JP3876022B2 - Method for quantifying substances that affect blood clotting time - Google Patents

Method for quantifying substances that affect blood clotting time Download PDF

Info

Publication number
JP3876022B2
JP3876022B2 JP25510696A JP25510696A JP3876022B2 JP 3876022 B2 JP3876022 B2 JP 3876022B2 JP 25510696 A JP25510696 A JP 25510696A JP 25510696 A JP25510696 A JP 25510696A JP 3876022 B2 JP3876022 B2 JP 3876022B2
Authority
JP
Japan
Prior art keywords
substance
concentration
sample
time
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25510696A
Other languages
Japanese (ja)
Other versions
JPH10104239A (en
Inventor
通成 原田
守 京ヶ島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikagaku Corp
Original Assignee
Seikagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corp filed Critical Seikagaku Corp
Priority to JP25510696A priority Critical patent/JP3876022B2/en
Publication of JPH10104239A publication Critical patent/JPH10104239A/en
Application granted granted Critical
Publication of JP3876022B2 publication Critical patent/JP3876022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、部分トロンボプラスチン時間(PTT)、活性化部分トロンボプラスチン時間(APTT)、プロトロンビン時間(PT)、トロンビン時間(TT)のような血液凝固時間に影響を与える薬物などの物質の濃度を短時間に、正確に、簡便に、また安価に測定する方法に関する。また同じ原理を用いて、各種検体中の当該物質を定量する装置、及びこの定量方法に使用する試薬キットに関する。
【0002】
【従来の技術】
ヘパリンやデルマタン硫酸等のグリコサミノグリカン(以下GAGとも記述する)やアルガトロバンのように血液凝固系に影響を与える物質を測定する方法には、高速液体クロマトグラフィー(HPLC)のように一般の測定機器を用いて該測定対象物質を直接測定するか、そうでなければヘパリン測定の際に行われるように該測定対象物質に特異的な生化学的活性を測定して間接的に測定することがなされている(血液凝固検査ハンドブック 宇宙堂八木書店発行 藤巻道男、福武勝幸編集 1992)。しかし、前者の方法では特定の測定機器が必要であり、さらにその測定装置によって測定可能な状態にするために長時間かかる簡便ではない前処理が必要とされ、検出感度が低い等の欠点が存在する。また、後者の方法においては目的とする物質に特異的活性が存在することが必須であり、その特異的活性を検出するためには多くの場合、入手困難で高価な試薬が必要とされ、また、活性を測定するため敏速な処理が必要とされ一度に多数の検体の測定を行うことが困難であり、さらに試料の長期間の保存は活性の低下を招き正確な測定を妨げる、測定可能な範囲は狭い等の問題点が存在する。特異的な抗体を用いた免疫化学的測定方法等も考え得るが、該測定対象物質が免疫原性がないあるいは低い場合には検出が不可能であるという問題点があり、汎用されるには至っていない。部分トロンボプラスチン時間(PTT)、活性化部分トロンボプラスチン時間(APTT)、プロトロンビン時間(PT)、トロンビン時間(TT)のような血液凝固時間を測定することにより、該測定対象物質濃度を測定する試みもあるが(In Heparin, pp.393-415, Lane, D.A. and Lindahl, U. eds, Edward Arnold, 1989)、従来行われている方法では該測定対象物質濃度と凝固時間の間に数学的相関関係がなく、凝固時間の測定値から濃度の直接の数値化が困難であること、作成される検量線から数値化が可能な濃度範囲が狭いこと、さらに検体中に含まれる多くの凝固因子を利用して凝固させるため、該測定対象物質濃度に関わらず検体差が大きいこと、などが問題点となっている。
【0003】
【発明が解決しようとする課題】
血液凝固時間に影響を与える物質の簡便でかつ精度の高い定量方法、数値化が容易な定量方法が求められている。特に、前記の従来の定量法に比べ、広い測定域で精度よく、また数値化が可能な定量法、及び検体中の測定対象物質以外の血液凝固因子等の物質の影響を受けずに該測定対象物質を特異的に高い精度で定量する方法が求められている。
【0004】
【課題を解決するための手段】
本発明者らは鋭意研究した結果、既知濃度の測定対象物質濃度と、凝固時間とから特定の様式で検量線を求めることにより、広い測定範囲で精度よく定量することができること、測定値から測定対象物質濃度を数値化できること、また、測定対象物質を含む検体を特定の条件で前処理することにより、検体中の測定対象物質以外の物質の影響を受けずに高い精度で測定対象物質を特異的に定量することができることを見いだし本発明を完成した。
【0005】
すなわち、本発明の第1の要旨は、血液凝固時間に影響を与える物質の定量方法であって、既知濃度の前記物質を含む標準検体及び前記物質の濃度が未知の測定すべき検体における凝固時間並びに前記物質を含まない対照標準検体における凝固時間を測定し、前記標準検体における前記血液凝固時間に影響を与える物質の濃度の対数値と下記式▲1▼で表される相対凝固時間(Tr)の下記式▲2▼で表されるロジット(Logit)値とを変数として検量線を作成し、得られた検量線に基づいて、測定すべき検体中の前記物質の濃度を求めることを特徴とする定量方法に存する(以下本発明方法1とも表現する)。
【0006】
▲1▼Tr=(T0/T)×K
▲2▼Logit(Tr)=Ln(Tr/|1-Tr|)
(式中、Trは相対凝固時間、T0は前記対照標準検体における凝固時間、Tは前記標準検体における凝固時間、Kは0.8≦K≦1.2を満たす任意の定数(好ましくは1.0)、Lnは自然対数である。)
好ましくは、検量線を作成する方法は多項式回帰法である。
【0007】
また、本発明の第2の要旨は、血液凝固時間に影響を与える物質の定量方法であって、前記物質の濃度が未知の測定すべき検体に内在する血液凝固因子を、前記物質を破壊しない条件下で不活化し、次いで、前記検体及び標準検体を一定量の血液凝固因子と混和し、得られた混和物の凝固時間を測定することを特徴とする定量方法に存する(以下本発明方法2とも表現する、なお本発明方法1及び2をあわせて単に本発明方法と表現することもある)。
【0008】
好ましくは、不活化は、加熱処理によるものであり、その好ましい条件は50〜70℃である。
本発明方法1に本発明方法2を組み合わせることもできる。
【0009】
本発明方法の測定対象物質として好ましい血液凝固時間に影響を与える物質は、糖質又は複合糖質であり、さらに好ましいものは、グリコサミノグリカン又は糖脂質である。
【0010】
さらに、また、本発明は、本発明方法を行うための装置(以下本発明装置とも表現する)及び本発明方法を行うためのキット(以下本発明キットとも表現する)を提供する。
【0011】
すなわち、血液凝固時間に影響を与える物質の定量装置であって、既知濃度の前記物質を含む標準検体及び未知濃度の前記物質の濃度が未知の測定すべき検体並びに前記物質を含まない対照標準検体の凝固時間を測定する手段、前記既知濃度の対数値と下記式▲1▼で表される相対凝固時間(Tr)の下記式▲2▼で表されるロジット(Logit)値とを変数として多項式回帰法により検量線を算出する手段、及び、前記検量線に基づいて、前記測定すべき検体の凝固時間から前記物質の濃度を算出する手段を有することを特徴とする前記定量装置が提供される。
【0012】
▲1▼Tr=(T0/T)×K
▲2▼Logit(Tr)=Ln(Tr/|1-Tr|)
(式中、Trは相対凝固時間、T0は前記対照標準検体における凝固時間、Tは前記標準検体における凝固時間、Kは0.8≦K≦1.2を満たす定数(好ましくは1.0)、Lnは自然対数である。)
また、本発明キットは血液凝固時間に影響を与える物質の定量方法を行うためのキットであって、既知濃度の前記物質を含む標準検体、前記物質を含まない対照標準検体、血液凝固因子及び活性化因子を含むことを特徴とするキットである。好ましくは、前記既知濃度の対数値と下記式▲1▼で表される相対凝固時間(Tr)の下記式▲2▼で表されるロジット(Logit)値とを変数として多項式回帰法により検量線を算出する手順、及び、前記検量線に基づいて、前記測定すべき検体の凝固時間から前記物質の濃度を算出する手順をコンピュータに実行させるためのプログラムを記録した媒体を更に包含するキットである。
【0013】
▲1▼Tr=(T0/T)×K
▲2▼Logit(Tr)=Ln(Tr/|1-Tr|)
(式中、Trは相対凝固時間、T0は前記対照標準検体における凝固時間、Tは前記標準検体における凝固時間、Kは0.8≦K≦1.2を満たす定数(好ましくは1.0)、Lnは自然対数である。)
【0014】
【発明の実施の形態】
以下に本発明の実施の形態について説明する。
1.本発明方法1
血液凝固時間に影響を与える測定対象物質の濃度が未知の測定すべき検体すなわち該測定対象物質の濃度を測定すべき検体(測定検体)と、当該測定対象物質を含まない対照標準検体、さらに既知濃度の測定対象物質を含む標準検体について、血液凝固時間に関する測定系によって、それぞれ凝固時間を測定する。この際、測定検体、対照標準検体、標準検体のいずれかが血液凝固因子を全く含まないか、その一部を欠くものであり、活性化因子を添加しても単独では凝固が起こらない場合は、これら全ての検体の血液凝固因子が同濃度となるように上記血液凝固因子を混和する。標準検体に含まれる当該測定対象物質濃度の対数値を取り(対数変換)、標準検体と当該測定対象物質を含まない対照標準検体の凝固時間から下記式▲1▼で表される相対凝固時間を算出し、さらに該相対凝固時間を下記式▲2▼で表されるロジット(Logit)変換を行いロジット(Logit)値を算出し、当該対数値と当該Logit値を用いて検量線を作成する。通常のLogit変換は本発明方法1で使用する下記式▲2▼で示すLogit変換のように絶対値は使用しないが、本明細書中では下記式▲2▼による変換をロジット(Logit)変換と称し、該変換法による変換値をロジット(Logit)値とする。当該測定対象物質濃度を対数値に変換し、凝固時間を相対凝固時間に変換した後にLogit変換を行うことを今後Logit-log変換とも記述する。Logit変換の応用として下記式▲2▼'に示す式をLogit変換の代替として用いることも可能である。また、必要に応じ上記対数値とLogit値を回帰式に回帰して検量線を算出する。当該検量線を使用して検体の凝固時間から算出したLogit値を用いて検体中の当該測定対象物質濃度を求め、血液凝固時間に影響を与える物質の定量を行う。
▲1▼ Tr=(T0/T)×K
▲2▼ Logit(Tr)=Ln(Tr/|1-Tr|)
▲2▼'Logit(Tr)=Ln(Tr/|1-Tr|)m+Ln(n)
(式中、Trは相対凝固時間、T0は前記対照標準検体における凝固時間、Tは前記標準検体における凝固時間、Kは0.8≦K≦1.2の定数、Lnは自然対数、m、nは自然数であり、特にnはn>0を満たす。Kは既知の標準検体中の当該測定対象物質濃度を検量線上で求め、誤差が生じた場合に必要に応じて検体中の当該測定対象物質濃度を算出する前に補正定数として変化させる。通常はK=1.0で十分に対応することが可能である。また、▲2▼'の応用変換は検量線の傾き、切片を変化させる手段であり、当該応用変換を用いることによって数値の算出方法が単純になる場合は適宜利用することも可能であるが、通常は▲2▼式で表現される単なるLogit変換で十分に対応することが可能である。当該応用変換も本発明の技術範囲に包含される。)
【0015】
以下に本発明方法1の各工程における技術について詳細に説明する。
(1)血液凝固時間に影響を与える測定対象物質の濃度を測定すべき検体(測定検体)
血液凝固時間に影響を与える測定対象物質は、正常な血液凝固系においてその存在によって血液凝固時間の延長または短縮を起こす物質であれば特に限定されないが、糖鎖構造を有することが好ましい。当該糖鎖構造を有する物質としては例えば糖質、複合糖質等があげられるが、糖質としては例えばデルマタン硫酸(DS)、コンドロイチン硫酸E(CSE)、ヘパリン(Hep)、低分子ヘパリン(LMWHep)等のグリコサミノグリカン等があげられ、また複合糖質としては、例えばスルファチド等の糖脂質等があげられる。例えばデルマタン硫酸、コンドロイチン硫酸E、ヘパリンあるいは低分子ヘパリンは血液凝固時間の延長を起こす物質であり、例えばスルファチドは濃度条件により血液凝固時間を延長又は短縮する物質である。検体については、上記血液凝固時間に影響を与える物質を含み得る溶液であれば本発明において検体として用いることが可能であり、特に限定はされないが、例えば臨床検査用検体、前記物質を含む医薬品のモニタリングのための体液、前記物質を製造するための工程から得られる溶液等である。具体的には例えば体液として血液、血漿、血清、リンパ液、組織液、関節液、脳脊髄液、汗、涙液、尿等があげられ、組織抽出液等や、生理食塩水、各種緩衝液、水等の水溶性溶液等も体液と同様に検体として利用することが可能である。
【0016】
(2)対照標準検体及び標準検体
対照標準検体は、上記血液凝固時間に影響を与える物質を含まない水性の液体であれば特に限定はされないが、例えば血液、血漿、血清、リンパ液、組織液、関節液、脳脊髄液、汗、涙液、尿等の体液、組織抽出液、生理食塩水、各種緩衝液、水等である。さらに、標準検体とは、当該測定対象物質を既知濃度で含む上記液体である。検体と標準検体、対照標準検体の溶媒となる液体は必ずしも同一である必要はないが、同一であることが好ましい。
【0017】
(3)測定対象物質の濃度
本明細書中の測定対象物質の濃度は例えば(重量/容量(mg/ml、μg/ml等)で示される濃度、(活性/容量(U/ml等))等として記述される濃度である。
【0018】
(4)血液凝固時間に関する測定系
血液凝固時間に関する測定系は、検体の凝固を利用する方法であれば特に限定はされないが、例えば部分トロンボプラスチン時間(PTT)、活性化部分トロンボプラスチン時間(APTT)、プロトロンビン時間(PT)、トロンビン時間(TT)(いずれも 臨床検査マニュアル 文光堂発行 北村元仕ら編 1988)等の測定系である。
【0019】
(5)活性化因子
本発明における活性化因子とは利用する上記測定系によって検体の凝固を開始させるための活性化因子、例えばAPTT測定におけるAPTT測定試薬、あるいはPT測定におけるPT測定試薬等である。例えば、APTT測定試薬としては、市販のトロンボチェックAPTT((株)ミドリ十字;商品名)等に含まれる「APTT試薬」と塩化カルシウム溶液との組み合わせが好ましいが、「APTT試薬」の代替として同様の構成を有する試薬、すなわち珪藻土(例えばセライト(商品名))、カオリン鉱物等の鉱物、エラグ酸等のタンニン又は無水ケイ酸等の接触因子及び粗製のセファリン等を含有する試薬をAPTT測定用キットの説明書の記載と同様に用いて本発明方法におけるAPTT測定に適用してもよい。また、例えば、PT測定試薬とは市販のトロンボチェックPT((株)ミドリ十字;商品名)等に含まれる「PT試薬」と塩化カルシウム溶液が好ましいが、「PT試薬」と同様の構成を有する試薬、すなわちトロンボプラスチンを「PT試薬」の代替として、PT測定用キットの説明書の記載と同様に用いて本発明方法におけるPT測定に適用してもよい。また、同様にPTT測定やTT測定も0.02M塩化カルシウム溶液とPTTやTT測定用の市販のキットと同様の試薬、すなわち例えばPTT測定ではPTT試薬の代替としての粗製のセファリン、TT測定ではTT試薬の代替としてのトロンビンを用いて測定を行うことにより測定が可能である。
【0020】
(6)凝固時間
本発明における凝固時間とは、例えば吸光光度計による吸光度の測定値、濁度計や比濁計による濁度の測定値、あるいは粘度計による粘度の測定値などの測定値が、凝固の開始から凝固を示す一定の値に達するまでの時間を示す。
【0021】
(7)血液凝固因子
血液凝固因子とは血液凝固系に関して健常な血漿に含まれる全ての血液凝固因子であり、その添加方法は当該血液凝固因子が活性化因子により正常な凝固を誘導するのであれば測定反応系への混和方法、試薬の形態は限定はされない。混和の際は溶液の状態が好ましいが、正確に添加することが可能な方法であればこれに限定はされず、例えば凍結乾燥品を反応液に容易に溶解するように混和することも可能である。当該血液凝固因子を検体に混和する際には好ましくは最終濃度が健常人の血漿におけるこれら因子の濃度の5〜200%となることが望ましい。また、本発明における血液凝固因子としてはコアグトロール1((株)ミドリ十字;商品名)等の必要な血液凝固因子を含む市販の標準血漿を用いることが好ましいが、血液凝固因子としては、例えば血液にクエン酸ナトリウム等の血液凝固阻害剤を添加し、遠心分離を低回転数(例えば、150×g程度)で行って得られる血小板を多く含んだ多血小板血漿(PRP)、又は高回転数(例えば、1,000×g程度)で行って得られる貧血小板血漿(PPP)のいずれであっても用いることが可能である。さらに、正常血漿に含まれる血液凝固因子を全て含有する液体であり、上記血液凝固因子の活性化によって凝固を起こす能力が失われていなければ、例えば、未処理のままの血漿を凍結乾燥して得られた凍結乾燥品を蒸留水に再溶解した溶液等でも可能である。
【0022】
(8)対数変換
本発明における測定対象物質濃度の対数変換とは特に限定はされず、例えば常用対数値、自然対数値等を取ることであるが、数値の算出時の簡便さを考慮すると、常用対数値を用いることが好ましい。
【0023】
(9)回帰法
本発明における回帰法としては対数値とLogit値の関係を数式で表現するための回帰法であれば特に限定はされない。しかし、算出される数値と理論値の誤差が小さく正確性が高いことから多項式回帰法を用いて回帰式に回帰することが好ましく、実用性を考慮すると二次式又は三次式に回帰することがより好ましい。
【0024】
また、本発明は血液凝固時間に影響を与える物質の測定方法として以下の本発明方法2も提供する。以下に本発明方法2の実施の形態について説明する。
【0025】
2.本発明方法2
血液凝固時間に関する測定系において凝固時間を測定する際に、血液凝固時間に影響を与える物質の濃度を測定すべき検体(測定検体)が血液凝固因子をすでに含む生体由来検体である場合、当該測定対象物質を破壊しない条件下で測定検体中に内在する血液凝固因子を不活化し、次いで前記検体及び標準検体を一定量の血液凝固因子と混和してから、得られた混和物について凝固時間を測定する。測定された凝固時間から濃度をそのまま、あるいは対数による変換値と凝固時間をそのまま用いて検量線を作成する従来の方法によって測定対象物質の濃度を算出することができる。
【0026】
以下に本発明方法2の各工程における技術について詳細に説明する。なお、測定検体、対照標準検体及び標準検体、血液凝固時間に関する測定系、測定対象物質の濃度、凝固時間、血液凝固因子等については本発明方法1について記載したものと同様である。
【0027】
(1)測定対象物質を破壊しない条件下で血液凝固因子を不活化する処理
本発明における測定対象物質を破壊せずに検体内在性の血液凝固因子を不活化するための処理とは、例えば酵素処理、加熱処理、酸処理、アルカリ処理、有機溶媒による変性処理、凍結融解の繰り返し処理等であり、その中でも加熱処理が簡便なため好ましい。加熱処理における温度は、通常には30〜100℃、好ましくは40〜80℃、さらに好ましくは50〜70℃、最も好ましくは56〜65℃である。加熱処理における時間は加熱によって測定対象物質を破壊しないならば限定はされないが、通常には数分〜数十分、好ましくは15〜25分、特に好ましくは20分程度である。酸処理、アルカリ処理による場合は、その処理の後に例えば緩衝液等によって水素イオン濃度(pH)を適宜調整する必要がある。また、有機溶媒による変性処理の場合には、当該変性処理の後に有機溶媒を除去する処理が必要である。さらに、例えばタンパク質分解酵素等を用いた酵素処理による場合には、該処理の後に当該酵素を例えば加熱処理等によって失活させる必要がある。また、酵素処理法としては、固定化酵素と接触させる方法を採用することも可能であり、この場合は必ずしも失活させる必要はない。該不活化処理においては、上記処理の単独の使用、複数の処理の組み合わせた使用は特に制限されない。
【0028】
(2) 一定量の血液凝固因子との混和
本発明における一定量の血液凝固因子との混和とは、上記不活化処理で不活化された内在性の血液凝固因子の代わりに別途血液凝固因子を添加することを指す。添加量は当該血液凝固因子が活性化因子により正常な凝固を誘導する量であり、測定系により適宜決定される。
【0029】
以上本発明方法1と本発明方法2をそれぞれ独立で実施した場合にも従来法と比較して広い濃度範囲で正確な測定値を得ることが可能であるが、本発明方法1と本発明方法2に記載された方法を組み合わせて検体内在性の血液凝固因子の不活化処理と測定値の数値変換を用いた場合はより広い濃度範囲で正確な測定値を得ることが可能である。
【0030】
すなわち、当該本発明方法1について記載した測定対象物質を含む該本発明方法1と同様な測定検体及び標準検体または測定検体のみに当該測定対象物質を破壊しない処理を施し内在性の血液凝固因子を不活化し、その後、測定検体、対照標準検体、標準検体それぞれに該本発明方法1についての記載と同様に血液凝固因子を全て同濃度となるように添加して該本発明方法1について記載した活性化因子を添加して本発明方法1と同様に凝固時間を測定し、対照標準検体、標準検体における当該測定対象物質濃度あるいは活性単位と凝固時間の測定値を利用して検量線を作成し、当該検量線と測定検体における凝固時間から該検体中の当該測定対象物質濃度を求めることができる。
【0031】
また、本発明方法1、2及びこれらを組み合わせた定量方法は、血液凝固時間に影響を与える物質が測定すべき検体中に複数含まれる場合にも測定対象物質のみを定量する事が可能である。この場合には、本発明方法1、2あるいはこれらを組み合わせた方法において、検体の凝固を開始する前に、対象とする物質以外の上記物質を血液凝固系に影響を与えない状態にする作業を行う必要がある。当該作業は、例えば酵素処理法等である。例えば、測定対象物質とヘパリンが共存する場合には、検体の凝固を開始する作業の前にヘパリナーゼ等のヘパリン分解酵素によって処理してヘパリンを分解した後に、凝固を開始させて凝固時間の測定を行う。
【0032】
本発明は本発明方法を利用した測定機器(本発明装置)とキット(本発明キット)も提供する。以下に本発明装置と本発明キットの実施の形態について説明する。
【0033】
3.本発明装置
本発明方法1に記載された方法で血液凝固時間に影響を与える物質濃度を測定するための装置であり、その一例を図1のブロック図を参照して説明する。この本発明装置は、測定検体、対照標準検体及び標準検体の凝固時間を測定する手段として、反応実施部1と検体測定部2とを装備し、検量線を算出する手段及び前記物質の濃度を算出する手段として、入力部3、中央処理部4、データ記憶部5、プログラム記憶部6及び出力部7を装備している。
【0034】
以下、各構成部分毎に詳細に説明する。
(1)反応実施部
反応実施部1は、測定検体、対照標準検体及び標準検体の凝固が起こる反応器を備える。加熱による内在性の血液凝固因子の不活化処理を行うために加熱が可能なヒーターが装備されていることが好ましく、このヒーターを利用することにより本発明方法2の説明の後に記載した本発明方法1と本発明方法2を組み合わせた測定を行うことも可能である。
【0035】
(2)検体測定部
検体測定部2は、測定検体、対照標準検体、標準検体の変化を測定することにより凝固時間を測定する。装置の単純化を考慮すると上記反応実施部1と隣接して設置することが好ましい。
【0036】
検体測定部2が装備する凝固時間の測定手段は、上記本発明方法1の測定工程を実施することが可能であれば特に限定はされない。例えば、分光光度計を利用した吸光度の測定装置、濁度計や比濁計を用いた濁度の測定装置、粘度計を利用した粘度検出装置等であるが、装置の構造や簡便さなどから吸光度を利用する方法が好ましい。凝固の開始から測定値が凝固を示す一定の値に達するまでの時間が凝固時間として測定される。
【0037】
(3)入力部
入力部3により、標準検体中の測定対象物質濃度と当該濃度での凝固時間の測定値、必要に応じて標準検体中の該測定対象物質の活性単位(U/mg)、検体の凝固時間の測定値及び数値変換の係数(K)を入力するとともに検量線を算出するための回帰法を選択する。必要であれば反応実施部1のヒーターの加熱温度及び加熱時間の入力も当該入力部3で行う。入力部3は、例えばキーボード、テンキー、タッチパネル等で構成されるが、必ずしもこれに限定されるものではない。
【0038】
(4)中央処理部
以下の処理を行う。
・上記入力部3から入力された標準検体中の測定対象物質濃度あるいは活性単位及び回帰式情報(回帰式の選択情報及び係数(K))等をデータ記憶部5に格納し、また上記検体測定部で測定された検体、対照標準検体及び標準検体の凝固時間を上記検体測定部から取得してデータ記憶部5に格納する。
・プログラム記憶部6から検量線算出手順を実行するプログラムを読み出し、該プログラムを実行して検量線を算出し、必要に応じてデータ記憶部5に格納する。
・上記入力部3において入力された情報に応じてプログラム記憶部6から未知濃度算出手順を実行するプログラムを読み出し、該プログラムを実行して、検体中の物質濃度あるいは活性単位を算出し、必要に応じてデータ記憶部5に格納する。・算出された検量線及び検体中の測定対象物質濃度、ならびに、データ記憶部5に格納されたデータを出力部7に出力する。
・必要であれば、データ記憶部5に格納されたヒーターの加熱温度及び加熱時間を読み出し、反応実施部1のヒーターを制御する。
【0039】
中央処理部4は、例えば、マイクロプロセッサで構成される。
【0040】
(5)データ記憶部
標準検体中の測定対象物質濃度及び回帰式情報(回帰式の選択情報及び係数(K))、並びに、測定された測定検体、対照標準検体及び標準検体の凝固時間とを記憶する。例えば、ランダムアクセスメモリ、ハードディスク等の記憶装置で構成される。
【0041】
(6)プログラム記憶部
検量線算出手順、未知濃度算出手順及び濃度記述の相互換算手順を中央処理部に実行させるプログラムを格納する。例えば、読み出し専用メモリで構成される。あるいは、ランダムアクセスメモリに記憶媒体からプログラムを転送して構成される。
【0042】
検量線算出手順は、データ記憶部5から、標準検体中の測定対象物質濃度あるいは活性単位、回帰式の選択情報、並びに、測定検体、対照標準検体および標準検体の凝固時間のデータを読み出し、標準検体中の濃度の対数値と下記式▲1▼で表される相対凝固時間(Tr)の下記式▲2▼で表されるロジット(Logit)値とを変数として回帰式情報に基づいて多項式回帰法により検量線を算出する手順である。
【0043】
▲1▼Tr=(T0/T)×K
▲2▼Logit(Tr)=Ln(Tr/|1-Tr|)
(式中、Trは相対凝固時間、T0は前記対照標準検体における凝固時間、Tは前記標準検体における凝固時間、Kは0.8≦K≦1.2を満たす定数(好ましくはK=1.0)、Lnは自然対数である。)
未知濃度算出手順は、算出された検量線としての回帰式に基づいて、データ記憶部5から読み出した測定検体の凝固時間から濃度を算出する手順である。
【0044】
濃度記述の相互換算手順は、(重量/容量)で示される濃度と(活性/容量)で示される濃度の相互換算手順、すなわち、入力された活性単位(1mgあたりのユニット数)および上記未知濃度算出手順によって得られた数値を用いて(重量/容量)で示される濃度を(活性/容量)で示される濃度に、あるいはその逆の換算を行う手順である。
【0045】
(7)出力部
算出された物質濃度、回帰式等を出力する。例えば、液晶表示パネル等の画面表示手段、プリンタ等の印刷手段によって構成される。
【0046】
本発明装置が装備する上記各手段を行うそれぞれの装置は、必ずしも同一の筐体に包含される必要はなく、情報が適切に処理されるのであればその構成は特に限定されない。
【0047】
4.本発明キット
本発明キットは上記本発明方法1、上記本発明方法2を単独に又は複合的に行うためのキットであり、本発明方法1について記載された標準検体、血液凝固因子及び活性化因子、さらに好ましくは測定によって得られた凝固時間の測定値を数学的に処理するためのプログラムが記録された媒体及び/又は対照標準検体を内包するキットである。
【0048】
以下に本発明キットにおける技術について詳細に説明する。
(1)対照標準検体、標準検体、血液凝固因子及び活性化因子
対照標準検体、標準検体、血液凝固因子は本発明方法1について記載した通りである。本発明キットとしては例えばヘパリン測定用キット、デルマタン硫酸測定用キット等があげられるが、例えばヘパリン測定用キットの場合は標準検体として一定量のヘパリンを一定濃度で含有する標準ヘパリン検体を包含することが好ましい。
【0049】
本発明キットにおける活性化因子とは、当該活性化因子を混和することにより血液凝固因子の活性化が誘導される物質であり、本発明方法1について記載したものが例示されるが、凝固を起こす因子であれば特に限定はされない。当該活性化因子は凝固時間の測定に利用する血液凝固系(APTT、PT、PTT、TT等により)で決定され、例えば本発明方法1の活性化因子の項に記載したAPTT試薬やPT試薬等とカルシウムイオンを含有する溶液の組み合わせである。
【0050】
対照標準検体、標準検体、血液凝固因子及び活性化因子は、保存又は使用に適した形態に調製されてキットに含まれることが望ましい。
【0051】
(2)数学的な処理を行うプログラムが記録された媒体
本発明キットにおける数学的な処理を行うプログラムが記載された媒体とは凝固時間の測定値を規定された方法で入力することにより、上記本発明方法1に記載された各種数値の変換処理を行い、また該変換値を利用して上記本発明方法1に記載された検量線の作成すなわち数値の回帰処理、検体中の測定対象物質濃度の算出、必要に応じて濃度記述の相互変換を行うプログラムが記録された記憶媒体であり、その種類は限定されず、また当該プログラムが動作する環境も特に限定はされない。
【0052】
プログラムの一例の手順を図2のフローチャートを参照して説明する。
S1では、標準検体中に含まれる血液凝固時間に影響を与える物質の濃度及び標準検体の凝固時間並びに対照標準検体における凝固時間を入力する。また、必要に応じて係数(K)を入力する。
【0053】
S2では、検量線を算出するために使用される回帰式を選択する。例えば、1次式、2次式及び3次式の中から選択する。
S3では、S1で入力された情報とS2で選択された情報に基づいて、前記標準検体における前記血液凝固時間に影響を与える物質の濃度の対数値と下記式▲1▼で表される相対凝固時間(Tr)の下記式▲2▼で表されるロジット(Logit)値とを変数として検量線を算出する。
【0054】
▲1▼Tr=(T0/T)×K
▲2▼Logit(Tr)=Ln(Tr/|1-Tr|)
(式中、Trは相対凝固時間、T0は前記対照標準検体における凝固時間、Tは前記標準検体における凝固時間、Kは0.8≦K≦1.2を満たす任意の定数、Lnは自然対数である。)
【0055】
S4では、測定すべき検体の凝固時間を入力する。
S5では、測定すべき検体中における測定対象物質の濃度(未知濃度)を前記検量線に基づいて算出する。また、必要に応じて濃度記述の相互変換を行う。
【0056】
S6では、S5で算出された濃度とS3で算出された検量線としての回帰式を表示する。これらは別個に表示するようにしてもよいし、また、グラフ表示にしてもよい。
【0057】
上記の手順の内、S1、S2及びS4の順序は任意でよい。S4をS3の前にしてもよいが、この場合S1及びS2はS3よりも前に行われなければならない。
【0058】
S1〜S3が検量線を算出する手順に、S4〜S5が未知濃度を算出する手段にそれぞれ相当する。
【0059】
【実施例】
以下、本発明の実施例について説明するが、本発明はこれに限定されるものではない。
【0060】
【実施例1】
(本発明方法1による各種グリコサミノグリカンの定量)
ラット血漿中の血液凝固時間を延長する種々の物質がAPTTに与える影響、およびAPTTの数値変換値と測定対象物質である当該物質の濃度値との相関を検討した。当該測定対象物質として、グリコサミノグリカン(以下GAG)であるヘパリン(以下Hep)、低分子ヘパリン(以下LMWHep)及びデルマタン硫酸(以下DS)を用い、採取して未処理の血漿のAPTTの変化を調べた。
即ち、3.8wt%クエン酸ナトリウム水溶液を含む注射筒を用意し、該注射筒を用いて該クエン酸ナトリウム水溶液の約9倍量の血液を採血する。該混合物を4℃、1000×Gの条件で15分間遠心処理してその上清を血漿として分離した。該血漿100μlに各濃度で生理食塩水に溶解した上記の種々の測定対象物質を100μl添加して37℃に1分間放置し、その後、37℃に保温したAPTT試薬(トロンボチェックAPTT:ミドリ十字)を100μl添加して37℃に2分間放置した後、37℃に保温した0.02M塩化カルシウム溶液を100μl添加して凝固を開始させ、凝固時間をバクスター社製の血液凝固自動測定装置(AMELUNG KC10A)で測定した(表1、図3)。
【0061】
ヘパリンでは、0.12μg/mlから、APTTは延長し、12μg/ml以上では凝固が起こらず、低分子ヘパリンでは、1.2μg/mlから、APTTは延長し、40μg/ml以上で凝固が起こらなくなった。デルマタン硫酸では、1μg/mlから、APTTは延長し、3000μg/mlでは、65.7secまで延長した。従来知られている方法(In Heparin,pp.393-415, Lane, D.A. and Lindahl, U. eds, Edward Arnold, 1989)で、測定された凝固時間と濃度をそれぞれ対数変換しプロット後、検量線を作成した(後述)。しかし、当該検量線は精度が低く、実用的に測定可能な濃度域はきわめて狭かった(比較例;図4〜6)。
【0062】
【表1】

Figure 0003876022
*いずれも血液凝固時間に影響を与える物質を含んでいない血漿におけるAPTT値であるが、ヘパリン、低分子ヘパリンの実験を行った日とデルマタン硫酸の実験を行った日が異なるため、これらの値に違いがある。従って、血液凝固時間には、使用する検体(血漿等)による相違が生じる。本発明は、また、このような検体による誤差をなくす定量方法も提供する(実施例2)。
【0063】
上記物質を用いて得たAPTT値を用いて数値の変換を行い、数値の多項式回帰法による回帰により検量線の作成を行った。即ち、下記手順に従い数値の変換(Logit-log変換)、回帰を行った。
1)被験測定対象物質濃度(x)を常用対数値に変換する。(X=Logx)
2)各被験測定対象物質濃度(x)におけるAPTT値(T)に対する、被験当該物質の未添加時(0濃度)のAPTT値(T0)の比率(Tr)を計算する(Tr=(T0/T)×K;K=1.0)。
3)Trの値をロジット(Logit)変換する。本実施例は凝固時間を延長するケースであるので1>Trとなり、Y= Ln(Tr/(1-Tr))となる。従って、本実施例の場合は、Ln(T0/T)/(1-T0/T) = Ln(T0/T-T0) = Ln((T-T0)/T0)-1 = - Ln(ΔAPTT/T0)と変換される。ただしΔAPTT= T-T0
4)それぞれのX値と、それに対応するY値のデータを多項式回帰し、多項方程式で回帰曲線(一次式の場合は、直線)を算出する。Y=ΣCkXk、ただしK≧0、Ckは実数。
【0064】
理論値は実際の検体中の測定対象物質濃度、計算値は回帰計算によって求めた検量線の式により該検体のAPTTの測定値から測定対象物質濃度を逆算した数値である。
【0065】
測定によって得たAPTT値、算出された回帰曲線を示す多項式(一次、二次、三次、ただし、ヘパリンは一次、二次のみ)から得られた計算値、並びに理論値と計算値から得た真度(真度=(計算値−理論値)/理論値×100%)の一覧を表2〜5(本発明方法)に示す。また上記の従来法で得た理論値を参考の為併記した。また、算出された回帰曲線を図7〜9(本発明方法)に示す。本実施例では、回帰式は三次式までを例示したが、四次以上の多項式での回帰曲線も用いることが可能である。
【0066】
上記回帰曲線(検量線)を用いてAPTT値から未知当該物質濃度を求める場合は、未知濃度の当該測定対象物質を含む検体のAPTT値を測定しYを算出し、これを得られた多項式に代入しXを得、10Xを計算し、最終的に未知濃度xを得る。表2〜5の結果から明らかなように、本発明によれば、広い濃度範囲でよい真度が得られる。
【0067】
【表2】
Figure 0003876022
従来法:Y=0.495X+1.311(但し、この場合のY=log(検体のAPTT値)、X=log(検体中のヘパリン濃度)(図4)
【0068】
【表3】
Figure 0003876022
従来法:Y=0.303X+1.217 (但し、この場合のY=log(検体のAPTT値)、X=log(検体中の低分子ヘパリン濃度)(図5)
【0069】
【表4】
Figure 0003876022
【表5】
Figure 0003876022
従来法:Y=0.253X+0.898 (但し、この場合のY=log(検体のAPTT値)、X=log(検体中のデルマタン硫酸濃度)(図6)
【0070】
【実施例2】
(本発明方法によるデルマタン硫酸の定量)
血漿の加熱処理がAPTTにおよぼす影響と、ラット血漿あるいは標準血漿(コアグトロール1)を血液凝固因子供給源として使用した影響を調べた。測定対象物質としてはデルマタン硫酸を用いた。
【0071】
血漿中の血液凝固因子量の検体差がAPTTの測定値に影響し、さらに定量値に影響することが、実施例1の表1において使用した血漿が異なる検体であったためにグリコサミノグリカンの濃度が0のときの凝固時間が相違していることからも明らかであるため(表1参照)、デルマタン硫酸を含有する検体中の血液凝固因子を失活させ、APTT測定に使用する血液凝固因子は別に添加した。血液凝固因子の失活の手法として、サンプルの加熱処理を試みた。加熱処理のAPTTに対する影響を、デルマタン硫酸濃度0及び250μg/mlにおいて検討した。その後、血液凝固因子の供給源として、コアグトロール1及びラット血漿を使用した。
【0072】
加熱処理による影響は、ラットから実施例1の方法と同様に採取した血漿に、生理食塩水に溶解したデルマタン硫酸を最終容量の1/10添加し、この状態での最終濃度を0及び250μg/mlとし、これを検体とした。加熱処理検体は、65℃で20分間加熱し、実施例1と同様のAPTT試薬とカルシウム溶液を100μlずつ添加してそれぞれのAPTT値を実施例1と同様に血液凝固自動測定装置で測定した。非加熱処理検体のデルマタン硫酸濃度0、250μl/mlの検体において、それぞれのAPTT値は14.2秒及び38.1秒であったが、加熱処理を行った検体は、いずれのデルマタン硫酸濃度において少なくとも120秒の間で凝固は認められなかった(表6)。
【0073】
一方、加熱処理の後に血液凝固因子を別途添加した場合のAPTT値の変化は、上記加熱検体20μlに説明書に従って調製したコアグトロール1を80μl添加し、上記方法と同様にAPTT試薬とカルシウム溶液を添加し、APTT値を実施例1と同様に血液凝固自動測定装置で測定した。その結果、加熱処理を行った場合には凝固が起こらなかった検体で、コアグトロール1の添加によって凝固活性が復活し、さらにデルマタン硫酸によるAPTT値の延長作用が観察された(表6)。
【0074】
また、データは示さないが、実施例1と同様の方法で用意されたラット血漿を上記コアグトロール1の代替として使用した場合にも上記結果と同様に凝固活性の復活とデルマタン硫酸によるAPTTの延長作用が起こることを確認している。
【0075】
【表6】
Figure 0003876022
【0076】
【実施例3】
(本発明方法1と本発明方法2の組み合わせによるデルマタン硫酸の定量)
APTT法を用い、ラットの尿及び肝臓組織ホモジネイトを検体とした血液凝固時間を延長する物質の定量の検討を行った。測定対象物質としてデルマタン硫酸を用いた。
【0077】
肝臓は、その一部(2.550g)に4倍量のリン酸緩衝液を添加し、氷冷下ポリトロン型ホモジナイザー(約15,000rpm)でホモジナイズし、その後、3,000rpm, 4℃の条件下において15分間遠心分離した上清を肝臓ホモジナイズサンプルとした。尿の場合は氷冷下で、ラットが一晩に排泄した尿を回収し、3,000rpm, 4℃の条件下において遠心分離した上清を尿サンプルとした。それぞれのサンプルは、-30℃で凍結保存した。
【0078】
本発明方法2に従い不活化処理として融解後に56℃で20分間加熱処理した。生理食塩水に溶解したデルマタン硫酸をサンプルの全体量に影響を与えない少量添加し十分に攪拌して検体(肝臓ホモジネイト検体、尿検体)とした。各検体を20μl取り、コアグトロール1を80μl添加し、APTT測定に供試した。また、参考値として肝臓ホモジネイトサンプルや尿サンプルの代替として生理食塩水(生食)にデルマタン硫酸を各濃度で溶解した(対照生理食塩水検体)場合についてもAPTT測定を行い、本発明方法1に従って数値変換を行った(表7〜10及び図10〜18)。
【0079】
【表7】
Figure 0003876022
【0080】
【表8】
Figure 0003876022
【0081】
【表9】
Figure 0003876022
【0082】
【表10】
Figure 0003876022
【0083】
【実施例4】
(本発明方法1及び本発明方法2の組み合わせによる各種GAGの定量)
実施例2及び3は測定検体の血液凝固因子を不活化し、デルマタン硫酸の量を測定したが、デルマタン硫酸以外の血液凝固時間を延長する物質が知られているので、実施例2と同様の熱処理(65℃、20分)では破壊されないと考えられるGAGであるヘパリン、低分子ヘパリン、コンドロイチン硫酸Eについても調べた。測定法は以下に記す方法で行った。
【0084】
即ち、実施例1と同様にラット血漿を採取し、ラット血漿の全体量に影響を与えないごく少量の生理食塩水に溶解した各種GAGを各々加えた後、十分混和して検体とし、この検体を65℃で20分間加熱処理した(加熱処理検体)。加熱処理検体の20μlを80μlのコアグトロール1と混和後、実施例1と同様の方法によってそれぞれのAPTT値をデュプリケートで測定し、その平均を測定値とし、本発明方法1に従って数値変換した(表11〜14及び図19〜26)。
【0085】
【表11】
Figure 0003876022
【0086】
【表12】
Figure 0003876022
【0087】
【表13】
Figure 0003876022
【0088】
【表14】
Figure 0003876022
【0089】
ヘパリンは活性単位で示されることが多いため、当該実施例中のヘパリンの例(表12)について、標準検体のU/mlとして示される濃度の理論値と凝固時間の関係で示し、当該実施例中のヘパリンの例と同様に検量線の作成と曲線回帰を試みた(表15および図27、28)。ただし、ヘパリンは、和光純薬工業(株)(Cat No.085-00134;182.5U/mg)を使用した。
【0090】
【表15】
Figure 0003876022
【0091】
【実施例5】
(本発明方法1によるスルファチドの定量)
血液凝固時間(APTT)を短縮させ得る物質について検討した。硫酸化糖脂質であるスルファチドをリン酸緩衝溶液に溶解し、該物質の濃度測定を本発明方法1で試みた。
【0092】
スルファチドをリン酸緩衝溶液に種々の濃度で溶解し検体とし、この溶液20μlと標準血漿コアトロール1を80μlを混和し、実施例1と同様にAPTTをデュプリケートで測定し、平均値を測定値とし、本発明方法1に従って数値変換した(表16〜18及び図29〜35)。
【0093】
【表16】
Figure 0003876022
【0094】
スルファチドが0μg/mlの場合のAPTT平均値は32.3秒であった。図29に示したように23.4μg/ml以上(区間A)では容量依存的にAPTTは延長した。一方11.7μg/ml以下、0.18μg/ml以上ではAPTTは短縮し、このうち、1.5μg/ml以下、 0.18μg/ml以上(区間B)ではこの短縮は容量逆相関性であった。そこで区間A、区間B各々についてLogit-log変換を行い、各々検量線を作成した。図30〜35に示した如く、延長区間のみならず、短縮区間でもこれらのデータは各々区間独立した多項式で表すことが可能である。
【0095】
尚、本実施例ではスルファチドをリン酸緩衝溶液に溶かしたものそのままを用いているが、この物質は65℃、20分の処理や凍結融解の処理に安定である。従って、生体由来検体中のスルファチドを測定する場合、本発明方法2に従って不活化処理を行うことができる。
【0096】
【表17】
Figure 0003876022
【0097】
【表18】
Figure 0003876022
【0098】
【実施例6】
(本発明方法1及び本発明方法2の組み合わせによるデルマタン硫酸の測定)
病態血漿中の血液凝固時間を延長する物質の濃度測定を病態血漿を用いて行った。病態モデルとして、ラット汎発性血管内凝固症候群(Disseminated Intravascular Coagulation, DIC)モデルを、測定対象物質としては、デルマタン硫酸を選び、下記の添加回収実験を行った。
【0099】
ラットDICモデルの3匹の血漿は PCT国際公開 WO95/09188号公報の実施例4に従って調製した。すなわち、50mg リポポリサッカライド(LPS)/kg/4時間点滴静注後の病的血漿である。これらの検体及び正常ラットの血漿を実施例1と同様に採取して-20℃で保存し、融解後に実施例3と同様に少量の生食に溶解した種々の濃度のデルマタン硫酸を各々加えて測定検体とし、実施例2と同様に65℃で20分間加熱処理した(加熱処理検体)。これら加熱処理検体の各々20μlに80μlのコアグトロール1を添加し、APTT法を用いた定量を実施例3と同様に行った(表19)。
【0100】
【表19】
Figure 0003876022
【0101】
上記の如く、本法で測定された値は、DICモデル血漿及び正常血漿とも、きわめて近いことが示された。正常ラットで得られた標準検体のAPTT値を基に得られた三つの検量線の回帰式の各々に上記のDICモデル血漿(測定検体)のAPTT値をそれぞれ代入して計算値及び真度を算出した(表20)。
【0102】
【表20】
Figure 0003876022
【0103】
上記に示したとおり、50〜100μg/mlの間では、測定値の信頼性がやや劣る傾向にあるが、それ以降では、実用的範囲で測定対象物質濃度が測定されていることが判明した。
【0104】
【実施例7】
(本発明方法1及び本発明方法2の組み合わせによる複数のGAGを含む検体の定量)
血液凝固時間に影響を与える物質が複数入った検体における定量を行った。測定対象物質の例としてデルマタン硫酸を、上記測定対象物質以外の血液凝固時間に影響を与える物質としてヘパリンを例にとり、測定対象物質の入る溶媒としては、実施例1と同様に採取したラット血漿を選び以下の実験を行った。デルマタン硫酸を0〜90mg/ml、ヘパリンを900μg/mlとなるように各々生理食塩水に溶解した。血漿2.7mlに生理食塩水0.15mlを加えたものに、0.15mlの種々の濃度のデルマタン硫酸を溶解した生理食塩水を添加したもの、及び血漿2.7mlにヘパリン、900μg/mlを含む生理食塩水0.15mlを加えたものに、0.15mlの種々の濃度のデルマタン硫酸を溶解した生理食塩水を加えたものをそれぞれ用意した(測定検体)。これらを65℃で20分間加熱処理した後、ヘパリンを加えた群には凍結乾燥された酵素(ヘパリナーゼ、0.1U 生化学工業(株)製)を加え、ヘパリンを分解した(酵素処理検体)。その後、これらの酵素処理検体を20μlとり、80μlのコアグトロール1に加え、実施例1と同様にAPTT値をデュプリケートで測定し、平均値を測定値とした(表21)。
【0105】
【表21】
Figure 0003876022
【0106】
測定対象物質(デルマタン硫酸)のみを含有する検体,及び,測定対象物質及び測定対象物質以外で凝固時間に影響を与える物質(ヘパリン)双方を含有しない溶媒である生理食塩水のAPTT値でLogit-log変換を行い回帰直線あるいは回帰曲線を作成した(表22)。
【0107】
【表22】
Figure 0003876022
【0108】
次に、測定対象物質(デルマタン硫酸)を含有し、更に血液凝固時間に影響を与える物質(ヘパリン)も含有する検体を酵素処理した後得たAPTT値を上記数式に各々代入して得た計算値と理論値を比較した(表23)。
【0109】
【表23】
Figure 0003876022
【0110】
上記の表に示したごとく、 酵素処理後のサンプルの濃度は、1500μg/ml以上の範囲で、理論値と誤差21.7%以下の精度で測定できる事が判明した。
【0111】
【実施例8】
(本発明方法1及び本発明方法2の組み合わせによるヘパリンの定量)
APTTと同様にPTを応用した。測定対象物質の例としては、ヘパリンを用いた。ヘパリンを生理食塩水に種々の濃度で溶解後、ラット血漿に加えた(検体)。この時、加えた容量が、全体の血漿容量に影響しないよう配慮した。検体を65℃で20分間加熱処理した(加熱処理検体)。20μlの加熱処理検体を80μlのコアグトロール1と混和後、説明書通りに調整したPT試薬(トロンボチェックPT:ミドリ十字)を用いてPTを測定し、APTTの時と同様に測定値でLogit-log変換を行い回帰直線あるいは回帰曲線を作成した(表24)。
【0112】
【表24】
Figure 0003876022
【0113】
【実施例9】
(本発明キットの構成及び使用法)
本実施例のヘパリン測定キットは次の1〜7の要素からなる。
1.標準ヘパリン生理食塩水(ヘパリン60μg/ml(10.95U/ml)、1ml)1バイアル。
2.生理食塩水(ヘパリン希釈用、1ml)1バイアル。
3.標準血漿(抗体検査の結果HIV, HCV, HBV等の病原微生物に感染が認められない健常人10人からクエン酸ナトリウムを抗凝固剤として採血して得た新鮮血漿を等量ずつ混和しプールしたもの、0.5ml相当の凍結乾燥品、通常は2〜8℃保存)1バイアル。
4.蒸留水(標準血漿溶解用、0.5ml)1バイアル。
5.APTT試薬(ウサギ由来セファリン0.2mg/ml、エラグ酸0.03mg/ml含有、3ml、通常は冷蔵保存)1バイアル。
6.塩化カルシウム溶液(0.02M、4ml)1バイアル。
7.測定用ソフトウェア記憶媒体
【0114】
使用に際しては標準血漿を室温に戻した後、蒸留水1バイアルを全量泡立てないように穏やかに加え、穏やかに均一となるように攪拌し、20〜30分間程度放置する。この溶解した標準血漿80μlに標準ヘパリン生理食塩水を生理食塩水で3〜60μg/mlの範囲で段階希釈した溶液あるいは生理食塩水を20μlずつ気泡を作らぬよう注意して均一に添加する。当該溶液を3分間、37℃に保温後、あらかじめ37℃に加熱しておいたAPTT試薬を100μlずつ添加し、更に37℃に3分間保温する。当該溶液に塩化カルシウム溶液を100μlずつ添加して凝固を開始させ、凝固が完了するまでの時間を測定する。ヘパリン濃度の理論値とそれぞれの凝固時間を測定後、当該理論値と測定値、さらに標準ヘパリン生理食塩水に含まれるヘパリンの活性単位(U/mg)と、回帰方法とを測定用ソフトウェアに入力して検量線の作成を行う。検体は56℃で20分間の加熱処理後室温に戻し、その20μlを上記手順により蒸留水に溶解した標準血漿80μlに気泡を作らぬよう均一に添加する。当該溶液を37℃で3分間保温後、あらかじめ37℃に加熱しておいたAPTT試薬を100μlずつ添加し、該溶液を37℃で3分間保温後、塩化カルシウム溶液を100μl添加して凝固を開始させる。凝固が完了するまでの時間を測定し、測定用ソフトウェアで作成した上記検量線をメモリから呼び出し、検体の凝固時間を入力し、当該測定値から検体中の測定対象物質濃度を算出する。
【0115】
【発明の効果】
本発明によれば、血液凝固時間に影響を与える物質の精度が高く、操作が簡便であり多数の検体を処理することが可能である定量方法が提供される。
【0116】
すなわち、本発明の定量方法の一態様によれば、既知濃度の測定対象物質溶液(標準検体)の濃度の対数値と、対照凝固時間に対する相対凝固時間の比((T-T0)/T0)のロジット(Logit)値とを変数として検量線を求めているので、広い測定濃度範囲で精度の高い定量を行うことが可能である。
【0117】
また、本発明の定量方法の別の態様によれば、測定対象物質を含む検体に内在する血液凝固因子を前記測定対象物質を破壊しない条件下で不活化しているので、検体中の測定対象物質以外の物質の影響を受けずに精度の高い定量を行うことが可能である。
【図面の簡単な説明】
【図1】本発明の定量装置の構成の一例を示すブロック図である。
【図2】本発明のキットに含まれる媒体に記録されたプログラムの処理手順を示すフローチャートである。
【図3】ヘパリン、低分子ヘパリンおよびデルマタン硫酸の濃度(μg/ml)の対数値とAPTTの関係を示す。
【図4】ヘパリンの濃度(μg/ml)の対数値とAPTTの対数値の関係を示す。
【図5】低分子ヘパリン(LMWHep)の濃度(μg/ml)の対数値とAPTTの対数値の関係を示す。
【図6】デルマタン硫酸(DS)の濃度(μg/ml)の対数値とAPTTの対数値の関係を示す。
【図7】ヘパリンの濃度(μg/ml)の対数値とAPTTのロジット値の関係を示す。
【図8】低分子ヘパリン(LMWHep)の濃度(μg/ml)の対数値とAPTTのロジット値の関係を示す。
【図9】デルマタン硫酸(DS)の濃度(μg/ml)の対数値とAPTTのロジット値の関係を示す。
【図10】生理食塩水中のデルマタン硫酸(DS)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(一次式)を示す。
【図11】生理食塩水中のデルマタン硫酸(DS)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(二次式)を示す。
【図12】生理食塩水中のデルマタン硫酸(DS)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(三次式)を示す。
【図13】肝臓ホモジネイト中のデルマタン硫酸(DS)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(一次式)を示す。
【図14】肝臓ホモジネイト中のデルマタン硫酸(DS)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(二次式)を示す。
【図15】肝臓ホモジネイト中のデルマタン硫酸(DS)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(三次式)を示す。
【図16】尿中のデルマタン硫酸(DS)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(一次式)を示す。
【図17】尿中のデルマタン硫酸(DS)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(二次式)を示す。
【図18】尿中のデルマタン硫酸(DS)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(三次式)を示す。
【図19】血漿中のヘパリン濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(一次式)を示す。
【図20】血漿中のヘパリン濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(二次式)を示す。
【図21】血漿中の低分子ヘパリン(LMWHep)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(一次式)を示す。
【図22】血漿中の低分子ヘパリン(LMWHep)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(二次式)を示す。
【図23】血漿中の低分子ヘパリン(LMWHep)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(三次式)を示す。
【図24】血漿中のコンドロイチン硫酸E(CSE)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(一次式)を示す。
【図25】血漿中のコンドロイチン硫酸E(CSE)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(二次式)を示す。
【図26】血漿中のコンドロイチン硫酸E(CSE)濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(三次式)を示す。
【図27】血漿中のヘパリン濃度(U/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(一次式)を示す。
【図28】血漿中のヘパリン濃度(U/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(二次式)を示す。
【図29】スルファチド濃度(μg/ml)がAPTTにおよぼす影響を示す。区間Aおよび区間Bは、それぞれ、検量線の作成を行ったAPTTが延長する区間および短縮する区間である。
【図30】 APTT延長区間の血漿中のスルファチド濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(一次式)を示す。
【図31】 APTT延長区間の血漿中のスルファチド濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(二次式)を示す。
【図32】 APTT延長区間の血漿中のスルファチド濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(三次式)を示す。
【図33】 APTT短縮区間の血漿中のスルファチド濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(一次式)を示す。
【図34】 APTT短縮区間の血漿中のスルファチド濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(二次式)を示す。
【図35】 APTT短縮区間の血漿中のスルファチド濃度(μg/ml)の対数値とAPTTのロジット値の関係と検量線の回帰式(三次式)を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention reduces the concentration of substances such as drugs that affect blood clotting time such as partial thromboplastin time (PTT), activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) for a short time. In particular, the present invention relates to a method for measuring accurately, conveniently and inexpensively. The present invention also relates to an apparatus for quantifying the substance in various specimens using the same principle, and a reagent kit used for this quantification method.
[0002]
[Prior art]
General methods such as high-performance liquid chromatography (HPLC) are used to measure substances that affect the blood coagulation system, such as glycosaminoglycans (hereinafter also referred to as GAG) such as heparin and dermatan sulfate, and argatroban. The measurement target substance can be directly measured using an instrument, or the biochemical activity specific to the measurement target substance can be measured indirectly as otherwise performed during heparin measurement. (Blood coagulation test handbook, published by Kakudo Yagi Shoten, Michio Fujimaki, edited by Katsuyuki Fukutake, 1992). However, the former method requires a specific measuring instrument, and further requires a simple pretreatment that takes a long time to make the measurement possible by the measuring apparatus, and there are drawbacks such as low detection sensitivity. To do. In the latter method, it is essential that the target substance has a specific activity. In order to detect the specific activity, in many cases, an expensive reagent that is difficult to obtain is required. It is difficult to measure a large number of samples at a time because it requires rapid processing to measure the activity, and long-term storage of the sample leads to a decrease in the activity and prevents accurate measurement. There are problems such as narrow range. Although an immunochemical measurement method using a specific antibody can be considered, there is a problem that detection is impossible when the measurement target substance is not immunogenic or low, and Not reached. There is also an attempt to measure the concentration of the target substance by measuring blood clotting time such as partial thromboplastin time (PTT), activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). (In Heparin, pp. 393-415, Lane, DA and Lindahl, U. eds, Edward Arnold, 1989), in the conventional method, there is a mathematical correlation between the measured substance concentration and the coagulation time. It is difficult to directly quantify the concentration from the measurement value of the clotting time, the concentration range that can be quantified from the created calibration curve is narrow, and many clotting factors contained in the sample are used. Therefore, there is a problem that the difference in the specimen is large regardless of the concentration of the substance to be measured.
[0003]
[Problems to be solved by the invention]
There is a need for a simple and accurate quantitative method for substances that affect blood coagulation time, and a quantitative method that is easy to quantify. In particular, compared with the above-mentioned conventional quantification method, the measurement method can be quantified accurately and in a wide measurement range, and the measurement is not affected by substances such as blood coagulation factors other than the measurement target substance in the sample. There is a demand for a method for quantitatively quantifying a target substance specifically with high accuracy.
[0004]
[Means for Solving the Problems]
As a result of diligent research, the present inventors have obtained a calibration curve in a specific manner from the concentration of a substance to be measured having a known concentration and the coagulation time, so that it can be accurately quantified in a wide measurement range, and measured from a measurement value. It is possible to quantify the concentration of the target substance, and by pre-processing the specimen containing the target substance under specific conditions, the target substance can be specified with high accuracy without being affected by substances other than the target substance in the specimen. The present invention was completed.
[0005]
That is, the first gist of the present invention is a method for quantifying a substance that affects blood coagulation time, which is a clotting time in a standard specimen containing the substance having a known concentration and a specimen to be measured whose concentration of the substance is unknown. In addition, the coagulation time in the reference standard sample not containing the substance is measured, and the logarithmic value of the concentration of the substance affecting the blood coagulation time in the standard specimen and the relative coagulation time (Tr) represented by the following formula (1) A calibration curve is created using the logit value represented by the following formula (2) as a variable, and the concentration of the substance in the sample to be measured is determined based on the obtained calibration curve. (Hereinafter also referred to as method 1 of the present invention).
[0006]
▲ 1 ▼ Tr = (T 0 / T) × K
(2) Logit (Tr) = Ln (Tr / | 1-Tr |)
(In the formula, Tr is the relative solidification time, T 0 Is a clotting time in the control sample, T is a clotting time in the standard sample, K is an arbitrary constant (preferably 1.0) satisfying 0.8 ≦ K ≦ 1.2, and Ln is a natural logarithm. )
Preferably, the method for creating the calibration curve is a polynomial regression method.
[0007]
The second gist of the present invention is a method for quantifying a substance that affects the blood coagulation time, and does not destroy the blood coagulation factor present in a sample to be measured whose concentration of the substance is unknown. In a quantitative method characterized by inactivation under conditions, and then mixing the specimen and standard specimen with a certain amount of blood coagulation factor and measuring the clotting time of the resulting mixture (hereinafter referred to as the method of the present invention). 2 is also expressed, and the methods 1 and 2 of the present invention may be simply expressed as the method of the present invention).
[0008]
Preferably, the inactivation is by heat treatment, and the preferable condition is 50 to 70 ° C.
The method 2 of the present invention can be combined with the method 1 of the present invention.
[0009]
A substance that influences blood coagulation time preferable as a measurement target substance of the method of the present invention is a carbohydrate or a complex carbohydrate, and more preferably a glycosaminoglycan or a glycolipid.
[0010]
Furthermore, the present invention also provides a device for carrying out the method of the present invention (hereinafter also referred to as the device of the present invention) and a kit for performing the method of the present invention (hereinafter also referred to as the kit of the present invention).
[0011]
That is, a quantitative determination apparatus for a substance that affects blood coagulation time, a standard specimen containing the substance at a known concentration, a specimen to be measured whose concentration of the substance at an unknown concentration is unknown, and a reference standard specimen not containing the substance A means of measuring the coagulation time of the above, a logarithmic value of the known concentration and a logit value represented by the following formula (2) of the relative coagulation time (Tr) represented by the following formula (1) as a polynomial There is provided the quantification apparatus comprising means for calculating a calibration curve by a regression method, and means for calculating the concentration of the substance from the coagulation time of the specimen to be measured based on the calibration curve. .
[0012]
▲ 1 ▼ Tr = (T 0 / T) × K
(2) Logit (Tr) = Ln (Tr / | 1-Tr |)
(In the formula, Tr is the relative solidification time, T 0 Is a clotting time in the control sample, T is a clotting time in the standard sample, K is a constant satisfying 0.8 ≦ K ≦ 1.2 (preferably 1.0), and Ln is a natural logarithm. )
The kit of the present invention is a kit for performing a method for quantifying a substance that affects blood coagulation time, a standard specimen containing the substance at a known concentration, a control standard specimen not containing the substance, a blood coagulation factor, and an activity. It is a kit characterized by including a chemical agent. Preferably, a calibration curve is obtained by a polynomial regression method using the logarithm value of the known concentration and the logit value represented by the following formula (2) of the relative coagulation time (Tr) represented by the following formula (1) as variables. And a medium recording a program for causing a computer to execute a procedure for calculating the concentration of the substance from the coagulation time of the specimen to be measured based on the calibration curve. .
[0013]
▲ 1 ▼ Tr = (T 0 / T) × K
(2) Logit (Tr) = Ln (Tr / | 1-Tr |)
(In the formula, Tr is the relative solidification time, T 0 Is a clotting time in the control sample, T is a clotting time in the standard sample, K is a constant satisfying 0.8 ≦ K ≦ 1.2 (preferably 1.0), and Ln is a natural logarithm. )
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
1. Method 1 of the present invention
A sample to be measured whose concentration of the measurement target substance affecting the blood coagulation time is unknown, that is, a sample for which the concentration of the measurement target substance is to be measured (measurement sample), a reference sample that does not contain the measurement target substance, and further known With respect to a standard specimen containing a substance whose concentration is to be measured, the coagulation time is measured by a measurement system relating to blood coagulation time. In this case, if any of the measurement sample, reference standard sample, or standard sample does not contain blood clotting factor at all or lacks part of it, coagulation does not occur alone even if an activating factor is added The blood coagulation factors are mixed so that the blood coagulation factors of all these samples have the same concentration. Taking the logarithmic value of the concentration of the measurement target substance contained in the standard sample (logarithmic conversion), the relative clotting time represented by the following formula (1) is obtained from the clotting time of the standard specimen and the reference standard specimen not containing the measurement target substance. Then, the relative coagulation time is subjected to logit conversion represented by the following formula (2) to calculate a logit value, and a calibration curve is created using the logarithmic value and the logit value. The normal Logit conversion does not use an absolute value like the Logit conversion shown by the following formula (2) used in the method 1 of the present invention. In this specification, the conversion by the following formula (2) is referred to as a logit conversion. The conversion value obtained by the conversion method is referred to as a logit value. The Logit conversion after converting the concentration of the substance to be measured into a logarithmic value and converting the coagulation time into the relative coagulation time will be described as Logit-log conversion in the future. As an application of Logit conversion, the following equation (2) can be used as an alternative to Logit conversion. If necessary, the calibration curve is calculated by regressing the logarithmic value and the Logit value into a regression equation. Using the calibration curve, the Logit value calculated from the clotting time of the specimen is used to determine the concentration of the substance to be measured in the specimen, and the substances that affect the blood clotting time are quantified.
▲ 1 ▼ Tr = (T 0 / T) × K
(2) Logit (Tr) = Ln (Tr / | 1-Tr |)
▲ 2 ▼ 'Logit (Tr) = Ln (Tr / | 1-Tr |) m + Ln (n)
(In the formula, Tr is the relative solidification time, T 0 Is a coagulation time in the control standard sample, T is a coagulation time in the standard sample, K is a constant of 0.8 ≦ K ≦ 1.2, Ln is a natural logarithm, m and n are natural numbers, and particularly, n satisfies n> 0. K calculates the concentration of the measurement target substance in a known standard sample on a calibration curve, and changes it as a correction constant before calculating the concentration of the measurement target substance in the sample as necessary when an error occurs. Normally, K = 1.0 is sufficient. Further, the application conversion of (2) 'is a means for changing the slope and intercept of the calibration curve, and can be appropriately used when the numerical calculation method becomes simple by using the application conversion. Usually, a simple Logit conversion expressed by the formula (2) can be used sufficiently. Such application conversion is also included in the technical scope of the present invention. )
[0015]
The technique in each step of the method 1 of the present invention will be described in detail below.
(1) Specimen to measure the concentration of the substance to be measured that affects blood clotting time (Measurement specimen)
The substance to be measured that affects the blood coagulation time is not particularly limited as long as it is a substance that causes the blood coagulation time to be extended or shortened by its presence in a normal blood coagulation system, but preferably has a sugar chain structure. Examples of the substance having the sugar chain structure include saccharides, complex carbohydrates and the like, and examples of the saccharide include dermatan sulfate (DS), chondroitin sulfate E (CSE), heparin (Hep), and low molecular weight heparin (LMWHep). ) And the like, and examples of complex carbohydrates include glycolipids such as sulfatide. For example, dermatan sulfate, chondroitin sulfate E, heparin, or low molecular weight heparin is a substance that prolongs the blood coagulation time. For example, sulfatide is a substance that prolongs or shortens the blood coagulation time depending on the concentration condition. The sample can be used as a sample in the present invention as long as the solution can contain a substance that affects the blood coagulation time, and is not particularly limited. For example, a sample for a clinical test or a pharmaceutical product containing the substance can be used. These include body fluids for monitoring, solutions obtained from the process for producing the substance, and the like. Specifically, examples of body fluids include blood, plasma, serum, lymph, tissue fluid, joint fluid, cerebrospinal fluid, sweat, tear fluid, urine, and the like. Tissue extract and the like, physiological saline, various buffers, water A water-soluble solution such as can be used as a specimen in the same manner as a body fluid.
[0016]
(2) Control sample and standard sample
The control sample is not particularly limited as long as it is an aqueous liquid that does not contain a substance that affects the blood clotting time. For example, blood, plasma, serum, lymph, tissue fluid, joint fluid, cerebrospinal fluid, sweat, tears Fluid, body fluid such as urine, tissue extract, physiological saline, various buffers, water, and the like. Further, the standard specimen is the liquid containing the measurement target substance at a known concentration. The liquid used as the solvent for the sample, the standard sample, and the control sample is not necessarily the same, but is preferably the same.
[0017]
(3) Concentration of substance to be measured
The concentration of the substance to be measured in this specification is, for example, a concentration indicated by (weight / volume (mg / ml, μg / ml, etc.), (activity / volume (U / ml, etc.)), etc. .
[0018]
(4) Measurement system for blood clotting time
The measurement system related to the blood coagulation time is not particularly limited as long as it is a method utilizing the coagulation of the specimen.For example, partial thromboplastin time (PTT), activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time ( TT) (both clinical laboratory manuals published by Bunkodo, edited by Motoharu Kitamura, 1988).
[0019]
(5) Activator
The activator in the present invention is an activator for initiating the coagulation of a specimen by the above measurement system to be used, for example, an APTT measurement reagent in APTT measurement, a PT measurement reagent in PT measurement, or the like. For example, as an APTT measurement reagent, a combination of “APTT reagent” and calcium chloride solution contained in commercially available thrombocheck APTT (Midori Cross Co., Ltd .; trade name) etc. is preferable. APTT measurement kit containing a reagent having the following structure: a diatomaceous earth (for example, Celite (trade name)), a mineral such as kaolin mineral, a contact factor such as tannin such as ellagic acid or silicic anhydride, and crude cephalin It may be used in the same manner as described in the description of the above, and may be applied to APTT measurement in the method of the present invention. For example, the PT measurement reagent is preferably a “PT reagent” and a calcium chloride solution contained in commercially available Thrombocheck PT (Midori Cross; trade name), etc., but has the same configuration as the “PT reagent”. A reagent, that is, thromboplastin may be used in place of the “PT reagent” in the same manner as described in the instruction manual of the PT measurement kit and applied to the PT measurement in the method of the present invention. Similarly, PTT measurement and TT measurement are similar to 0.02M calcium chloride solution and commercially available kits for PTT and TT measurement, for example, crude cephalin as an alternative to PTT reagent for PTT measurement, TT reagent for TT measurement. Measurement can be performed by using thrombin as an alternative to the above.
[0020]
(6) Solidification time
The coagulation time in the present invention is, for example, a measurement value such as a measurement value of absorbance with an absorptiometer, a measurement value of turbidity with a turbidimeter or a turbidimetry, or a measurement value of viscosity with a viscometer. Indicates the time to reach a certain value indicative of clotting.
[0021]
(7) Blood coagulation factor
Blood coagulation factors are all blood coagulation factors contained in plasma that is healthy with respect to the blood coagulation system, and the method of adding the coagulation factor is to the measurement reaction system if the blood coagulation factor induces normal coagulation by the activation factor. The mixing method and the form of the reagent are not limited. The state of the solution is preferable when mixing, but it is not limited to this as long as it can be added accurately. For example, it is possible to mix the lyophilized product so that it is easily dissolved in the reaction solution. is there. When the blood coagulation factor is mixed with the specimen, the final concentration is preferably 5 to 200% of the concentration of these factors in the plasma of a healthy person. In addition, as the blood coagulation factor in the present invention, it is preferable to use a commercially available standard plasma containing a necessary blood coagulation factor such as Coagtrol 1 (Corporate Midori Cross; trade name). Platelet-rich plasma (PRP) containing a lot of platelets obtained by adding a blood coagulation inhibitor such as sodium citrate and centrifuging at a low rotation speed (for example, about 150 × g), or a high rotation speed ( For example, any poor platelet plasma (PPP) obtained at about 1,000 × g can be used. Furthermore, if the liquid contains all blood coagulation factors contained in normal plasma and the ability to cause clotting is not lost by the activation of the blood coagulation factors, for example, lyophilized untreated plasma can be lyophilized. A solution obtained by re-dissolving the obtained lyophilized product in distilled water is also possible.
[0022]
(8) Logarithmic conversion
The logarithmic conversion of the concentration of the substance to be measured in the present invention is not particularly limited. For example, a common logarithm value, a natural logarithm value, etc. are taken. It is preferable.
[0023]
(9) Regression method
The regression method in the present invention is not particularly limited as long as it is a regression method for expressing the relationship between the logarithmic value and the Logit value by a mathematical expression. However, since the error between the calculated numerical value and the theoretical value is small and the accuracy is high, it is preferable to return to the regression equation using the polynomial regression method, and considering practicality, it is possible to return to the quadratic equation or the cubic equation. More preferred.
[0024]
The present invention also provides the following method 2 of the present invention as a method for measuring a substance that affects blood coagulation time. An embodiment of the method 2 of the present invention will be described below.
[0025]
2. Method 2 of the present invention
When measuring the coagulation time in a measurement system related to blood coagulation time, if the sample (measurement sample) whose concentration should affect the blood coagulation time is a biological sample that already contains a blood coagulation factor Inactivate the blood clotting factor inherent in the measurement sample under conditions that do not destroy the target substance, and then mix the sample and standard sample with a certain amount of blood clotting factor, and then adjust the clotting time of the resulting mixture. taking measurement. The concentration of the substance to be measured can be calculated by a conventional method of creating a calibration curve using the measured coagulation time as it is or using the logarithmically converted value and the coagulation time as they are.
[0026]
The technique in each step of the method 2 of the present invention will be described in detail below. The measurement sample, the control standard sample and the standard sample, the measurement system relating to the blood coagulation time, the concentration of the substance to be measured, the coagulation time, the blood coagulation factor and the like are the same as those described for the method 1 of the present invention.
[0027]
(1) Treatment to inactivate blood coagulation factors under conditions that do not destroy the substance to be measured
Examples of the treatment for inactivating the blood coagulation factor inherent in the specimen without destroying the substance to be measured in the present invention include enzyme treatment, heat treatment, acid treatment, alkali treatment, denaturation treatment with an organic solvent, and freeze-thawing. Repeating treatment is preferable, and among them, heat treatment is simple and preferable. The temperature in the heat treatment is usually 30 to 100 ° C, preferably 40 to 80 ° C, more preferably 50 to 70 ° C, and most preferably 56 to 65 ° C. Although the time in the heat treatment is not limited as long as the measurement target substance is not destroyed by heating, it is usually several minutes to several tens of minutes, preferably 15 to 25 minutes, particularly preferably about 20 minutes. In the case of acid treatment or alkali treatment, it is necessary to appropriately adjust the hydrogen ion concentration (pH) with, for example, a buffer solution after the treatment. In the case of a modification treatment with an organic solvent, a treatment for removing the organic solvent is necessary after the modification treatment. Furthermore, for example, in the case of enzyme treatment using a proteolytic enzyme or the like, it is necessary to deactivate the enzyme after the treatment, for example, by heat treatment or the like. Moreover, as an enzyme treatment method, it is possible to employ a method of contacting with an immobilized enzyme. In this case, it is not always necessary to deactivate. In the inactivation treatment, the use of the above treatment alone or the combination of a plurality of treatments is not particularly limited.
[0028]
(2) Mixing with a certain amount of blood coagulation factor
The mixing with a certain amount of blood coagulation factor in the present invention means that a blood coagulation factor is added separately in place of the endogenous blood coagulation factor inactivated by the inactivation treatment. The amount added is the amount that the blood coagulation factor induces normal coagulation with the activator, and is appropriately determined by the measurement system.
[0029]
As described above, even when the method 1 and method 2 of the present invention are carried out independently, it is possible to obtain accurate measurement values in a wide concentration range as compared with the conventional method, but the method 1 and method of the present invention. When the method described in 2 is used in combination with the inactivation treatment of the blood coagulation factor inherent in the specimen and the numerical conversion of the measurement value, it is possible to obtain an accurate measurement value in a wider concentration range.
[0030]
That is, only the measurement sample and the standard sample or the measurement sample containing the measurement target substance described in the method 1 of the present invention are treated so as not to destroy the measurement target substance, and the endogenous blood coagulation factor is obtained. After inactivation, the method 1 of the present invention was described by adding all blood coagulation factors to the same concentration as in the method 1 of the present invention to each of the measurement sample, the control standard sample, and the standard sample. The coagulation time is measured in the same manner as in Method 1 of the present invention by adding an activator, and a calibration curve is created using the measured value of the measurement target substance concentration or activity unit and coagulation time in the control standard sample and standard sample. The concentration of the substance to be measured in the sample can be determined from the calibration curve and the coagulation time of the sample to be measured.
[0031]
In addition, the methods 1 and 2 of the present invention and the quantification method combining them can quantitate only the substance to be measured even when a plurality of substances that affect the blood coagulation time are included in the sample to be measured. . In this case, in the methods 1 and 2 of the present invention or a combination thereof, before starting the coagulation of the specimen, an operation for bringing the above substances other than the target substance into a state that does not affect the blood coagulation system is performed. There is a need to do. The operation is, for example, an enzyme treatment method. For example, when the substance to be measured and heparin coexist, treatment with a heparin-degrading enzyme such as heparinase decomposes heparin before starting the coagulation of the specimen, and then initiates coagulation to measure the coagulation time. Do.
[0032]
The present invention also provides a measuring instrument (the device of the present invention) and a kit (the kit of the present invention) using the method of the present invention. Hereinafter, embodiments of the device of the present invention and the kit of the present invention will be described.
[0033]
3. Device of the present invention
An apparatus for measuring a substance concentration that affects blood coagulation time by the method described in Method 1 of the present invention, an example of which will be described with reference to the block diagram of FIG. This apparatus of the present invention is equipped with a reaction execution unit 1 and a sample measurement unit 2 as means for measuring the coagulation time of a measurement sample, a reference standard sample, and a standard sample, a means for calculating a calibration curve, and a concentration of the substance. As a means for calculating, an input unit 3, a central processing unit 4, a data storage unit 5, a program storage unit 6 and an output unit 7 are provided.
[0034]
Hereinafter, each component will be described in detail.
(1) Reaction Department
The reaction execution unit 1 includes a measurement sample, a reference standard sample, and a reactor in which the standard sample coagulates. It is preferable that a heater capable of heating is provided in order to inactivate endogenous blood coagulation factors by heating, and the method of the present invention described after the explanation of the method 2 of the present invention by using this heater. It is also possible to perform a measurement combining 1 and the method 2 of the present invention.
[0035]
(2) Specimen measurement unit
The sample measurement unit 2 measures the coagulation time by measuring changes in the measurement sample, the reference standard sample, and the standard sample. Considering simplification of the apparatus, it is preferable to install the apparatus adjacent to the reaction execution unit 1.
[0036]
The means for measuring the coagulation time provided in the sample measuring unit 2 is not particularly limited as long as the measuring step of the method 1 of the present invention can be performed. For example, an absorbance measurement device using a spectrophotometer, a turbidity measurement device using a turbidimeter or turbidimetry, a viscosity detection device using a viscometer, etc. A method using absorbance is preferred. The time from the start of coagulation until the measured value reaches a certain value indicating coagulation is measured as the coagulation time.
[0037]
(3) Input section
Using the input unit 3, the measurement target substance concentration in the standard sample and the measurement value of the coagulation time at the concentration, if necessary, the activity unit (U / mg) of the measurement target substance in the standard sample, the coagulation time of the sample Enter the measured value and coefficient (K) for numerical conversion, and select the regression method for calculating the calibration curve. If necessary, the input unit 3 also inputs the heating temperature and heating time of the heater of the reaction execution unit 1. The input unit 3 includes, for example, a keyboard, a numeric keypad, a touch panel, etc., but is not necessarily limited thereto.
[0038]
(4) Central processing unit
The following processing is performed.
・ Measurement substance concentration or activity unit and regression equation information (regression equation selection information and coefficient (K)) in the standard sample input from the input unit 3 are stored in the data storage unit 5, and the sample measurement is performed. The coagulation times of the sample, the reference standard sample and the standard sample measured in the unit are acquired from the sample measurement unit and stored in the data storage unit 5.
A program for executing the calibration curve calculation procedure is read from the program storage unit 6, the calibration curve is calculated by executing the program, and stored in the data storage unit 5 as necessary.
-A program for executing the unknown concentration calculation procedure is read from the program storage unit 6 according to the information input in the input unit 3, and the program is executed to calculate the substance concentration or activity unit in the sample. Accordingly, the data is stored in the data storage unit 5. The calculated calibration curve, the concentration of the substance to be measured in the sample, and the data stored in the data storage unit 5 are output to the output unit 7.
If necessary, the heating temperature and heating time of the heater stored in the data storage unit 5 are read and the heater of the reaction execution unit 1 is controlled.
[0039]
The central processing unit 4 is composed of, for example, a microprocessor.
[0040]
(5) Data storage unit
The concentration of the measurement target substance in the standard sample and the regression equation information (regression equation selection information and coefficient (K)), and the measured measurement sample, control standard sample, and standard sample coagulation time are stored. For example, it is configured by a storage device such as a random access memory or a hard disk.
[0041]
(6) Program storage unit
A program for causing the central processing unit to execute a calibration curve calculation procedure, an unknown concentration calculation procedure, and a mutual conversion procedure of concentration description is stored. For example, it is composed of a read-only memory. Alternatively, the program is transferred from a storage medium to a random access memory.
[0042]
The calibration curve calculation procedure reads from the data storage unit 5 the measurement target substance concentration or activity unit in the standard sample, the selection information of the regression equation, and the coagulation time data of the measurement sample, the control standard sample, and the standard sample. Polynomial regression based on regression equation information using logarithmic value of concentration in specimen and logit value expressed by formula (2) of relative coagulation time (Tr) expressed by formula (1) below as variables. This is a procedure for calculating a calibration curve by the method.
[0043]
▲ 1 ▼ Tr = (T 0 / T) × K
(2) Logit (Tr) = Ln (Tr / | 1-Tr |)
(In the formula, Tr is the relative solidification time, T 0 Is a clotting time in the control sample, T is a clotting time in the standard sample, K is a constant satisfying 0.8 ≦ K ≦ 1.2 (preferably K = 1.0), and Ln is a natural logarithm. )
The unknown concentration calculation procedure is a procedure for calculating the concentration from the coagulation time of the measurement specimen read from the data storage unit 5 based on the calculated regression equation as a calibration curve.
[0044]
The mutual conversion procedure of concentration description is the mutual conversion procedure of the concentration indicated by (weight / volume) and the concentration indicated by (activity / volume), that is, the input active unit (number of units per 1 mg) and the above unknown concentration This is a procedure for converting the concentration indicated by (weight / volume) into the concentration indicated by (activity / volume), or vice versa, using the numerical values obtained by the calculation procedure.
[0045]
(7) Output section
The calculated substance concentration, regression equation, etc. are output. For example, it is configured by screen display means such as a liquid crystal display panel and printing means such as a printer.
[0046]
Each device that performs each of the above-described means provided in the device of the present invention is not necessarily included in the same housing, and the configuration is not particularly limited as long as information is appropriately processed.
[0047]
4. Kit of the present invention
The kit of the present invention is a kit for performing the method 1 of the present invention and the method 2 of the present invention singly or in combination. The standard specimen, blood coagulation factor and activation factor described for the method 1 of the present invention are more preferable. Is a kit containing a medium and / or a control sample in which a program for mathematically processing the measurement value of the clotting time obtained by the measurement is recorded.
[0048]
The technique in the kit of the present invention will be described in detail below.
(1) Control sample, standard sample, blood coagulation factor and activation factor
The control standard sample, standard sample, and blood coagulation factor are as described for the method 1 of the present invention. Examples of the kit of the present invention include a heparin measurement kit and a dermatan sulfate measurement kit. For example, in the case of a heparin measurement kit, a standard heparin sample containing a certain amount of heparin at a constant concentration is included as a standard sample. Is preferred.
[0049]
The activator in the kit of the present invention is a substance in which the activation of the blood coagulation factor is induced by mixing the activator, and examples include those described for the method 1 of the present invention. If it is a factor, it will not be specifically limited. The activator is determined by the blood coagulation system (APTT, PT, PTT, TT, etc.) used for measurement of the coagulation time. For example, the APTT reagent, PT reagent, etc. described in the activator section of the method 1 of the present invention And a solution containing calcium ions.
[0050]
It is desirable that the control standard sample, the standard sample, the blood coagulation factor and the activation factor are prepared in a form suitable for storage or use and included in the kit.
[0051]
(2) Medium on which a program for mathematical processing is recorded
The medium on which the program for performing mathematical processing in the kit of the present invention is written is a conversion method of various numerical values described in the method 1 of the present invention by inputting the measurement value of the coagulation time by a prescribed method. Further, a program for creating a calibration curve described in the above-described method 1 of the present invention, that is, performing regression of numerical values, calculating a concentration of a measurement target substance in a sample, and performing mutual conversion of concentration descriptions as necessary using the converted values Are recorded, the type of the storage medium is not limited, and the environment in which the program operates is not particularly limited.
[0052]
A procedure of an example of the program will be described with reference to the flowchart of FIG.
In S1, the concentration of the substance affecting the blood coagulation time contained in the standard sample, the coagulation time of the standard sample, and the coagulation time of the control standard sample are input. In addition, a coefficient (K) is input as necessary.
[0053]
In S2, a regression equation used to calculate a calibration curve is selected. For example, the primary expression, the secondary expression, and the tertiary expression are selected.
In S3, based on the information input in S1 and the information selected in S2, the logarithmic value of the concentration of the substance affecting the blood coagulation time in the standard sample and the relative coagulation represented by the following formula (1) A calibration curve is calculated using the logit value represented by the following formula (2) of time (Tr) as a variable.
[0054]
▲ 1 ▼ Tr = (T 0 / T) × K
(2) Logit (Tr) = Ln (Tr / | 1-Tr |)
(In the formula, Tr is the relative solidification time, T 0 Is a clotting time in the control sample, T is a clotting time in the standard sample, K is an arbitrary constant satisfying 0.8 ≦ K ≦ 1.2, and Ln is a natural logarithm. )
[0055]
In S4, the coagulation time of the specimen to be measured is input.
In S5, the concentration (unknown concentration) of the measurement target substance in the sample to be measured is calculated based on the calibration curve. Further, mutual conversion of density description is performed as necessary.
[0056]
In S6, the concentration calculated in S5 and the regression equation as the calibration curve calculated in S3 are displayed. These may be displayed separately or in a graph display.
[0057]
Among the above procedures, the order of S1, S2 and S4 may be arbitrary. S4 may be before S3, but in this case S1 and S2 must be performed before S3.
[0058]
S1 to S3 correspond to the procedure for calculating the calibration curve, and S4 to S5 correspond to the means for calculating the unknown concentration.
[0059]
【Example】
Examples of the present invention will be described below, but the present invention is not limited thereto.
[0060]
[Example 1]
(Quantification of various glycosaminoglycans by the method 1 of the present invention)
The effects of various substances that prolong the blood coagulation time in rat plasma on APTT, and the correlation between the numerical conversion value of APTT and the concentration value of the substance as the measurement target substance were examined. Glycosaminoglycan (GAG) heparin (hereinafter Hep), low molecular heparin (hereinafter LMWHep) and dermatan sulfate (DS) were used as the measurement target substances, and changes in APTT of untreated plasma collected. I investigated.
That is, a syringe containing a 3.8 wt% sodium citrate aqueous solution is prepared, and about 9 times as much blood as the sodium citrate aqueous solution is collected using the syringe. The mixture was centrifuged for 15 minutes at 4 ° C. and 1000 × G, and the supernatant was separated as plasma. APTT reagent (Thrombocheck APTT: Midori cross) that was added to 100 μl of the plasma, 100 μl of the above-mentioned various substances to be measured dissolved in physiological saline at each concentration, left at 37 ° C. for 1 minute, and then kept at 37 ° C. 100 μl and left at 37 ° C. for 2 minutes, then added 100 μl of 0.02M calcium chloride solution kept at 37 ° C. to start coagulation, and the coagulation time was measured by Baxter's blood coagulation automatic measuring device (AMELUNG KC10A) (Table 1, FIG. 3).
[0061]
With heparin, APTT is prolonged from 0.12 μg / ml, and coagulation does not occur at 12 μg / ml or higher, and with low molecular weight heparin, APTT is prolonged from 1.2 μg / ml, and coagulation does not occur at 40 μg / ml or higher. . In dermatan sulfate, APTT was extended from 1 μg / ml, and was extended to 65.7 sec at 3000 μg / ml. Using a known method (In Heparin, pp. 393-415, Lane, DA and Lindahl, U. eds, Edward Arnold, 1989) Was created (described later). However, the calibration curve has low accuracy, and the concentration range that can be practically measured was very narrow (Comparative Example; FIGS. 4 to 6).
[0062]
[Table 1]
Figure 0003876022
* All are APTT values in plasma that does not contain substances that affect blood clotting time, but these values are different because the day when heparin and low molecular weight heparin experiments were conducted and the day when dermatan sulfate experiments were conducted. There is a difference. Therefore, the blood clotting time varies depending on the specimen (plasma or the like) used. The present invention also provides a quantitative method that eliminates such an error caused by the specimen (Example 2).
[0063]
Numerical values were converted using the APTT values obtained using the above substances, and a calibration curve was prepared by regression of the numerical values using a polynomial regression method. That is, numerical conversion (Logit-log conversion) and regression were performed according to the following procedure.
1) Convert the test substance concentration (x) to the common logarithm value. (X = Logx)
2) APTT value (T concentration) when the test substance is not added (0 concentration) to APTT value (T) at each test substance concentration (x) 0 ) Ratio (Tr) (Tr = (T 0 / T) × K; K = 1.0).
3) Convert the Tr value to Logit. In this embodiment, since the solidification time is extended, 1> Tr, and Y = Ln (Tr / (1-Tr)). Therefore, in this embodiment, Ln (T 0 / T) / (1-T 0 / T) = Ln (T 0 / TT 0 ) = Ln ((TT 0 ) / T 0 ) -1 =-Ln (ΔAPTT / T 0 ) And converted. However, ΔAPTT = TT 0 .
4) Polynomial regression is performed on each X value and the corresponding Y value data, and a regression curve (a straight line in the case of a linear expression) is calculated using a polynomial equation. Y = ΣC k X k , But K ≧ 0, C k Is a real number.
[0064]
The theoretical value is the concentration of the substance to be measured in the actual sample, and the calculated value is a numerical value obtained by back-calculating the concentration of the substance to be measured from the measured value of APTT of the sample by the equation of the calibration curve obtained by regression calculation.
[0065]
APTT value obtained by measurement, calculated value obtained from a polynomial (first-order, second-order, third-order, heparin is only first-order and second-order) indicating the calculated regression curve, and true value obtained from theoretical value and calculated value A list of degrees (trueness = (calculated value−theoretical value) / theoretical value × 100%) is shown in Tables 2 to 5 (method of the present invention). The theoretical values obtained by the above conventional method are also shown for reference. Moreover, the calculated regression curve is shown to FIGS. 7-9 (method of this invention). In this embodiment, the regression equation is exemplified up to a cubic equation, but a regression curve using a polynomial of a fourth or higher order can also be used.
[0066]
When calculating the unknown substance concentration from the APTT value using the above regression curve (calibration curve), measure the APTT value of the sample containing the substance to be measured having an unknown concentration, calculate Y, and use the resulting polynomial Substituting to get X, 10 X And finally, an unknown concentration x is obtained. As is clear from the results in Tables 2 to 5, according to the present invention, good accuracy can be obtained in a wide concentration range.
[0067]
[Table 2]
Figure 0003876022
Conventional method: Y = 0.495X + 1.311 (in this case, Y = log (APTT value of specimen), X = log (heparin concentration in specimen) (FIG. 4)
[0068]
[Table 3]
Figure 0003876022
Conventional method: Y = 0.303X + 1.217 (in this case, Y = log (APTT value of the specimen), X = log (low molecular heparin concentration in the specimen) (FIG. 5)
[0069]
[Table 4]
Figure 0003876022
[Table 5]
Figure 0003876022
Conventional method: Y = 0.253X + 0.898 (in this case, Y = log (APTT value of specimen), X = log (dermatan sulfate concentration in specimen) (FIG. 6)
[0070]
[Example 2]
(Quantification of dermatan sulfate by the method of the present invention)
The effects of plasma heat treatment on APTT and the effects of using rat plasma or standard plasma (Coagtrol 1) as a blood coagulation factor supply source were examined. As a substance to be measured, dermatan sulfate was used.
[0071]
The difference in the amount of blood coagulation factor in plasma affects the measured value of APTT, and further affects the quantitative value. Because the plasma used in Table 1 of Example 1 was a different sample, the glycosaminoglycan Since it is clear from the difference in coagulation time when the concentration is 0 (see Table 1), the blood coagulation factor in the specimen containing dermatan sulfate is inactivated and used for APTT measurement. Was added separately. As a method for inactivating the blood coagulation factor, a heat treatment of the sample was attempted. The effect of heat treatment on APTT was examined at dermatan sulfate concentrations of 0 and 250 μg / ml. Thereafter, coagtrol 1 and rat plasma were used as blood coagulation factor sources.
[0072]
The influence of the heat treatment was such that 1/10 of the final volume of dermatan sulfate dissolved in physiological saline was added to plasma collected from rats in the same manner as in Example 1, and the final concentration in this state was 0 and 250 μg / This was used as a sample. The heat-treated specimen was heated at 65 ° C. for 20 minutes, 100 μl of the same APTT reagent and calcium solution as in Example 1 were added, and each APTT value was measured with an automatic blood coagulation measurement apparatus as in Example 1. In the non-heat-treated specimens having a dermatan sulfate concentration of 0, 250 μl / ml, the APTT values were 14.2 seconds and 38.1 seconds, respectively, but the heat-treated specimens were at least 120 seconds at any dermatan sulfate concentration. No coagulation was observed (Table 6).
[0073]
On the other hand, when the blood coagulation factor is added separately after the heat treatment, the APTT value changes by adding 80 μl of coagtrol 1 prepared according to the instructions to 20 μl of the heated sample and adding APTT reagent and calcium solution in the same manner as above. Then, the APTT value was measured with the blood coagulation automatic measuring device in the same manner as in Example 1. As a result, in the sample in which coagulation did not occur when the heat treatment was performed, the coagulation activity was restored by the addition of Coagtrol 1, and further, the APTT value extending action by dermatan sulfate was observed (Table 6).
[0074]
In addition, although data are not shown, when rat plasma prepared in the same manner as in Example 1 was used as an alternative to Coagtrol 1, the coagulation activity was restored and APTT was prolonged by dermatan sulfate as in the above results. Make sure that happens.
[0075]
[Table 6]
Figure 0003876022
[0076]
[Example 3]
(Quantification of dermatan sulfate by the combination of the method 1 of the present invention and the method 2 of the present invention)
Using the APTT method, we examined the quantification of substances that prolong the blood clotting time using rat urine and liver tissue homogenates. Dermatan sulfate was used as a measurement target substance.
[0077]
To the liver (2.550 g), add 4 times the amount of phosphate buffer, homogenize with a polytron homogenizer (about 15,000 rpm) under ice-cooling, and then add 15 parts under conditions of 3,000 rpm and 4 ° C. The supernatant after centrifugation for 5 minutes was used as a liver homogenized sample. In the case of urine, the urine excreted overnight by the rat was collected under ice-cooling, and the supernatant obtained by centrifugation under conditions of 3,000 rpm and 4 ° C. was used as a urine sample. Each sample was stored frozen at -30 ° C.
[0078]
According to the method 2 of the present invention, as an inactivation treatment, it was heated at 56 ° C. for 20 minutes after melting. A small amount of dermatan sulfate dissolved in physiological saline was added so as not to affect the total amount of the sample, and the sample was sufficiently stirred to prepare a specimen (liver homogenate specimen, urine specimen). 20 μl of each specimen was taken, 80 μl of Coagtrol 1 was added, and used for APTT measurement. As a reference value, APTT measurement was also performed when dermatan sulfate was dissolved in physiological saline (saline) at various concentrations (control saline sample) as an alternative to liver homogenate sample or urine sample, and according to the method 1 of the present invention. Numerical conversion was performed (Tables 7 to 10 and FIGS. 10 to 18).
[0079]
[Table 7]
Figure 0003876022
[0080]
[Table 8]
Figure 0003876022
[0081]
[Table 9]
Figure 0003876022
[0082]
[Table 10]
Figure 0003876022
[0083]
[Example 4]
(Quantitative determination of various GAGs by the combination of the present method 1 and the present method 2)
In Examples 2 and 3, the amount of dermatan sulfate was measured by inactivating the blood clotting factor in the measurement sample. However, since substances other than dermatan sulfate that prolong the blood clotting time are known, they are the same as in Example 2. We also investigated heparin, low molecular weight heparin, and chondroitin sulfate E, which are GAGs that are not destroyed by heat treatment (65 ° C, 20 minutes). The measuring method was performed by the method described below.
[0084]
That is, rat plasma was collected in the same manner as in Example 1, and various GAGs dissolved in a very small amount of physiological saline that did not affect the total amount of rat plasma were added to each sample, and then mixed thoroughly to prepare a sample. Was heat-treated at 65 ° C. for 20 minutes (heat-treated specimen). After 20 μl of the heat-treated specimen was mixed with 80 μl of Coagtrol 1, each APTT value was measured in duplicate by the same method as in Example 1, and the average was taken as the measured value, and numerical conversion was performed according to the method 1 of the present invention (Table 11). -14 and Figures 19-26).
[0085]
[Table 11]
Figure 0003876022
[0086]
[Table 12]
Figure 0003876022
[0087]
[Table 13]
Figure 0003876022
[0088]
[Table 14]
Figure 0003876022
[0089]
Since heparin is often expressed in activity units, the example of heparin in the example (Table 12) is shown in relation to the theoretical value of the concentration shown as U / ml of the standard sample and the coagulation time. A calibration curve and curve regression were tried in the same manner as in the case of heparin (Table 15 and FIGS. 27 and 28). However, Wako Pure Chemical Industries, Ltd. (Cat No. 085-00134; 182.5 U / mg) was used as heparin.
[0090]
[Table 15]
Figure 0003876022
[0091]
[Example 5]
(Quantification of sulfatide by the method 1 of the present invention)
Substances that can shorten the blood clotting time (APTT) were investigated. The sulfated glycolipid sulfatide was dissolved in a phosphate buffer solution, and the concentration of the substance was measured by the method 1 of the present invention.
[0092]
Sulfatide is dissolved in phosphate buffer solution at various concentrations to prepare specimens, 20 μl of this solution and 80 μl of standard plasma coretrol 1 are mixed, APTT is measured in duplicate as in Example 1, and the average value is taken as the measured value. The numerical values were converted according to the method 1 of the present invention (Tables 16 to 18 and FIGS. 29 to 35).
[0093]
[Table 16]
Figure 0003876022
[0094]
When the sulfatide was 0 μg / ml, the average APTT value was 32.3 seconds. As shown in FIG. 29, APTT was prolonged in a dose-dependent manner at 23.4 μg / ml or more (section A). On the other hand, APTT was shortened at 11.7 μg / ml or less and 0.18 μg / ml or more, and among these, at 1.5 μg / ml or less and 0.18 μg / ml or more (section B), this shortening was a capacity inverse correlation. Therefore, Logit-log conversion was performed for each of section A and section B, and a calibration curve was created for each. As shown in FIGS. 30 to 35, these data can be expressed by independent polynomials not only in the extended section but also in the shortened section.
[0095]
In this example, sulfatide dissolved in a phosphate buffer solution is used as it is, but this substance is stable at 65 ° C. for 20 minutes and freeze-thaw treatment. Therefore, when measuring sulfatide in a biological specimen, inactivation treatment can be performed according to the method 2 of the present invention.
[0096]
[Table 17]
Figure 0003876022
[0097]
[Table 18]
Figure 0003876022
[0098]
[Example 6]
(Measurement of dermatan sulfate by the combination of Method 1 and Method 2 of the present invention)
The concentration of a substance that prolongs the blood coagulation time in the diseased plasma was measured using the diseased plasma. A rat disseminated intravascular coagulation (DIC) model was selected as the pathological model, dermatan sulfate was selected as the measurement target substance, and the following addition and recovery experiment was performed.
[0099]
Three plasmas of the rat DIC model were prepared according to Example 4 of PCT International Publication No. WO95 / 09188. That is, pathological plasma after intravenous infusion of 50 mg lipopolysaccharide (LPS) / kg / 4 hours. These specimens and normal rat plasma were collected in the same manner as in Example 1 and stored at −20 ° C. After thawing, each of various concentrations of dermatan sulfate dissolved in a small amount of raw food was added and measured as in Example 3. A sample was heat-treated at 65 ° C. for 20 minutes as in Example 2 (heat-treated sample). 80 μl of Coagtrol 1 was added to 20 μl of each of these heat-treated samples, and quantification using the APTT method was performed in the same manner as in Example 3 (Table 19).
[0100]
[Table 19]
Figure 0003876022
[0101]
As described above, it was shown that the values measured by this method are very close to both DIC model plasma and normal plasma. Substituting the APTT value of the above DIC model plasma (measurement sample) into each of the regression equations of the three calibration curves obtained based on the APTT value of the standard sample obtained in normal rats, the calculated value and the accuracy are calculated. Calculated (Table 20).
[0102]
[Table 20]
Figure 0003876022
[0103]
As shown above, the reliability of the measured value tends to be slightly inferior between 50 and 100 μg / ml, but after that, it was found that the concentration of the measurement target substance was measured within a practical range.
[0104]
[Example 7]
(Quantification of specimen containing a plurality of GAGs by the combination of the present method 1 and the present method 2)
Quantification was performed on specimens containing multiple substances that affect blood clotting time. Taking dermatan sulfate as an example of a measurement target substance, heparin as an example of a substance other than the measurement target substance that affects the blood coagulation time, and rat plasma collected in the same manner as in Example 1 as a solvent for the measurement target substance. The following experiments were performed. Dermatan sulfate was dissolved in physiological saline so as to be 0 to 90 mg / ml and heparin to 900 μg / ml. 2.7 ml of plasma supplemented with 0.15 ml of physiological saline, 0.15 ml of physiological saline in which various concentrations of dermatan sulfate are dissolved, and 2.7 ml of plasma containing physiological saline containing heparin and 900 μg / ml Each sample was prepared by adding 0.15 ml of physiological saline in which 0.15 ml of various concentrations of dermatan sulfate was dissolved (measurement sample). These were heat-treated at 65 ° C. for 20 minutes, and then the freeze-dried enzyme (heparinase, 0.1 U Seikagaku Corporation) was added to the group to which heparin was added to decompose heparin (enzyme-treated specimen). Thereafter, 20 μl of these enzyme-treated specimens were taken, added to 80 μl of coagtrol 1, APTT values were measured in duplicate as in Example 1, and the average value was taken as the measured value (Table 21).
[0105]
[Table 21]
Figure 0003876022
[0106]
Logit- with the APTT value of a sample containing only the measurement target substance (dermatan sulfate) and physiological saline that is a solvent that does not contain both the measurement target substance and the substance other than the measurement target substance that affects the clotting time (heparin) Log transformation was performed to create a regression line or regression curve (Table 22).
[0107]
[Table 22]
Figure 0003876022
[0108]
Next, calculation obtained by substituting APTT values obtained after enzymatic treatment of specimens that contain the substance to be measured (dermatan sulfate) and substances that further affect blood coagulation time (heparin) into the above formulas. Values and theoretical values were compared (Table 23).
[0109]
[Table 23]
Figure 0003876022
[0110]
As shown in the above table, it was found that the concentration of the sample after the enzyme treatment can be measured with the accuracy of the theoretical value and the error of 21.7% or less in the range of 1500 μg / ml or more.
[0111]
[Example 8]
(Quantification of heparin by the combination of the method 1 of the present invention and the method 2 of the present invention)
PT was applied in the same way as APTT. As an example of the substance to be measured, heparin was used. Heparin was dissolved in physiological saline at various concentrations and then added to rat plasma (specimen). At this time, consideration was given so that the added volume did not affect the total plasma volume. The sample was heat-treated at 65 ° C. for 20 minutes (heat-treated sample). After mixing 20 μl of heat-treated specimen with 80 μl of Coagtrol 1, measure PT using PT reagent (thrombocheck PT: green cross) prepared as described in the manual, and logit-log with the measured value as in APTT. Conversion was performed to create a regression line or regression curve (Table 24).
[0112]
[Table 24]
Figure 0003876022
[0113]
[Example 9]
(Configuration and use of the kit of the present invention)
The heparin measurement kit of this example is composed of the following elements 1 to 7.
1. One vial of standard heparin saline (heparin 60 μg / ml (10.95 U / ml), 1 ml).
2. 1 vial of normal saline (for dilution of heparin, 1 ml).
3. Standard plasma (equal amount of fresh plasma obtained by collecting sodium citrate as an anticoagulant from 10 healthy individuals who are not infected with pathogenic microorganisms such as HIV, HCV, HBV as a result of antibody tests, and pooled Lyophilized product equivalent to 0.5ml, usually stored at 2-8 ° C) 1 vial.
4). One vial of distilled water (for standard plasma lysis, 0.5 ml).
5). 1 vial of APTT reagent (containing 0.2 mg / ml of rabbit-derived cephalin, 0.03 mg / ml of ellagic acid, 3 ml, usually refrigerated).
6). 1 vial of calcium chloride solution (0.02M, 4ml).
7). Software storage medium for measurement
[0114]
For use, after returning the standard plasma to room temperature, gently add 1 vial of distilled water without foaming, gently agitate to be uniform, and leave it for about 20 to 30 minutes. A solution obtained by serially diluting standard heparin physiological saline with physiological saline in a range of 3 to 60 μg / ml or physiological saline to 80 μl of the dissolved standard plasma is added uniformly so as not to form bubbles by 20 μl. After the solution is kept at 37 ° C. for 3 minutes, 100 μl of APTT reagent heated to 37 ° C. in advance is added, and the solution is further kept at 37 ° C. for 3 minutes. 100 μl of calcium chloride solution is added to the solution to start coagulation, and the time until coagulation is completed is measured. After measuring the theoretical value of heparin concentration and the respective clotting time, input the theoretical value and measured value, the heparin activity unit (U / mg) contained in standard heparin saline, and the regression method to the measurement software. Then create a calibration curve. The sample is heated at 56 ° C. for 20 minutes and then returned to room temperature, and 20 μl thereof is uniformly added to 80 μl of standard plasma dissolved in distilled water according to the above procedure so as not to generate bubbles. Incubate the solution at 37 ° C for 3 minutes, then add 100 µl of APTT reagent preheated to 37 ° C. Incubate the solution at 37 ° C for 3 minutes, then add 100 µl of calcium chloride solution to start coagulation. Let The time until the coagulation is completed is measured, the calibration curve created by the measurement software is called from the memory, the coagulation time of the specimen is input, and the concentration of the substance to be measured in the specimen is calculated from the measured value.
[0115]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the precision of the substance which affects the blood coagulation time is high, the operation is simple, and the quantification method which can process many specimens is provided.
[0116]
That is, according to one aspect of the quantification method of the present invention, the logarithmic value of the concentration of the measurement target substance solution (standard sample) having a known concentration and the ratio of the relative clotting time to the control clotting time ((TT 0 ) / T 0 Since the calibration curve is obtained using the logit value of) as a variable, it is possible to carry out highly accurate quantification over a wide measurement concentration range.
[0117]
According to another aspect of the quantification method of the present invention, the blood coagulation factor inherent in the sample containing the measurement target substance is inactivated under conditions that do not destroy the measurement target substance. Accurate quantification is possible without being affected by substances other than substances.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of the configuration of a quantitative device of the present invention.
FIG. 2 is a flowchart showing a processing procedure of a program recorded on a medium included in the kit of the present invention.
FIG. 3 shows the relationship between APTT and logarithmic values of heparin, low molecular weight heparin, and dermatan sulfate concentration (μg / ml).
FIG. 4 shows the relationship between the logarithm of heparin concentration (μg / ml) and the logarithm of APTT.
FIG. 5 shows the relationship between the logarithmic value of the concentration (μg / ml) of low molecular weight heparin (LMWHep) and the logarithmic value of APTT.
FIG. 6 shows the relationship between the logarithmic value of dermatan sulfate (DS) concentration (μg / ml) and the APTT logarithm value.
FIG. 7 shows the relationship between the logarithmic value of heparin concentration (μg / ml) and the logit value of APTT.
FIG. 8 shows the relationship between the logarithmic value of the concentration (μg / ml) of low molecular weight heparin (LMWHep) and the logit value of APTT.
FIG. 9 shows the relationship between the logarithmic value of dermatan sulfate (DS) concentration (μg / ml) and the logit value of APTT.
FIG. 10 shows the relationship between the logarithmic value of dermatan sulfate (DS) concentration (μg / ml) in physiological saline and the logit value of APTT, and the regression equation (primary equation) of the calibration curve.
FIG. 11 shows the relationship between the logarithmic value of the dermatan sulfate (DS) concentration (μg / ml) in physiological saline and the logit value of APTT, and the regression equation (secondary equation) of the calibration curve.
FIG. 12 shows the relationship between the logarithmic value of dermatan sulfate (DS) concentration (μg / ml) in physiological saline and the logit value of APTT, and the regression equation (third order) of the calibration curve.
FIG. 13 shows the relationship between the logarithmic value of dermatan sulfate (DS) concentration (μg / ml) in liver homogenate and the logit value of APTT, and the regression equation (primary equation) of the calibration curve.
FIG. 14 shows the relationship between the logarithmic value of dermatan sulfate (DS) concentration (μg / ml) in liver homogenate and the logit value of APTT, and the regression equation of the calibration curve (secondary equation).
FIG. 15 shows the relationship between the logarithmic value of dermatan sulfate (DS) concentration (μg / ml) in liver homogenate and the logit value of APTT, and the regression equation (third order equation) of the calibration curve.
FIG. 16 shows the relationship between the logarithmic value of urine dermatan sulfate (DS) concentration (μg / ml) and the logit value of APTT and the regression equation (primary equation) of the calibration curve.
FIG. 17 shows the relationship between the logarithmic value of dermatan sulfate (DS) concentration (μg / ml) in urine and the logit value of APTT, and the regression equation (secondary equation) of the calibration curve.
FIG. 18 shows the relationship between the logarithmic value of urine dermatan sulfate (DS) concentration (μg / ml) and the logit value of APTT, and the regression equation (third order) of the calibration curve.
FIG. 19 shows the relationship between the logarithmic value of heparin concentration (μg / ml) in plasma and the logit value of APTT and the regression equation (primary equation) of the calibration curve.
FIG. 20 shows the relationship between the logarithmic value of plasma heparin concentration (μg / ml) and the logit value of APTT, and the regression equation (secondary equation) of the calibration curve.
FIG. 21 shows the relationship between the logarithmic value of low molecular weight heparin (LMWHep) concentration (μg / ml) in plasma and the logit value of APTT and the regression equation (primary equation) of the calibration curve.
FIG. 22 shows the relationship between the logarithmic value of low molecular heparin (LMWHep) concentration (μg / ml) in plasma and the logit value of APTT and the regression equation (secondary equation) of the calibration curve.
FIG. 23 shows the relationship between the logarithmic value of low molecular weight heparin (LMWHep) concentration (μg / ml) in plasma and the logit value of APTT, and the regression equation (third order) of the calibration curve.
FIG. 24 shows the relationship between the logarithmic value of chondroitin sulfate E (CSE) concentration (μg / ml) in plasma and the logit value of APTT, and the regression equation (primary equation) of the calibration curve.
FIG. 25 shows the relationship between the logarithmic value of chondroitin sulfate E (CSE) concentration (μg / ml) in plasma and the logit value of APTT, and the regression equation of the calibration curve (secondary equation).
FIG. 26 shows the relationship between the logarithmic value of chondroitin sulfate E (CSE) concentration (μg / ml) in plasma and the logit value of APTT, and the regression equation (third order) of the calibration curve.
FIG. 27 shows the relationship between the logarithmic value of heparin concentration (U / ml) in plasma and the logit value of APTT and the regression equation (primary equation) of the calibration curve.
FIG. 28 shows the relationship between the logarithmic value of heparin concentration (U / ml) in plasma and the logit value of APTT and the regression equation (secondary equation) of the calibration curve.
FIG. 29 shows the effect of sulfatide concentration (μg / ml) on APTT. The section A and the section B are a section where the APTT that has created the calibration curve is extended and a section where it is shortened, respectively.
FIG. 30 shows the relationship between the logarithmic value of plasma sulfatide concentration (μg / ml) and APTT logit value in the APTT prolongation interval, and the regression equation (primary equation) of the calibration curve.
FIG. 31 shows the relationship between the logarithmic value of plasma sulfatide concentration (μg / ml) and APTT logit value in the APTT prolongation interval, and the regression equation (secondary equation) of the calibration curve.
FIG. 32 shows the relationship between the logarithmic value of plasma sulfatide concentration (μg / ml) and APTT logit value in the APTT prolongation interval, and the regression equation (third order) of the calibration curve.
FIG. 33 shows the relationship between the logarithmic value of the plasma sulfatide concentration (μg / ml) in the APTT shortened section and the logit value of APTT, and the regression equation (primary equation) of the calibration curve.
FIG. 34 shows the relationship between the logarithmic value of the plasma sulfatide concentration (μg / ml) in the APTT shortened section and the logit value of APTT and the regression equation (secondary equation) of the calibration curve.
FIG. 35 shows the relationship between the logarithmic value of plasma sulfatide concentration (μg / ml) in the APTT shortened section and the logit value of APTT, and the regression equation of the calibration curve (third-order equation).

Claims (16)

血液凝固時間に影響を与える物質の定量方法であって、既知濃度の前記物質を含む標準検体および前記物質の濃度が未知の測定すべき検体における凝固時間並びに前記物質を含まない対照標準検体における凝固時間を測定し、前記標準検体における前記血液凝固時間に影響を与える物質の濃度の対数値と下記式[1]で表される相対凝固時間(Tr)の下記式[2]で表されるロジット(Logit)値とを変数として検量線を作成し、得られた検量線に基づいて、測定すべき検体中の前記物質の濃度を求めることを特徴とする定量方法。
[1]Tr=(T0/T)×K
[2]Logit(Tr)=Ln(Tr/|1-Tr|)
(式中、Trは相対凝固時間、T0は前記対照標準検体における凝固時間、Tは前記標準検体における凝固時間、Kは0.8≦K≦1.2を満たす任意の定数、Lnは自然対数である。)
A method for quantifying a substance that affects blood coagulation time, wherein the coagulation time is measured in a standard specimen containing the substance with a known concentration and the specimen to be measured whose concentration of the substance is unknown, and the coagulation in a reference standard specimen not containing the substance. Logit expressed by the following equation [2] of the logarithm of the concentration of the substance that affects the blood clotting time in the standard sample and the relative clotting time (Tr) expressed by the following equation [1] (Logit) A quantification method characterized in that a calibration curve is created using a value as a variable, and the concentration of the substance in the sample to be measured is obtained based on the obtained calibration curve.
[1] Tr = (T 0 / T) x K
[2] Logit (Tr) = Ln (Tr / | 1-Tr |)
(In the formula, Tr is a relative coagulation time, T 0 is a coagulation time in the control sample, T is a coagulation time in the standard sample, K is an arbitrary constant satisfying 0.8 ≦ K ≦ 1.2, and Ln is a natural logarithm. )
前記定数Kが1.0である請求項1に記載の定量方法。  The quantification method according to claim 1, wherein the constant K is 1.0. 前記検量線を作成する方法が多項式回帰法である請求項1又は2に記載の定量方法。  The quantification method according to claim 1 or 2, wherein the method of creating the calibration curve is a polynomial regression method. 前記凝固時間の測定が、前記物質を破壊しない条件下で前記の測定すべき検体及び標準検体あるいは前記の測定すべき検体のみを処理することによって内在する血液凝固因子を不活化し、次いで、該不活化後の両検体を一定量の血液凝固因子と混和し、得られた混和物の凝固時間を測定することによって行われる請求項1〜3のいずれか一項に記載の定量方法。  The measurement of the clotting time inactivates an intrinsic blood coagulation factor by treating only the specimen to be measured and the standard specimen or the specimen to be measured under conditions that do not destroy the substance, The quantification method according to any one of claims 1 to 3, which is performed by mixing both samples after inactivation with a certain amount of blood coagulation factor and measuring the coagulation time of the obtained mixture. 血液凝固時間に影響を与える物質の定量方法であって、前記物質の濃度が未知の測定すべき検体に内在する血液凝固因子を、前記物質を破壊しない条件下で不活化し、次いで、前記検体および既知濃度の前記物質を含む標準検体を一定量の血液凝固因子と混和し、得られた混和物の凝固時間を測定することを特徴とする定量方法。  A method for quantifying a substance that affects blood coagulation time, wherein a blood coagulation factor inherent in a specimen to be measured whose concentration of the substance is unknown is inactivated under conditions that do not destroy the substance, and then the specimen And a standard sample containing the substance of a known concentration is mixed with a certain amount of blood coagulation factor, and the coagulation time of the obtained mixture is measured. 前記不活化が、加熱処理によるものである請求項4又は5に記載の定量方法。  The method according to claim 4 or 5, wherein the inactivation is by heat treatment. 前記加熱処理の条件が50〜70℃である請求項6に記載の定量方法。  The quantitative determination method according to claim 6, wherein the condition of the heat treatment is 50 to 70 ° C. 前記血液凝固時間に影響を与える物質が糖質又は複合糖質である請求項1〜7のいずれか一項に記載の定量方法。  The quantification method according to any one of claims 1 to 7, wherein the substance affecting the blood coagulation time is a saccharide or a complex carbohydrate. 前記血液凝固時間に影響を与える物質がグリコサミノグリカンまたは糖脂質である請求項5〜7に記載の定量方法。  The method according to claim 5, wherein the substance affecting the blood coagulation time is glycosaminoglycan or glycolipid. 血液凝固時間に影響を与える物質の定量装置であって、既知濃度の前
記物質を含む標準検体および前記物質の濃度が未知の測定すべき検体並びに前記物質を含まない対照標準検体の凝固時間を測定する手段、前記既知濃度の対数値と下記式[1]で表される相対凝固時間(Tr)の下記式[2]で表されるロジット(Logit)値とを変数として多項式回帰法により検量線を算出する手段、及び前記検量線に基づいて、前記測定すべき検体の凝固時間から前記物質の濃度を算出する手段を有することを特徴とする前記定量装置。[1]Tr=(T0/T)×K
[2]Logit(Tr)=Ln(Tr/|1-Tr|)
(式中、Trは相対凝固時間、T0は前記対照標準検体における凝固時間、Tは前記標準検体における凝固時間、Kは0.8≦K≦1.2を満たす定数、Lnは自然対数である。)
Quantitative device for substances that affect blood clotting time, measuring the clotting time of a standard sample containing a known concentration of the substance, a sample to be measured whose concentration of the substance is unknown, and a control standard specimen not containing the substance A calibration curve by a polynomial regression method using a logarithmic value of the known concentration and a logit value represented by the following equation [2] of the relative coagulation time (Tr) represented by the following equation [1] as variables. And a means for calculating the concentration of the substance from the coagulation time of the specimen to be measured based on the calibration curve. [1] Tr = (T 0 / T) x K
[2] Logit (Tr) = Ln (Tr / | 1-Tr |)
(In the formula, Tr is a relative coagulation time, T 0 is a coagulation time in the control sample, T is a coagulation time in the standard sample, K is a constant satisfying 0.8 ≦ K ≦ 1.2, and Ln is a natural logarithm.)
前記定数Kが1.0である請求項10に記載の定量装置。  The quantitative device according to claim 10, wherein the constant K is 1.0. 前記血液凝固時間に影響を与える物質が糖質又は複合糖質である請求項10又は11に記載の定量装置。  The quantitative device according to claim 10 or 11, wherein the substance affecting the blood coagulation time is a carbohydrate or a complex carbohydrate. 前記血液凝固時間に影響を与える物質がグリコサミノグリカン又は糖脂質である請求項10又は11に記載の定量装置。  The quantitative device according to claim 10 or 11, wherein the substance affecting the blood coagulation time is glycosaminoglycan or glycolipid. 血液凝固時間に影響を与える物質の定量方法を行うためのキットであって、既知濃度の前記物質を含む標準検体、血液凝固因子活性化因子、並びに既知濃度の前記物質を含む標準検体及び前記物質を含まない対照標準検体における凝固時間を入力することによって、前記標準検体における前記血液凝固時間に影響を与える物質の濃度の 対数値と下記式 [1] で表される相対凝固時間( Tr )の下記式 [2] で表されるロジット (Logit) 値とを変数として検量線を算出する手順、及び前記物質の濃度が未知の測定すべき検体の凝固時間を入力することによって、測定すべき検体中の前記物質の濃度を前記検量線に基づいて算出する手順をコンピュータに実行させるためのプログラムを記録した媒体を含むことを特徴とするキット。
[1]Tr (T 0 /T) × K
[2]Logit(Tr) Ln(Tr/|1-Tr|)
(式中、 Tr は相対凝固時間、 T 0 は前記対照標準検体における凝固時間、 T は前記標準検体における凝固時間、 K 0.8 K 1.2 を満たす任意の定数、 Ln は自然対数である。)
A kit for performing a method for quantifying a substance that affects blood coagulation time, comprising a standard specimen containing a known concentration of the substance, a blood coagulation factor , an activator, a standard specimen containing the known concentration of the substance, and the above By entering the clotting time in a control sample that does not contain a substance, the logarithmic value of the concentration of the substance that affects the blood clotting time in the standard specimen and the relative clotting time ( Tr ) represented by the following formula [1] by the procedure for calculating the calibration curve and logit (logit) value as a variable represented by the following formula [2], and the concentration of the substance to enter the coagulation time of the sample to be measured having an unknown, to be measured A kit comprising a medium recording a program for causing a computer to execute a procedure for calculating the concentration of the substance in a sample based on the calibration curve .
[1] Tr = (T 0 / T) × K
[2] Logit (Tr) = Ln (Tr / | 1-Tr |)
(In the formula, Tr is a relative clotting time, T 0 is a clotting time in the control sample, T is a clotting time in the standard sample, K is an arbitrary constant satisfying 0.8 K 1.2 , and Ln is a natural logarithm. )
前記血液凝固時間に影響を与える物質が糖質又は複合糖質である請求項14に記載のキット。The kit according to claim 14, wherein the substance affecting the blood coagulation time is a carbohydrate or a complex carbohydrate . 前記血液凝固時間に影響を与える物質がグリコサミノグリカン又は糖脂質である請求項14に記載のキット。The kit according to claim 14, wherein the substance affecting the blood coagulation time is a glycosaminoglycan or a glycolipid .
JP25510696A 1996-09-26 1996-09-26 Method for quantifying substances that affect blood clotting time Expired - Fee Related JP3876022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25510696A JP3876022B2 (en) 1996-09-26 1996-09-26 Method for quantifying substances that affect blood clotting time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25510696A JP3876022B2 (en) 1996-09-26 1996-09-26 Method for quantifying substances that affect blood clotting time

Publications (2)

Publication Number Publication Date
JPH10104239A JPH10104239A (en) 1998-04-24
JP3876022B2 true JP3876022B2 (en) 2007-01-31

Family

ID=17274196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25510696A Expired - Fee Related JP3876022B2 (en) 1996-09-26 1996-09-26 Method for quantifying substances that affect blood clotting time

Country Status (1)

Country Link
JP (1) JP3876022B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507722A (en) * 2008-10-29 2012-03-29 ティー2 バイオシステムズ,インコーポレーテッド NMR detection of coagulation time
US9599627B2 (en) 2011-07-13 2017-03-21 T2 Biosystems, Inc. NMR methods for monitoring blood clot formation
US9739733B2 (en) 2012-12-07 2017-08-22 T2 Biosystems, Inc. Methods for monitoring tight clot formation
US10620205B2 (en) 2011-09-21 2020-04-14 T2 Biosystems, Inc. NMR methods for endotoxin analysis

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5708591A (en) 1995-02-14 1998-01-13 Akzo Nobel N.V. Method and apparatus for predicting the presence of congenital and acquired imbalances and therapeutic conditions
US6898532B1 (en) 1995-06-07 2005-05-24 Biomerieux, Inc. Method and apparatus for predicting the presence of haemostatic dysfunction in a patient sample
US6321164B1 (en) 1995-06-07 2001-11-20 Akzo Nobel N.V. Method and apparatus for predicting the presence of an abnormal level of one or more proteins in the clotting cascade
US6429017B1 (en) 1999-02-04 2002-08-06 Biomerieux Method for predicting the presence of haemostatic dysfunction in a patient sample
US6502040B2 (en) 1997-12-31 2002-12-31 Biomerieux, Inc. Method for presenting thrombosis and hemostasis assay data
WO2000046603A1 (en) 1999-02-04 2000-08-10 Akzo Nobel N.V. A method and apparatus for predicting the presence of haemostatic dysfunction in a patient sample
US7179612B2 (en) 2000-06-09 2007-02-20 Biomerieux, Inc. Method for detecting a lipoprotein-acute phase protein complex and predicting an increased risk of system failure or mortality
DE102005028018A1 (en) * 2005-06-16 2006-12-21 Dade Behring Marburg Gmbh Method for the standardization of coagulation tests
CN102066947B (en) * 2008-06-18 2015-10-14 积水医疗株式会社 The decision method of cruor time extending reason
CA2744886C (en) * 2008-10-20 2018-11-13 Epitome Pharmaceuticals Limited Methods and systems for improved pharmaceutical intervention in coagulation control

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507722A (en) * 2008-10-29 2012-03-29 ティー2 バイオシステムズ,インコーポレーテッド NMR detection of coagulation time
US9157974B2 (en) 2008-10-29 2015-10-13 T2 Biosystems, Inc. NMR detection of coagulation time
US10126314B2 (en) 2008-10-29 2018-11-13 T2 Biosystems, Inc. NMR detection of coagulation time
US9599627B2 (en) 2011-07-13 2017-03-21 T2 Biosystems, Inc. NMR methods for monitoring blood clot formation
US9797914B2 (en) 2011-07-13 2017-10-24 T2 Biosystems, Inc. NMR methods for monitoring blood clot formation
US10697984B2 (en) 2011-07-13 2020-06-30 T2 Biosystems, Inc. NMR methods for monitoring blood clot formation
US10620205B2 (en) 2011-09-21 2020-04-14 T2 Biosystems, Inc. NMR methods for endotoxin analysis
US9739733B2 (en) 2012-12-07 2017-08-22 T2 Biosystems, Inc. Methods for monitoring tight clot formation

Also Published As

Publication number Publication date
JPH10104239A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
JP3876022B2 (en) Method for quantifying substances that affect blood clotting time
Newall Anti-factor Xa (anti-Xa) assay
Alban et al. Comparison of established and novel purity tests for the quality control of heparin by means of a set of 177 heparin samples
Mijovski Advances in monitoring anticoagulant therapy
JP6461125B2 (en) Means and methods for universal calibration of anti-factor Xa test
CN108982865A (en) A kind of thrombelastogram method heparin immue quantitative detection reagent box and preparation method thereof
WO2007072197A1 (en) Methods and systems for detecting and quantifying indirect thrombin inhibitors
Christensen et al. Determination of chromium in blood and serum: evaluation of quality control procedures and estimation of reference values in Danish subjects
Kost et al. Multicenter study of whole-blood creatinine, total carbon dioxide content, and chemistry profiling for laboratory and point-of-care testing in critical care in the United States
Hoffman Heparins: clinical use and laboratory monitoring
de Vries et al. Altered fibrin network structure and fibrinolysis in intensive care unit patients with COVID‐19, not entirely explaining the increased risk of thrombosis
JP2632525B2 (en) Heparin test
Elrouf et al. Interference of hemolysis in the estimation of plasma aspartate aminotransferase, potassium and phosphate
Despotis et al. Effect of heparin on whole blood activated partial thromboplastin time using a portable, whole blood coagulation monitor
JP3917239B2 (en) Blood clotting time measurement method
Stuart et al. Anti‐factor IIa (FIIa) heparin assay for patients on direct factor Xa (FXa) inhibitors
Hu et al. Temperature-independent near-infrared analysis of lysozyme aqueous solutions
Nelson Current considerations in the use of the APTT in monitoring unfractionated heparin
Garg et al. Hyaluronidase as a liquefying agent for chemical analysis of vitreous fluid
Thalappil et al. Standardization of Anti-Xa Assay and its Comparison with Activated Partial Thromboplastin Time for Monitoring Unfractionated Heparin Therapy
Ulutin et al. The molecular markers of hemostatic activation on coronary artery disease
Tsuchida et al. Characterization and Usefulness of Clot-Fibrinolysis Waveform Analysis in Critical Care Patients with Enhanced or Suppressed Fibrinolysis
Ng Anticoagulation monitoring
Fenyvesi et al. Comparison of two different ecarin clotting time methods
Karacalilar et al. Predictive effect of nutritional scores assessment for 1-year mortality in patients with severe aortic stenosis treated with SAVR or TAVR.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees