JP3876655B2 - Deformation prediction method and program for excavation bottom ground - Google Patents

Deformation prediction method and program for excavation bottom ground Download PDF

Info

Publication number
JP3876655B2
JP3876655B2 JP2001209834A JP2001209834A JP3876655B2 JP 3876655 B2 JP3876655 B2 JP 3876655B2 JP 2001209834 A JP2001209834 A JP 2001209834A JP 2001209834 A JP2001209834 A JP 2001209834A JP 3876655 B2 JP3876655 B2 JP 3876655B2
Authority
JP
Japan
Prior art keywords
ground
deformation
contact portion
excavation
water pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001209834A
Other languages
Japanese (ja)
Other versions
JP2003020649A (en
Inventor
茂彦 杉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2001209834A priority Critical patent/JP3876655B2/en
Publication of JP2003020649A publication Critical patent/JP2003020649A/en
Application granted granted Critical
Publication of JP3876655B2 publication Critical patent/JP3876655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、土留掘削工事に伴う底部地盤の変状を予測・評価する技術に関する。
【0002】
【従来の技術】
例えば都市土木工事等の施工領域が限定されるような工事においては、限られた施工領域を有効活用する意味からも、鋼矢板や横矢板等の土留壁を腹起し・切梁やアースアンカー等の支保工で支持して掘削を進行させる土留掘削を伴う工事が多く施工されている。ただしこの土留掘削には、施工地盤や地下水の性状に応じて留意すべき現象の発生が従来より指摘されている。この現象とは、盤ぶくれ、ボイリング、およびヒービングといった底部地盤の変状現象である。このうち例えば盤ぶくれに関して言えば、掘削底部の地盤に含まれる被圧帯水層(例:砂・礫層など)の水圧が、該被圧帯水層上部に存在する不透水層を含む地盤を上方に押し上げる現象であり、この現象に対する予測・評価方法が従来より提案されてきた。図1に従来手法における盤ぶくれの考え方を示している。
【0003】
従来の予測・評価方法においては、前述した被圧水頭hwに由来する被圧帯水層(透水層)の水圧Uと、該被圧帯水層上部の地盤(不透水層とI層)の重量W(土被り圧)との大小を比較することにより、前記水圧が勝れば盤ぶくれ発生が危惧され、前記土被り圧が勝れば盤ぶくれの惧れは少ないとする予測を行って掘削地盤全体に関する盤ぶくれの発生を推定していた。
【0004】
【発明が解決しようとする課題】
しかしながら従来の手法によれば、前記土被り圧よりも水圧に対する有効な抗力と成りうると推定される土留壁側面等と地盤との接触抵抗を、施工過程、経過時間を考慮しながら、具体的に検討することはなかった。また、水圧と土被り圧等の抗力との比較を鉛直一次元の問題として解析を進めていたため、掘削底部地盤全体としての変状予測や評価を行うことは出来ても、空間的および時間的に変状を予測・評価することはなされていなかった。従って、従来手法により予測・評価された底部地盤の変状は、過大評価となりがちであるとともに、ここで予測された変状に対する対策工を設計するにしても、底部地盤の領域や掘削施工段階毎に対策工の過不足が発生する惧れが内在していた。
【0005】
そこで、本発明は、このような従来の課題に着目してなされたもので、優れた精度の下、領域毎や施工段階毎に掘削底部地盤の変状予測を、簡便確実になしうる掘削底部地盤の変状予測評価方法を提供するものである。
【0006】
【課題を解決するための手段】
この発明は上記目的を達成するためになされたもので、第1の発明は、土留掘削工事に伴う底部地盤の変状を予測する方法であって、前記底部地盤下にあって該底部地盤の変状を生起する被圧帯水層における水圧と、前記被圧帯水層上の土被り圧、土留壁又は杭と地盤との間の接触抵抗、および土留壁下端又は杭下端以深の粘性土層の粘着力のいずれかを含む前記水圧に対する抗力とについて、多次元圧密理論にもとづくFEM解析法を適用することで、前記底部地盤における空間離散化および時間離散化を図った抗力値および水圧値を解析し、施工過程毎および施工領域毎に抗力/水圧比を算定することを特徴とする。
【0007】
第2の発明は、第1の発明において、前記土留壁又は杭と地盤との接触部に生じる接触抵抗を解析するにあたり、前記接触部を含む適宜領域に該接触部周囲の地盤と同じ非線形モデルおよび材料定数を適用し、接触部の応力状態が地盤強度を越えた際に当該接触部における接触抵抗を消失させる解析処理を行うことを特徴とする。本発明は、粘性土地盤の変状予測に用いて好適であり、非線形モデルとして、関口と太田の提案による弾塑性構成式を適用することが好ましい。
【0008】
第3の発明は、第1または第2の発明において、前記土留壁又は杭と地盤との接触部に生じる接触抵抗を解析するにあたり、前記接触部を含む適宜領域に非線形モデルを適用するとともに、材料定数として接触抵抗に関する実測データを用いることを特徴とする。本発明は、砂礫地盤の変状予測に用いて好適であり、非線形モデルとして、Drucker−Pragerモデルを適用することが好ましい。
【0009】
第4の発明は、第1〜第3のいずれかに記載の変状予測方法をコンピュータ上で機能させるための変状予測プログラムをなすこととする。
【0010】
【発明の実施の形態】
以下に本発明にかかる掘削底部地盤の変状予測方法の実施形態について添付図面を用いて説明する。図2(a)は本実施形態における掘削底部と解析領域とを示す平面図であり、(b)は土留掘削を行った地質状況および施工断面を示す説明図である。また図3(a)は施工サイトの有限要素モデリングの状況を示す説明図であり、(b)は、場所打ち杭の平面配置と有限要素メッシュの適用状況を示す説明図である。
【0011】
本実施形態においては、土留掘削に際して掘削底部の地盤(以下、底部地盤)に発生が懸念される変状事象のうち特に盤ぶくれにスポットを当てて説明することとし、この盤ぶくれの発生が掘削施工時に懸念された実際の現場についてbiotの多次元圧密理論にもとづく3次元地盤/地下水連成FEM解析を行い、盤ぶくれの発生予測を行った状況を想定する。また、施工条件によって底部地盤の応力状態がどのように変化するかも併せて解析する。
【0012】
1.施工条件と有限要素モデリング
施工領域、つまり土留掘削を行う領域は、図2(a)に示すように縦80m×横90mのほぼ矩形のエリアであり、土留壁体としてRC連続地中壁(同(b)図参照。厚みt=1.0m、長さL=38m)を採用している。このRC連続地中壁の内周には厚み0.7mの地盤改良体を適宜施工し地盤の自立性を高め、また、掘削領域外周には、掘削の段階的進行に合わせて(本実施例では7次掘削時)地下水揚水用のディープウェルDWの施工を想定している。他にも、排水用のリリーフウェルRWを前記RC連続地中壁と同程度の長さでもって掘削領域内に設けてドライ掘削を図っている。このような掘削領域に対して、床付けまで7次に渡って掘削を行うと共に、逆打ちスラブ打設を前記の段階掘削と合わせて実行し、1FからB5Fまでスラブを形成する。また、解析条件に応じて場所打ち杭(φ2.0m、L=19m)を床付け面からGL−43mまで施工する状況を想定する。
【0013】
一方、上記掘削領域の地盤状況としては、図2(b)における地質柱状図に示すように、最上層の沖積上部砂層が地表下(以下、GL−)6m付近まで堆積し、その下層に沖積の(高塑性)粘土層がGL−6m〜22m付近まで厚く堆積している状況である。以下、洪積の粘土層と洪積または沖積の砂層とが交互に積層している。解析にあたっては、前記の沖積粘土層と、盤ぶくれ発生が懸念される床付けレベル(GL−23.8m)下の洪積上部粘土層及び中間粘土層には、関口と太田の提案による弾塑性構成式(参照文献:Sekiguchi,H. and Ohta,H.:Induced anisotropy and time dipendency in clay, 9th ICSMFE, Tokyo,Proc.Specialty session 9, pp.229-239,1977)を用い、圧密試験の結果を主体に非線形定数値を設定する。
【0014】
沖積と洪積の各砂層ならびに洪積粘土層の初期変形係数はPS検層により求めることとし、三軸伸張条件でのDrucker−Pragerの破壊条件(Mohr−Coulombの破壊条件に内接する円)に至った地盤要素の変形係数は1/100に低減させる設定とする。また、ポアソン比は横田らの実験結果(参照文献:横田・今野・栗田:土のポアソン比について、第15回土質工学研究発表会、pp.529-532,1980)をもとに0.35としている。なお、各砂層の透水係数は現場透水試験の結果に基づいて決定するものとする。
【0015】
解析領域と有限要素メッシュを図3(a)、(b)に示す。ここにおける解析領域は、土留壁背面から掘削領域中心を包含するもの(図2(a)も参照のこと)とし、前述の場所打ち杭の格子状配置による変形の対称性を考慮する。土留壁と各掘削段階で設けられた逆打ちスラブの模擬にはシェル要素を、掘削底部の場所打ち杭とその上部の柱(逆打ち荷重受け)にはソリッド要素を用い、コンクリートの定数値を与えることとする。ここで、土留壁と地盤との間(接触部)、場所打ち杭と地盤との間(接触部)には薄層の地盤要素(接触部を含む適宜領域)を設け、地盤の非線形性によって接触抵抗を表現した。この場合、前記薄層に生じる接触抵抗は、薄層の応力状態が地盤強度を越えた際に当該薄層における接触抵抗が消失するとする解析処理を行う。なお、このように接触抵抗を解析するにあたり、前記薄層を含む適宜領域にDrucker−Pragerモデルを適用するとともに、材料定数として接触抵抗に関する実測データを用いることとしてもよい。
【0016】
上記条件下において、実際工事と同様に段階的掘削と逆打ちスラブの繰り返し施工を順次追跡して盤ぶくれの予測について解析を行う。なおこの際、リリーフウェルRWによるドライ掘削を模擬するために、内水位を各次掘削段階で掘削レベルより1m深い位置に保つように該当節点の全水頭値を拘束し、また最終の7次掘削時に盤ぶくれ対策として実施されるディープウェルDW揚水については、対象となった洪積中間砂層の節点の全水頭値を実際と同様に△−6.0m低下させて拘束することにより減圧効果をシミュレートする。
【0017】
2.掘削底部地盤の応力状態
最終掘削時の底部地盤の全般の応力状態を図4に、掘削部中央付近の応力の深度分布を図5に示す。図4では、本発明の変状予測方法を上記条件の下に実施して得られた解析結果として、鉛直全応力σvと間隙水圧pwの比(σv/pw)のコンターマップを示しており、ディープウェルDWの効果および場所打ち杭の効果を、対策工未施工の場合と比較し併せて示している。被圧帯水層(例:砂・礫層)上端のσvがpwを下回った時点(σv/pw<1)で盤ぶくれのおそれが生じることになるが、未対策のケース(DWも場所打ち杭も無い)では、実工事で懸念されていたようにσv/pw<1の領域(黒色領域)が掘削領域中央付近に拡がる解析結果が明確に得られている。
【0018】
一方、ディープウェルDWを考慮したケースでは、σv/pw<1の領域は生じていない。また、場所打ち杭を設けたケースではディープウェルDWを用いなくてもσv/pwの値が大きく改善される解析結果となっている。このように、各施工段階において掘削領域全体を空間的に俯瞰する解析結果を得ることが出来るのである。従って、どの領域に盤ぶくれの発生が懸念されるか、或いはその部分への対策工の効果等も一目瞭然だと言える。他方、図5においては、場所打ち杭と地盤との間で発揮された接触抵抗により、底部地盤の鉛直全応力σvが大きく残留していることが明らかになっている。本発明による盤ぶくれに対する予測方法を実施すれば、ディープウェルDWによる揚圧力の低減、場所打ち杭による土被り圧(全応力)の残留、の両効果を上記の如く簡便確実かつ、視覚的に明確にすることができ、盤ぶくれへの対策を万全にして施工を行うことにつながる。なお、本発明の変状予測方法は、コンピュータ上で機能可能なプログラムとして構成して該コンピュータ上で機能させることとすれば、勿論、上述の変状予測は自動的かつ簡便・迅速に行われることとなる。
【0019】
【発明の効果】
以上詳細に説明したように、本発明の掘削底部地盤の変状予測方法によれば、掘削域及びその周辺の幾何的条件、ならびに土留壁側面等と地盤との接触抵抗を具体的に考慮して変状予測を実行することが可能となることに加えて、水圧と土被り圧等の抗力との比較を空間的にも経時的にも解析することが出来る。
よって掘削底部地盤全体としての変状予測や評価を行うだけでなく、所定の施工段階において局所的に底部地盤の変状を予測・評価することが可能となる。
つまり、揚水井等の設置といった各種対策工を各所の変状に応じて過不足なく効果的に実施することに結びつく変状予測の結果を簡便確実に得ることが出来るのである。
また本発明は、盤ぶくれ対策工である被圧帯水層に対する揚水による減圧効果を考慮した変状予測を行うことも出来る利点を備える。
しかして、優れた精度の下、領域毎や施工段階毎に掘削底部地盤の変状予測や評価を、簡便確実になしうる掘削底部地盤の変状予測方法を提供可能となる。
【図面の簡単な説明】
【図1】盤ぶくれに対する従来の考え方を示す説明図である。
【図2】(a)は本実施形態における掘削底部と解析領域とを示す平面図であり、(b)は土留掘削を行った地質状況および施工断面を示す説明図である。
【図3】(a)は施工サイトの有限要素モデリングの状況を示す説明図であり、(b)は、場所打ち杭の平面配置と有限要素メッシュの適用状況を示す説明図である。
【図4】掘削底部地盤に残留する鉛直全応力と間隙水圧との比を対策工毎に示したコンターマップである。
【図5】底部地盤中央付近の応力/間隙水圧の深度分布を示す説明図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for predicting / evaluating deformation of a bottom ground associated with earth retaining excavation work.
[0002]
[Prior art]
For example, in construction where the construction area is limited, such as urban civil engineering work, a retaining wall such as a steel sheet pile or a side sheet pile is erected from the meaning of effectively using the limited construction area. A lot of construction work involving earth retaining excavation, which is supported by supporting works such as digging, is carried out. However, this soil excavation has been pointed out to generate phenomena that should be noted depending on the properties of the construction ground and groundwater. This phenomenon is a deformation phenomenon of the bottom ground such as bulging, boiling, and heaving. Of these, for example, regarding the blisters, the water pressure of the aquifer (such as sand / gravel layer) contained in the ground at the bottom of the excavation includes an impermeable layer that exists above the confined aquifer. This is a phenomenon that pushes the ground upward, and prediction and evaluation methods for this phenomenon have been proposed. FIG. 1 shows the concept of board bulging in the conventional method.
[0003]
In the conventional prediction / evaluation method, the water pressure U of the confined aquifer (permeable layer) derived from the confined water head hw and the ground (impermeable layer and I layer) above the confined aquifer are described. By comparing the magnitude with the weight W (overburden pressure), it is predicted that if the water pressure wins, the occurrence of overburden is a concern, and if the overburden pressure wins, there is less fear of overburden. I was going to estimate the occurrence of blistering on the entire excavated ground.
[0004]
[Problems to be solved by the invention]
However, according to the conventional method, the contact resistance between the soil retaining wall side surface and the ground, which is estimated to be more effective resistance to water pressure than the soil covering pressure, is considered while considering the construction process and elapsed time. Never considered. In addition, since the analysis of the comparison between the water pressure and the drag force such as soil covering pressure was conducted as a vertical one-dimensional problem, it is possible to predict and evaluate the deformation of the entire bottom of the excavation bottom, but spatial and temporal No changes were predicted or evaluated. Therefore, the deformation of the bottom ground predicted and evaluated by the conventional method tends to be an overestimation, and even if the countermeasure work for the predicted deformation is designed here, the area of the bottom ground and the excavation stage Every time there was a risk of excessive or insufficient countermeasures.
[0005]
Therefore, the present invention has been made paying attention to such a conventional problem, and the excavation bottom that can easily and reliably predict the deformation of the excavation bottom ground for each region or each construction stage with excellent accuracy. The present invention provides a ground deformation prediction evaluation method.
[0006]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and the first invention is a method for predicting the deformation of the bottom ground due to earth excavation work, wherein the bottom ground is below the bottom ground. The water pressure in the confined aquifer that causes deformation, the earth covering pressure on the confined aquifer, the contact resistance between the retaining wall or the pile and the ground, and the viscous soil deeper than the bottom of the retaining wall or the bottom of the pile A drag value and a water pressure value for spatial discretization and time discretization in the bottom ground by applying an FEM analysis method based on a multi-dimensional consolidation theory to the drag force against the water pressure including any of the adhesive forces of the layers And the drag / water pressure ratio is calculated for each construction process and each construction area.
[0007]
In analyzing the contact resistance generated in the contact portion between the retaining wall or the pile and the ground in the first invention, the second invention is the same nonlinear model as the ground around the contact portion in an appropriate region including the contact portion. And a material constant is applied, and when the stress state of the contact portion exceeds the ground strength, an analysis process for eliminating the contact resistance at the contact portion is performed. The present invention is suitable for predicting deformation of a viscous ground, and it is preferable to apply an elastoplastic constitutive equation proposed by Sekiguchi and Ota as a nonlinear model.
[0008]
In analyzing the contact resistance generated in the contact portion between the earth retaining wall or the pile and the ground in the first or second invention, the third invention applies a nonlinear model to an appropriate region including the contact portion, It is characterized by using measured data regarding contact resistance as a material constant. The present invention is suitable for prediction of deformation of gravel ground, and it is preferable to apply a Drucker-Prager model as a nonlinear model.
[0009]
4th invention shall make the deformation | transformation prediction program for functioning on a computer the deformation | transformation prediction method in any one of 1st-3rd.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a method for predicting the deformation of a bottom of excavation ground according to the present invention will be described below with reference to the accompanying drawings. FIG. 2A is a plan view showing a bottom of excavation and an analysis region in the present embodiment, and FIG. 2B is an explanatory diagram showing a geological situation and a construction section in which earth excavation is performed. FIG. 3A is an explanatory diagram showing the situation of finite element modeling at the construction site, and FIG. 3B is an explanatory diagram showing the planar arrangement of cast-in-place piles and the application status of the finite element mesh.
[0011]
In the present embodiment, during the earth retaining excavation, a description will be given by focusing on the ground bulge among the deformation events that are likely to occur on the ground at the bottom of the excavation (hereinafter referred to as the bottom ground). Suppose that the actual site of concern at the time of excavation construction is subjected to 3D ground / groundwater coupled FEM analysis based on biot's multidimensional consolidation theory, and the occurrence of overburden is predicted. In addition, we analyze how the stress state of the bottom ground changes depending on the construction conditions.
[0012]
1. The construction conditions and the finite element modeling construction area, that is, the area where the excavation is performed is an approximately rectangular area of 80 m in length and 90 m in width as shown in FIG. (B) Refer to the figure, thickness t = 1.0 m, length L = 38 m). A ground improvement body with a thickness of 0.7m is appropriately constructed on the inner periphery of this RC continuous underground wall to increase the independence of the ground, and the outer periphery of the excavation area is adapted to the progress of excavation (this embodiment) In the case of the 7th excavation), the construction of deep well DW for groundwater pumping is assumed. In addition, a relief well RW for drainage is provided in the excavation area with the same length as that of the RC continuous underground wall to achieve dry excavation. In such an excavation region, excavation is performed over seven steps until flooring, and reverse slab placement is performed in combination with the above-described step excavation to form slabs from 1F to B5F. In addition, it is assumed that a cast-in-place pile (φ2.0 m, L = 19 m) is constructed from the flooring surface to GL-43 m according to the analysis conditions.
[0013]
On the other hand, as the ground condition of the excavation area, as shown in the geological columnar diagram in FIG. 2 (b), the uppermost alluvial upper sand layer is deposited up to about 6m below the surface (hereinafter referred to as GL-), and the alluvial layer below it. The (high plasticity) clay layer is thickly deposited up to around GL-6 m to 22 m. In the following, diluvial clay layers and diluvial or alluvial sand layers are alternately laminated. In the analysis, the above-mentioned alluvial clay layer and the upper clay layer and intermediate clay layer under the flooring level (GL-23.8m) where the occurrence of overburden is a concern are the bullets proposed by Sekiguchi and Ota. Using a plastic constitutive equation (reference: Sekiguchi, H. and Ohta, H .: Induced anisotropy and time dipendency in clay, 9th ICSMFE, Tokyo, Proc. Specialty session 9, pp.229-239, 1977) Set a nonlinear constant value based on the result.
[0014]
The initial deformation coefficient of each of the alluvial and diluvial sand layers and the diluvial clay layer is determined by PS logging, and is based on the Drucker-Pragger fracture condition (circle inscribed in the Mohr-Coulomb fracture condition) under triaxial stretching conditions. The deformation coefficient of the reached ground element is set to be reduced to 1/100. The Poisson's ratio is 0.35 based on the experimental results of Yokota et al. (Reference: Yokota, Konno, Kurita: The Poisson's ratio of soil, 15th Geotechnical Engineering Conference, pp.529-532, 1980). It is said. The permeability coefficient of each sand layer shall be determined based on the results of on-site permeability tests.
[0015]
The analysis region and the finite element mesh are shown in FIGS. 3 (a) and 3 (b). The analysis region here includes the center of the excavation region from the back of the retaining wall (see also FIG. 2A), and considers the symmetry of deformation due to the lattice placement of the cast-in-place piles described above. Use a shell element to simulate the earth retaining wall and the inverted slab provided at each excavation stage, and use a solid element for the cast-in-place pile at the bottom of the excavation and its upper column (back load receiving). I will give it. Here, a thin layer of ground element (appropriate region including the contact part) is provided between the retaining wall and the ground (contact part) and between the cast-in-place pile and the ground (contact part). The contact resistance was expressed. In this case, the contact resistance generated in the thin layer is analyzed so that the contact resistance in the thin layer disappears when the stress state of the thin layer exceeds the ground strength. In analyzing the contact resistance in this way, the Drucker-Prager model may be applied to an appropriate region including the thin layer, and measured data regarding the contact resistance may be used as a material constant.
[0016]
Under the above conditions, we will analyze the prediction of board bulge by sequentially tracking the repeated construction of stepped excavation and backlash slab as in the actual construction. At this time, in order to simulate dry excavation by the relief well RW, the total head value of the corresponding node is constrained so that the inner water level is kept at a position 1 m deeper than the excavation level in each subsequent excavation stage, and the final seventh excavation is performed. For deep well DW pumping, which is sometimes implemented as a countermeasure against blistering, the total head value at the nodes of the target intermediate sand layer is reduced by △ -6.0m and restrained by the same amount as in practice. Simulate.
[0017]
2. Stress State of Excavation Bottom Ground FIG. 4 shows the general stress state of the bottom ground at the time of final excavation, and FIG. 5 shows the stress depth distribution near the center of the excavation part. FIG. 4 shows a contour map of the ratio (σv / pw) of the total vertical stress σv to the pore water pressure pw as an analysis result obtained by carrying out the deformation prediction method of the present invention under the above conditions. The effect of deep well DW and the effect of cast-in-place piles are shown in comparison with the case of no countermeasure work. When the σv at the upper end of the aquifer (eg sand / gravel layer) falls below pw (σv / pw <1), there is a risk of board bulge, but there is an unmeasured case (DW is also a place) In the case of no piles), the analysis result in which the region (black region) where σv / pw <1 extends near the center of the excavation region is clearly obtained as was feared in actual construction.
[0018]
On the other hand, in the case where the deep well DW is considered, the region of σv / pw <1 does not occur. Further, in the case where the cast-in-place pile is provided, the result of analysis that the value of σv / pw is greatly improved without using the deep well DW. In this way, it is possible to obtain an analysis result that spatially overlooks the entire excavation area at each construction stage. Therefore, it can be said that in which area the occurrence of the bulge is concerned, or the effect of the countermeasure work on that part is obvious. On the other hand, in FIG. 5, it is clear that the vertical total stress σv of the bottom ground remains largely due to the contact resistance exerted between the cast-in-place pile and the ground. If the prediction method for the board bulge according to the present invention is carried out, the effects of reducing the lifting pressure by the deep well DW and the residual soil covering pressure (total stress) by the cast-in-place piles can be simply, reliably and visually as described above. Therefore, it will lead to construction with full countermeasures against board blisters. If the deformation prediction method of the present invention is configured as a program that can function on a computer and functions on the computer, of course, the above-described deformation prediction is performed automatically, simply, and quickly. It will be.
[0019]
【The invention's effect】
As described above in detail, according to the method for predicting the deformation of the bottom of the excavated bottom according to the present invention, the contact resistance between the excavation area and the surrounding geometric conditions, and the side wall of the retaining wall and the ground is specifically considered. In addition to being able to execute deformation prediction, it is possible to analyze the comparison between the water pressure and the drag force such as soil covering pressure both spatially and temporally.
Therefore, not only the deformation prediction and evaluation of the entire excavation bottom ground can be performed, but also the deformation of the bottom ground can be predicted and evaluated locally at a predetermined construction stage.
In other words, it is possible to easily and reliably obtain the result of deformation prediction that leads to the effective implementation of various countermeasures such as the installation of pumping wells, etc. according to the deformation of each place without excess or deficiency.
In addition, the present invention has an advantage that it is possible to perform deformation prediction in consideration of the pressure reduction effect due to pumping to the pressured aquifer, which is a countermeasure for blistering.
Accordingly, it is possible to provide a method for predicting the deformation of the bottom of the excavation bottom that can easily and reliably perform the deformation prediction and evaluation of the bottom of the excavation bottom for each region or each construction stage with excellent accuracy.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing a conventional way of thinking about a board bulge.
FIG. 2A is a plan view showing an excavation bottom and an analysis region in the present embodiment, and FIG. 2B is an explanatory diagram showing a geological situation and a construction cross section in which earth excavation is performed.
FIG. 3A is an explanatory diagram showing a state of finite element modeling at a construction site, and FIG. 3B is an explanatory diagram showing a planar arrangement of cast-in-place piles and an application state of a finite element mesh.
FIG. 4 is a contour map showing the ratio between the total vertical stress remaining on the excavation bottom ground and the pore water pressure for each countermeasure work.
FIG. 5 is an explanatory view showing the depth distribution of stress / pore water pressure near the center of the bottom ground.

Claims (4)

土留掘削工事に伴う底部地盤の変状を予測する方法であって、前記底部地盤下にあって該底部地盤の変状を生起する被圧帯水層における水圧と、前記被圧帯水層上の土被り圧、土留壁又は杭と地盤との間の接触抵抗、および土留壁下端又は杭下端以深の粘性土層の粘着力のいずれかを含む前記水圧に対する抗力とについて、多次元圧密理論にもとづくFEM解析法を適用することで、前記底部地盤における空間離散化および時間離散化を図った抗力値および水圧値を解析し、施工過程毎および施工領域毎に抗力/水圧比を算定することを特徴とする変状予測方法。A method for predicting a deformation of a bottom ground due to a soil excavation work, wherein a water pressure in a confined aquifer under the bottom ground and causing the deformation of the bottom ground, and on the confined aquifer The resistance to the water pressure, including either the earth pressure of the earth, the contact resistance between the retaining wall or the pile and the ground, and the adhesive force of the viscous soil layer deeper than the bottom of the retaining wall or the bottom of the pile Applying the original FEM analysis method to analyze the drag value and water pressure value for spatial discretization and time discretization in the bottom ground, and to calculate the drag / water pressure ratio for each construction process and each construction region Characteristic deformation prediction method. 前記土留壁又は杭と地盤との接触部に生じる接触抵抗を解析するにあたり、前記接触部を含む適宜領域に該接触部周囲の地盤と同じ非線形モデルおよび材料定数を適用し、接触部の応力状態が地盤強度を越えた際に当該接触部における接触抵抗を消失させる解析処理を行うことを特徴とする請求項1に記載の変状予測方法。In analyzing the contact resistance generated in the contact portion between the retaining wall or the pile and the ground, the same nonlinear model and material constant as the ground around the contact portion are applied to an appropriate region including the contact portion, and the stress state of the contact portion The deformation prediction method according to claim 1, wherein an analysis process for eliminating the contact resistance at the contact portion is performed when the ground strength exceeds the ground strength. 前記土留壁又は杭と地盤との接触部に生じる接触抵抗を解析するにあたり、前記接触部を含む適宜領域に非線形モデルを適用するとともに、材料定数として接触抵抗に関する実測データを用いることを特徴とする請求項1に記載の変状予測方法。In analyzing the contact resistance generated in the contact portion between the retaining wall or the pile and the ground, a nonlinear model is applied to an appropriate region including the contact portion, and measured data regarding the contact resistance is used as a material constant. The deformation prediction method according to claim 1. 請求項1〜3のいずれかに記載の変状予測方法をコンピュータ上で機能させるための変状予測プログラム。A deformation prediction program for causing the deformation prediction method according to claim 1 to function on a computer.
JP2001209834A 2001-07-10 2001-07-10 Deformation prediction method and program for excavation bottom ground Expired - Fee Related JP3876655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209834A JP3876655B2 (en) 2001-07-10 2001-07-10 Deformation prediction method and program for excavation bottom ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209834A JP3876655B2 (en) 2001-07-10 2001-07-10 Deformation prediction method and program for excavation bottom ground

Publications (2)

Publication Number Publication Date
JP2003020649A JP2003020649A (en) 2003-01-24
JP3876655B2 true JP3876655B2 (en) 2007-02-07

Family

ID=19045434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209834A Expired - Fee Related JP3876655B2 (en) 2001-07-10 2001-07-10 Deformation prediction method and program for excavation bottom ground

Country Status (1)

Country Link
JP (1) JP3876655B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696600A (en) * 2015-05-26 2016-06-22 中铁十六局集团北京轨道交通工程建设有限公司 Foundation pit supporting method capable of automatically controlling horizontal displacement of underground diaphragm wall

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196269B2 (en) * 2003-06-12 2008-12-17 清水建設株式会社 Evaluation method for supporting performance of synthetic retaining wall
KR100653433B1 (en) 2005-12-21 2006-12-04 연세대학교 산학협력단 Finite difference method in beam analysis
JP4771173B2 (en) * 2007-04-17 2011-09-14 清水建設株式会社 Method for estimating rebound amount in excavation ground and ground excavation method
CN102535475B (en) * 2010-12-17 2015-12-16 上海市电力公司 Complex condition deep-foundation pit engineering structure stress and deformation analysis method
CN102828497A (en) * 2012-09-14 2012-12-19 黄河勘测规划设计有限公司 Method for computing pressure of soil mass behind retaining wall
JP6512014B2 (en) * 2015-07-27 2019-05-15 株式会社大林組 Evaluation method of stability of excavated wall
CN107119691B (en) * 2017-06-22 2023-10-13 中交(南京)建设有限公司 Square deep foundation pit suitable for high bearing pressure of water-rich sand egg layer and excavation method thereof
JP7089891B2 (en) * 2018-02-19 2022-06-23 清水建設株式会社 Freezing expansion analysis method of the ground
CN108921350B (en) * 2018-07-06 2021-07-06 江西理工大学 Metal mine goaf overlying rock mass movement space-time law prediction method
JP7103046B2 (en) * 2018-08-06 2022-07-20 株式会社大林組 Ground analysis method based on multidimensional consolidation theory
CN109506614B (en) * 2018-10-09 2020-09-25 中铁二院工程集团有限责任公司 Method for judging large deformation of layered surrounding rock
CN111101525B (en) * 2020-01-21 2020-12-22 山东宝诚集团有限公司 Deep foundation pit building collapse prevention device
CN112176977B (en) * 2020-09-17 2021-11-16 广州城建职业学院 Be applicable to geotechnical engineering construction soil layer and subside and use monitoring devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696600A (en) * 2015-05-26 2016-06-22 中铁十六局集团北京轨道交通工程建设有限公司 Foundation pit supporting method capable of automatically controlling horizontal displacement of underground diaphragm wall

Also Published As

Publication number Publication date
JP2003020649A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
Wu et al. Semi-analytical solution to pumping test data with barrier, wellbore storage, and partial penetration effects
Hsiung et al. Three-dimensional effects of a deep excavation on wall deflections in loose to medium dense sands
Do et al. A study of failure mechanisms of deep excavations in soft clay using the finite element method
JP3876655B2 (en) Deformation prediction method and program for excavation bottom ground
Song et al. Behavior and analysis of stabilizing piles installed in a cut slope during heavy rainfall
Poulos Pile behavior—Consequences of geological and construction imperfections
Fellenius et al. O-cell testing and FE analysis of 28-m-deep barrette in Manila, Philippines
Benmebarek et al. Numerical studies of seepage failure of sand within a cofferdam
Hsieh et al. Lessons learned in design of an excavation with the installation of buttress walls
Chiaradonna et al. Interpreting the deformation phenomena of a levee damaged during the 2012 Emilia earthquake
Chaloulos et al. Liquefaction-induced settlements of residential buildings subjected to induced earthquakes
Watcharasawe et al. Measurements and analysis of load sharing between piles and raft in a pile foundation in clay
Niroumand et al. Design and construction of soil anchor plates
Ovando-Shelley et al. Underexcavation for leveling buildings in Mexico City: case of the Metropolitan Cathedral and the Sagrario Church
Hosseini et al. Seepage Analysis through Rockfill Dams by Finite Element Method in a Fixed Gird
Hamidi et al. The boundary between deep foundations and ground improvement
Ruggeri et al. Stiffness of wall-type grouting under transversal loading
JP2000027185A (en) Assuming method of constant of ground
Jeong et al. Numerical analysis of passive pile groups in offshore soft deposits
Tan et al. Design of retaining wall and support systems for deep basement construction–a Malaysian experience
Lin et al. Time‐dependent displacement of diaphragm wall induced by soil creep
Dembicki et al. Pylon foundation of a cable stayed bridge at the motorway ring road of Wrocław
Zhou et al. Application of deformation adjustors in piled raft foundations
Hsr et al. Application of a fully coupled method to the analysis of an excavation
Niroumand Soil reinforcement for anchor plates and uplift response

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040729

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040729

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3876655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees