heated to a predetermined temperature by the heater 2 and rectified by the rectifying cylinder 3, and then a high-speed fluid is introduced from the nozzle 11 to exert a suction effect. By passing through the hypersonic nozzle 4, the hypersonic speed of a high Mach number (for example, Mach 5) flows into the measurement cylinder 5. In the measurement path 5, it is possible to measure the pressure distribution generated on the surface of the specimen and observe the flow generated around the specimen.
[0016]
The high-pressure gas that has passed through the measurement cylinder 5 passes through the second throat 6, the air velocity is reduced from supersonic to subsonic, and further reduced by passing through the flow path 7 a of the first diffusion cylinder 7 that expands in diameter. Is done. Since the path of the high-pressure gas that has passed through the first diffusion cylinder 7 is blocked by the opposing wall 10, the traveling direction is bent and flows into the flow path 8 a of the second diffusion cylinder 8. Then proceed in the direction that reversed the course. In the second diffusion cylinder 8, the high-pressure gas is accelerated by an ejector action in which a high-speed fluid is introduced from the nozzle 11. However, the diameter of the high-pressure gas increases along the traveling direction and has a constant channel width. The vehicle travels to the right in the figure while being further decelerated by passing through, and flows into the muffler building 9. The flow path 8a has a ring-shaped cross section, but a predetermined ejector function can be achieved if a predetermined amount of cross-sectional area is secured. The high-pressure gas is exhausted at the noise reduction building 9 with the noise level reduced to a predetermined noise level.
[0017]
As described above, in the present embodiment, the traveling direction of the high-pressure gas is reversed, and the speed reducing flow path 8a is formed between the first diffusion cylinder 7 and the second diffusion cylinder 8, so the first diffusion cylinder Also when connecting 7 and the 2nd diffuser cylinder 8, it becomes unnecessary to connect in series or to provide a bending part. For this reason, it is possible to prevent a situation in which the building becomes large and the site cannot be effectively used, and a situation in which the entire apparatus becomes large due to the presence of the bent portion, resulting in an increase in cost and layout restrictions. Further, by arranging the first diffusion cylinder 7 and the second diffusion cylinder 8 substantially concentrically, the channel width in the channel 8a can be made constant in the circumferential direction, and a stable airflow can be formed. . Further, in the present embodiment, by installing the nozzle 11 and providing an ejector function, a high Mach number can be realized by compensating for the shortage of the supply gas pressure by the suction effect. In the present embodiment, the apparatus can be further downsized by directly connecting the second diffusion cylinder 8 and the muffler building 9.
[0018]
In the above embodiment, the position of the nozzle 11 is set on the upstream side of the flow path 8a. However, the position is not limited to this, and the nozzle 11 may be located anywhere as long as it is disposed in the flow path 8a.
[0019]
Moreover, in the said embodiment, since a flow-path cross-sectional area becomes large suddenly between the 1st diffuser cylinder 7 and the opposing wall 10, as shown in FIG. You may suppress the change of a cross-sectional area. At this time, it is preferable to provide an inclined surface on the protrusion 10a so that the high-pressure gas that has passed through the first diffusion cylinder 7 is smoothly guided to the flow path 8a.
[0020]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent a situation in which a building becomes large and the site cannot be effectively used, and a situation in which the entire apparatus becomes large due to the presence of a bent portion, resulting in an increase in cost and layout restrictions. It becomes possible. Moreover, in this invention, while being able to form stable airflow, the effect that high Mach number is realizable is acquired.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention, and is a schematic configuration diagram of a wind tunnel device.
FIG. 2 is a schematic configuration diagram of a wind tunnel device according to another embodiment.
[Explanation of symbols]
7 First diffusion cylinder 8 Second diffusion cylinder 8a Flow path 11 Nozzle (header)

Claims (3)

気流の進行方向に沿って流路が拡径する第一拡散胴及び第二拡散胴が順次配置された風洞装置であって、
前記第二拡散胴は、前記第一拡散胴との間で、前記気流の進行方向を前記第一拡散胴に対して反転させた前記流路を形成することを特徴とする風洞装置。
A wind tunnel device in which a first diffusion cylinder and a second diffusion cylinder in which the diameter of the flow path expands along the traveling direction of the air flow are sequentially arranged,
The said 2nd diffusion cylinder forms the said flow path which reversed the advancing direction of the said air flow with respect to the said 1st diffusion cylinder between said 1st diffusion cylinders, The wind tunnel apparatus characterized by the above-mentioned.
請求項1記載の風洞装置において、
前記第一拡散胴と前記第二拡散胴とが略同心に配置されることを特徴とする風洞装置。
The wind tunnel device according to claim 1, wherein
The wind tunnel device, wherein the first diffusion cylinder and the second diffusion cylinder are arranged substantially concentrically.
請求項1または2記載の風洞装置において、
前記第二拡散胴は、前記第一拡散胴を包含するように、前記第一拡散胴の外側に間隔をあけて配置されて前記第一拡散胴との間に流路を形成し、
前記第一拡散胴の外側に形成された流路には、当該流路が拡径する方向に流体を導入するノズルが設けられていることを特徴とする風洞装置。
The wind tunnel device according to claim 1 or 2,
The second diffusion cylinder is disposed at an outside of the first diffusion cylinder so as to include the first diffusion cylinder and forms a flow path between the first diffusion cylinder and the first diffusion cylinder,
A wind tunnel device, characterized in that a nozzle that introduces a fluid in a direction in which the diameter of the flow path expands is provided in a flow path formed outside the first diffusion cylinder.
JP2002116642A 2002-04-18 2002-04-18 Wind tunnel equipment Expired - Fee Related JP3876755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002116642A JP3876755B2 (en) 2002-04-18 2002-04-18 Wind tunnel equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002116642A JP3876755B2 (en) 2002-04-18 2002-04-18 Wind tunnel equipment

Publications (2)

Publication Number Publication Date
JP2003315206A JP2003315206A (en) 2003-11-06
JP3876755B2 true JP3876755B2 (en) 2007-02-07

Family

ID=29534133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002116642A Expired - Fee Related JP3876755B2 (en) 2002-04-18 2002-04-18 Wind tunnel equipment

Country Status (1)

Country Link
JP (1) JP3876755B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105628333A (en) * 2014-10-29 2016-06-01 北京临近空间飞行器系统工程研究所 Method for determining pneumatic error on the condition of high altitude and high Mach number

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402405B2 (en) * 2009-08-28 2014-01-29 株式会社Ihi Temperature measuring device
CN112762444B (en) * 2020-12-31 2022-08-12 中国航天空气动力技术研究院 Optimization method for heat accumulator temperature distribution curve at initial moment of ventilation process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105628333A (en) * 2014-10-29 2016-06-01 北京临近空间飞行器系统工程研究所 Method for determining pneumatic error on the condition of high altitude and high Mach number
CN105628333B (en) * 2014-10-29 2018-06-22 北京临近空间飞行器系统工程研究所 A kind of pneumatic error under the conditions of high-altitude High Mach number determines method

Also Published As

Publication number Publication date
JP2003315206A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
JP5472313B2 (en) Noise reduction device with chamber
JP4298677B2 (en) Engine exhaust gas deflection system
RU2411389C2 (en) Bypass gas-turbine engine equipped with pre-cooler
US8550208B1 (en) High pressure muffling devices
CN101443543B (en) Turbojet nacelle equipped with means for reducing the noise produced by said turbojet
US8393139B2 (en) Device with secondary jets reducing the noise generated by an aircraft jet engine
US8157050B2 (en) Device for reducing noise generated by an aircraft jet engine with curve ducts
JP2008298068A (en) Gas turbine engine and nacelle
WO2009107646A1 (en) Noise reducing device, and jet propulsion system
JP2010025107A (en) Device and method for cooling turbomachine exhaust gas
JP2006329201A (en) Cooling device
US3684054A (en) Jet engine exhaust augmentation unit
US20100313545A1 (en) Gas turbine engine nozzle configurations
JP3876755B2 (en) Wind tunnel equipment
JP6005629B2 (en) Device for reducing noise caused by aircraft propulsion engine jets
JP5459317B2 (en) Noise reduction device
CN206056950U (en) A kind of acoustic filter detecting system
US3048975A (en) Jet propulsion engines
US10240501B2 (en) Venturi exhaust gas cooler
US4987970A (en) Device for collecting the exhaust gas jet of an aircraft reactor and a testing installation for aircraft reactors
JP2001140697A (en) Plug nozzle jet engine
US8322127B2 (en) Nozzle assembly with flow conduits
JP2013245686A (en) Method and device of jet noise reduction
JP4271601B2 (en) Muffler and muffler mute method
JPH1164156A (en) Collector duct for jet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees