JP3874721B2 - Strain deformation prevention device due to thermal expansion of inner cylinder used in high temperature and high pressure combustion apparatus of multi-cylinder structure. - Google Patents

Strain deformation prevention device due to thermal expansion of inner cylinder used in high temperature and high pressure combustion apparatus of multi-cylinder structure. Download PDF

Info

Publication number
JP3874721B2
JP3874721B2 JP2002380446A JP2002380446A JP3874721B2 JP 3874721 B2 JP3874721 B2 JP 3874721B2 JP 2002380446 A JP2002380446 A JP 2002380446A JP 2002380446 A JP2002380446 A JP 2002380446A JP 3874721 B2 JP3874721 B2 JP 3874721B2
Authority
JP
Japan
Prior art keywords
inner cylinder
cylinder
combustion
pressure
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002380446A
Other languages
Japanese (ja)
Other versions
JP2004211941A (en
Inventor
哲人 田村
Original Assignee
住重機器システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住重機器システム株式会社 filed Critical 住重機器システム株式会社
Priority to JP2002380446A priority Critical patent/JP3874721B2/en
Publication of JP2004211941A publication Critical patent/JP2004211941A/en
Application granted granted Critical
Publication of JP3874721B2 publication Critical patent/JP3874721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、超音速ジェットバーナーを始め各種の多筒構造の高温高圧燃焼装置に用いる内筒の熱膨脹による歪変形防止装置に関する。
【0002】
【従来の技術】
高温高圧加熱装置として例えば衝撃波を発生できる超音速ジェットバーナーが知られている。
【0003】
このような衝撃波発生バーナーに相当する超音速ジェットバーナーは、高圧空気をバーナー燃焼(1300℃)以上の火炎で燃焼させこのガス膨脹体積を小さな穴(吐出口)から噴射させ、秒速1,000m前後の速い速度、即ち衝撃波(340m/sec)を超える速度のガスを噴射させ、このエネルギーを利用して破壊、粉砕、乾燥に利用し分子の変換(高速分子衝突による)等に利用され効率良く産業廃棄物、生ゴミ、魚介類、一般下水、汚物処理、焼却前処理することができる。
【0004】
すなわちこの衝撃波を発生させるためにバーナー本体内の燃焼状態は高温高圧となり、バーナー本体内壁に作用する熱影響は頗る大きく、耐熱耐圧構造の高温特性に優れた金属材料、例えばモリブデン鋼、ジルコニウム鋼などきわめて高価な材料を用いなければならない。
【0005】
また、高温高圧な燃焼状態を作り出す内筒に対し、冷却機構を設けた中筒、外筒などを以って多筒構造とし、それぞれの金属材料を異ならせて構成することも知られる処である。
【0006】
【特許文献1】
特開2000−39126号公報
【特許文献2】
特開2000−74317号公報
【0007】
【発明が解決しようとする課題】
ところで、内筒を備えた多筒構造の高温高圧燃焼装置にあっては、往々にして内筒自体の耐圧耐熱効果の優れた耐熱金属を用いていても、予算の関係で限界に近い耐熱金属を使用しなければならない場合もある。このような場合、耐熱金属を用いた内筒は、加熱による膨脹や、冷めた時の収縮復元という塑性変形が金属平衡線の限度を超えた加熱温度となった場合、内筒の変形、歪みが復元不能となり内筒に亀裂や孔が開き危険となると同時に使用不能となるという問題があった。
【0008】
この発明は叙上の点に着目してなされたもので、内筒自体を熱膨脹による伸長を可能な配置とし、かつ塑性変形限度内で一定以上伸長した場合は、自動的に冷却空気を供給して冷却し、内筒への異常な加熱影響を軽減させて常に安全なそして安定した熱発生状況を保持して高温高圧燃焼ガスを発生できるようにした多筒構造の高温高圧燃焼装置における内筒の熱膨脹による歪変形防止装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
この発明は、以下の構成を備えることにより、上記課題を解決できるものである。
【0010】
(1)外筒に沿って中筒及び内筒を形成し、これら各筒間に高圧空気の流通路を形成し、この流通路を流通する高圧空気を内筒内に供給する多筒構造を備えると共に前記内筒の先端に吐出口を開口して高温高圧燃焼ガスないし超音速の衝撃波を吐出する高温高圧用の燃焼筒体を備え、この燃焼筒体の基部に燃料供給手段、点火手段、空気供給手段などを設けて、燃焼筒体の最内部でかつ内筒の基部上方に初期燃焼室を形成し、この初期燃焼室の前方で内筒の上部の側壁に、前記空気供給手段より燃焼筒体の基部の流通孔と接続される前記流通路に通ずる傾斜孔を開口して前記初期燃焼室に続く渦巻高温燃焼部ないし狭窄状の衝撃波変換部を形成できるようにした多筒構造の高温高圧燃焼装置に用いるものであって、内筒の先端部を燃焼筒体の先端部に固着し、内筒の基端部を燃焼筒体の最内位置の取付部の内壁に沿って摺動自在に支持させ、かつ内筒を構成する金属組成物の塑性変化限度を越えない温度以内で、膨脹伸長可能とし、許容された範囲内の伸長時に高圧空気の流通孔と通ずる通孔と、内筒に設けた通孔とを内筒の膨張伸長時に一致させて導通可能とし、内筒内に冷却のための空気を導入して内筒内の異常な高温高圧の発生を防ぐと共に内筒の熱膨張に基づく伸長に起因する歪変形を防止できるようにしたことを特徴とする多筒構造の高温高圧燃焼装置に用いる内筒の熱膨脹による歪変形防止装置。
【0011】
(2)内筒の基端部が熱膨張により伸長する個処には、内筒の基端部を包囲する円筒カバーを配し、燃焼筒体の取付部に、前記円筒カバーに設けた鍔部を介して固着すると共に、内筒の基端部には通孔を穿ち、取付部に設けた高圧空気の流通孔と通ずる通孔と、熱膨脹で伸長した内筒の前記通孔とが一致した際、この通孔を介して高圧空気が円筒カバーで形成される間隙内に吐出され、かつ内筒内に導入されて内筒を冷却して伸長した内筒を収縮させることができるようにして成ることを特徴とする前記(1)記載の多筒構造の高温高圧燃焼装置に用いる内筒の熱膨脹による歪変形防止装置。
【0012】
【発明の実施の形態】
以下に、この発明の実施の形態を示す。
【0013】
この実施の形態は、本出願人が先きに出願した特願2002−157437号に開示した実施例に示す多筒構成の超音速ジェットバーナーの内筒に施した場合を示している。
【0014】
まず始めに、図1において、その構成の概略を示す。
【0015】
1は、中心軸l−lに沿って燃焼路2を有する全体が円筒状の高温高圧の燃焼筒体を示し、この燃焼筒体1は、フランジ構造の基部、すなわち円形状基板1aに相当する取付部と、これに続く外筒3、中筒4および内筒5より成り、全体として多筒構造を備えている。そして円形状基板1aの上面には、燃焼供給手段6、点火手段7、および高圧空気の空気供給手段8などが接続固着され、内筒5の上方の円形状基板1aの内側に初期燃焼室9が形成される。なお空気供給手段8は、円形状基板1aの上面に設けた多数の供給管10より円形状基板1aに穿った多数の流通孔11の側壁より中心軸l−lに対し偏倚しかつ下向きに傾斜した傾斜孔12より空気を供給するのが好ましい。したがって初期燃焼室9は燃料と共に旋回した温度の低い燃焼状態を呈して形成される。
【0016】
また、燃焼筒体1の外形を構成する外筒3は、その基部を円形状基板1aに固着し、他端を吐出口13を穿った先端部15と接続され、また中筒4も円形状基板1aにその基部を固着し、この中筒4と、前記外筒3との間に、円形状基板1aに穿ってある前記流通孔11が臨まれるようにし、かつ前記空気供給手段8の供給管10に続く流通孔11と通ずる流通路16を形成すると共に中筒4の先端は非固着の開放状態に保持してあり、供給される空気が内筒5側に折返して最大に加熱される内筒5を冷却し乍ら供給できるような先端部15との間に切欠部17を形成している。
【0017】
ところで、内筒5は、その先端のみを燃焼筒体1の先端部15に固着し、外周にコイル部材を捲回させ乍ら中筒4との間で、流通路16を旋回させて、延長して形成し乍ら上方に配設され、円形状基板1aに近い流通路16の最内部位置に、中心軸l−lに対して前向きに傾斜した多数の傾斜孔18をノズル状の吐出口として穿ってある。そしてこの傾斜孔18より吐出される熱交換された加熱空気は、旋回渦巻状を呈して高圧助燃空気として働き、初期燃焼室9から移送されてくる燃焼流体を吸引作用で導き、燃焼流体内に混入し、渦巻高温燃焼部19を形成し、高温高圧局在燃焼ガスを創出し、外筒3、中筒4および内筒5とによる全体として狭窄状の衝撃波変換部20より狭小な吐出口13を経て高温高圧燃焼ガスないし所謂、超音波ジェット流体の衝撃波を得ることができるものである。
【0018】
しかも内筒5の基端部5aは、中筒4内に位置して、外筒3およびこの中筒4を固着した円形状基板1aの最内位置の内周壁21に沿って摺動自在に配設し、この基端部5aを包囲する円筒カバー22をこのカバー22に設けた鍔部23によって前記内周壁21の上部の取付部に一体的に固着するもので、これにより内筒5の基端部5aは円筒カバー22により内周壁21との間の比較的小さな間隙(内筒5の肉厚より僅かに大きな間隙)g内で伸縮可動することとなる。
【0019】
さらに、内筒5の基端部5aの下部には傾斜した多数の通孔24を穿つと共に、円形状基板1aの内周壁21に貫通して、前記通孔24と一致して導通できるように傾斜した多数の通孔25が穿たれ、またこの通孔25は、流通孔11と常時通じており、内筒5が熱膨脹して伸長した際、前記通孔24と一致して連通できるように形成してある。
【0020】
叙上の構成に基づいて、燃焼作用が開始されると初期燃焼室9で得られた燃焼ガスは、内筒5の基部より前方に進み、内筒5の傾斜孔18より吐出される流通路16で熱交換された加熱空気の働きを受けて渦巻高温燃焼部19で高温高圧ガスとなり衝撃波変換部20を経て吐出口13より高温高圧燃焼ガスないし所謂、超音波ジェット流体の衝撃波を得ることができる。
【0021】
ところで、発生される高温高圧流体は、内筒5に直接作用し、内筒5に対してきわめて強大な熱作用を与えるため、内筒5は十分加熱され、したがって熱膨脹の働きを受けて基端部5a側に向けて伸張することとなる。
【0022】
この伸長によって図2(a)の状態より図2(b)の状態に変わり、さらに図2(c)の状態に達すると高圧空気の一部は、流通孔11より通孔25と一致した通孔24を経て、冷却空気となって円筒カバー22内の間隙g内に供給され、内筒5の基部を冷却すると共に内筒5内に導入され、高温高圧状態の内筒5内のガスを急速に冷やし、膨脹していた内筒5は収縮し始め、次第に図2(b)の状態より図2(a)の状態に移行し、現状に近い状態に復元できる。
【0023】
したがって、内筒5の上下両端を固着した場合に生ずる内筒5の膨脹による変形、歪みの発生が防止でき安全な、しかも安定した燃焼ガスバーナーとして使用できる。
【0024】
ことに、内筒5を構成する耐熱耐圧性の強い金属であってもその金属本来の塑性限界を越えるような高温高圧ガスが生成されるような場合でも、その塑性限界に達するまでに内筒5の基端部5aは、自由端となっており、固着、固定されていないので、基端部5aは膨脹伸長し、通孔24が通孔25と一致するや否や直ちに高圧空気が冷却媒体となって内筒5内に供給され、この空気も円筒カバー22で形成される間隙g内を通って内筒5の内周個処から内筒5内部に導入されることとなるので緩やかな冷却作用を呈し、危険な高温高圧状態を未然に防止できる。
【0025】
ここで具体的な内筒5として1300℃に耐え得る耐熱ステンレス鋼を採用し、膨張率の実測で100mmの長さに対して1000℃に加熱したところ、1mmの延びがあるものを用いた場合、この伸び率に合わせて内筒5の基端部5aに穿った通孔24と固定側の通孔25との間隙を計算して両通孔24と25を穿設すれば良く、しかも両通孔24と25は、その一致する過程が漸次開口状態を変化して行われるので、冷却空気の供給量も漸次増大し、緩やかに燃焼路2内に供給されるので急激な温度降下を伴わないと共に図示していない燃焼路2内の温度管理、温度制御をしているセンサー信号により、図示しない燃料調整機器や高圧空気供給器の圧力調整機構を作動させて定常状態への制御を行わせることができるのでより安定したジェットバーナーとして使用できる。
【0026】
なお、この実施例では円筒カバーを設けてあるが、この円筒カバーはなくても実施できる。
【0027】
【発明の効果】
この発明によれば、多筒構造の高温高圧ガス流体を発生する超音速ジェットバーナーは勿論のこと、各種高温高圧ガス流体を用いる燃焼装置に広く利用でき、ことに燃焼部を構成する内筒自体の金属組成物の塑性変化限度以内で働かせることができ、熱膨脹により歪、変形の発生を防いでいるので、耐久性が向上し、長期の使用を可能とできる効果を有する。
【図面の簡単な説明】
【図1】 この発明に係る一実施例の一部切欠断面図
【図2】(a),(b),(c) 図1に示す内筒の基端部の熱膨脹変化を示す部分拡大図で、(a)は熱膨脹前の状態、(b)は熱膨脹過程の状態、(c)は2つの通孔が一致した状態をそれぞれ示す。なお両通孔の距離は、説明上長く示してある。
【符号の説明】
1 燃焼筒体
2 燃焼路
3 外筒
4 中筒
5 内筒
8 空気供給手段
9 初期燃焼室
10 供給管
11 流通孔
12 傾斜孔
13 吐出口
16 流通路
18 傾斜孔
19 渦巻高温燃焼部
20 衝撃波変換部
22 円筒カバー
23 鍔部
24,25 通孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for preventing deformation due to thermal expansion of an inner cylinder used in various high-temperature and high-pressure combustion apparatuses including a supersonic jet burner.
[0002]
[Prior art]
For example, a supersonic jet burner capable of generating a shock wave is known as a high-temperature and high-pressure heating device.
[0003]
A supersonic jet burner equivalent to such a shock wave generating burner burns high-pressure air with a flame of burner combustion (1300 ° C.) or higher, and injects this gas expansion volume from a small hole (discharge port), with a speed of around 1,000 m / s. The gas is sprayed at a high speed, that is, a speed exceeding the shock wave (340 m / sec), and this energy is used for destruction, crushing, drying, etc. for molecular conversion (by high-speed molecular collision), etc. Waste, raw garbage, seafood, general sewage, waste disposal, and pre-incineration treatment can be performed.
[0004]
In other words, in order to generate this shock wave, the combustion state in the burner body becomes high temperature and high pressure, the heat effect acting on the inner wall of the burner body is very large, and metal materials excellent in high temperature characteristics of the heat and pressure resistant structure, such as molybdenum steel, zirconium steel, etc. Very expensive materials must be used.
[0005]
It is also known that the inner cylinder that creates a high-temperature and high-pressure combustion state has a multi-cylinder structure with a middle cylinder and an outer cylinder provided with a cooling mechanism, and each metal material is different. is there.
[0006]
[Patent Document 1]
JP 2000-39126 A [Patent Document 2]
Japanese Patent Laid-Open No. 2000-74317
[Problems to be solved by the invention]
By the way, in a high-temperature and high-pressure combustion apparatus having a multi-cylinder structure with an inner cylinder, even if a refractory metal having an excellent pressure resistance and heat-resistant effect of the inner cylinder itself is used, the refractory metal is close to the limit due to the budget. May have to be used. In such a case, the inner cylinder using a refractory metal is deformed or distorted when the plastic deformation, ie, expansion due to heating or shrinkage recovery when cooled, exceeds the limit of the metal equilibrium line. However, there is a problem that it becomes impossible to restore, and a crack or a hole is opened in the inner cylinder, which becomes dangerous and becomes unusable at the same time.
[0008]
The present invention has been made paying attention to the above points. When the inner cylinder itself is arranged so as to be able to be expanded by thermal expansion, and when it extends beyond a certain level within the plastic deformation limit, cooling air is automatically supplied. Inner cylinder in a multi-cylinder high-temperature and high-pressure combustion device that cools and reduces abnormal heating effects on the inner cylinder so that high-temperature and high-pressure combustion gas can be generated while maintaining a safe and stable heat generation situation at all times An object of the present invention is to provide an apparatus for preventing distortion due to thermal expansion.
[0009]
[Means for Solving the Problems]
This invention can solve the above-mentioned problems by having the following configuration.
[0010]
(1) A multi-cylinder structure in which an intermediate cylinder and an inner cylinder are formed along an outer cylinder, a high-pressure air flow passage is formed between these cylinders, and high-pressure air flowing through the flow passage is supplied into the inner cylinder. A high temperature and high pressure combustion cylinder that discharges a high temperature and high pressure combustion gas or a supersonic shock wave by opening a discharge port at the tip of the inner cylinder, and a fuel supply means, an ignition means, An air supply means is provided to form an initial combustion chamber at the innermost part of the combustion cylinder and above the base of the inner cylinder. Combustion from the air supply means is performed on the upper side wall of the inner cylinder in front of the initial combustion chamber. A high temperature of a multi-cylinder structure in which an inclined hole communicating with the flow passage connected to the flow hole of the base portion of the cylindrical body is opened so that a spiral high temperature combustion part or a constricted shock wave conversion part following the initial combustion chamber can be formed. Used for high-pressure combustion devices, the tip of the inner cylinder is connected to the combustion cylinder Adhering to the end, the base end of the inner cylinder is slidably supported along the inner wall of the innermost mounting part of the combustion cylinder, and the plastic change limit of the metal composition constituting the inner cylinder is exceeded. The expansion hole can be expanded and extended within the allowable temperature range, and the through hole communicating with the high-pressure air flow hole when extending within the allowable range and the through hole provided in the inner cylinder can be made to coincide with each other when the inner cylinder is expanded and extended. In addition, it is characterized in that air for cooling is introduced into the inner cylinder to prevent the occurrence of abnormal high temperature and pressure in the inner cylinder and to prevent distortion deformation due to elongation due to thermal expansion of the inner cylinder. An apparatus for preventing distortion due to thermal expansion of an inner cylinder used in a high-temperature and high-pressure combustion apparatus having a multi-cylinder structure.
[0011]
(2) In the place where the base end portion of the inner cylinder extends due to thermal expansion, a cylindrical cover surrounding the base end portion of the inner cylinder is disposed, and the cylinder cover is provided on the mounting portion of the combustion cylinder. The through hole is formed in the base end of the inner cylinder, and the through hole communicating with the high-pressure air flow hole provided in the mounting portion coincides with the through hole of the inner cylinder extended by thermal expansion. When this occurs, high pressure air is discharged into the gap formed by the cylindrical cover through this through hole, and introduced into the inner cylinder to cool the inner cylinder so that the extended inner cylinder can be contracted. An apparatus for preventing strain deformation due to thermal expansion of an inner cylinder used in the high-temperature and high-pressure combustion apparatus having a multi-cylinder structure according to the above (1).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0013]
This embodiment shows a case where the present invention is applied to the inner cylinder of a supersonic jet burner having a multi-cylinder structure shown in the embodiment disclosed in Japanese Patent Application No. 2002-157437 filed earlier by the present applicant.
[0014]
First, FIG. 1 shows an outline of the configuration.
[0015]
Reference numeral 1 denotes a high-temperature and high-pressure combustion cylinder that is entirely cylindrical and has a combustion path 2 along a central axis l-l. The combustion cylinder 1 corresponds to a base portion of a flange structure, that is, a circular substrate 1a. It consists of a mounting portion, followed by an outer cylinder 3, an intermediate cylinder 4 and an inner cylinder 5, and has a multi-cylinder structure as a whole. Combustion supply means 6, ignition means 7, high-pressure air supply means 8 and the like are connected and fixed to the upper surface of the circular substrate 1a, and the initial combustion chamber 9 is placed inside the circular substrate 1a above the inner cylinder 5. Is formed. The air supply means 8 is inclined with respect to the central axis l-l and inclined downward from the side walls of a large number of flow holes 11 formed in the circular substrate 1a from a large number of supply pipes 10 provided on the upper surface of the circular substrate 1a. It is preferable to supply air from the inclined holes 12. Therefore, the initial combustion chamber 9 is formed in a low temperature combustion state swirled with the fuel.
[0016]
Further, the outer cylinder 3 constituting the outer shape of the combustion cylinder 1 has its base fixed to the circular substrate 1a and the other end connected to a tip 15 having a discharge port 13 formed therein, and the middle cylinder 4 also has a circular shape. The base portion is fixed to the substrate 1 a, the flow hole 11 formed in the circular substrate 1 a is faced between the middle cylinder 4 and the outer cylinder 3, and the air supply means 8 is supplied. A flow passage 16 communicating with the flow hole 11 following the pipe 10 is formed and the tip of the middle cylinder 4 is held in a non-fixed open state, and the supplied air is folded back to the inner cylinder 5 side and heated to the maximum. A notch portion 17 is formed between the tip portion 15 and the inner cylinder 5 so that the inner tube 5 can be cooled and supplied.
[0017]
By the way, the inner cylinder 5 is fixed to the front end portion 15 of the combustion cylinder 1 only at its front end, and the coil member is wound around the outer periphery, while the flow path 16 is swung between the inner cylinder 5 and extended. In the innermost position of the flow passage 16 close to the circular substrate 1a, a large number of inclined holes 18 inclined forward with respect to the central axis l-l are formed as nozzle-like discharge ports. It is worn as. Then, the heat-exchanged heated air discharged from the inclined hole 18 has a swirling spiral shape and acts as high-pressure auxiliary combustion air, and the combustion fluid transferred from the initial combustion chamber 9 is guided by suction to enter the combustion fluid. It mixes to form a swirling high-temperature combustion part 19, creates a high-temperature and high-pressure localized combustion gas, and has a discharge port 13 that is narrower than the shock wave conversion part 20 that is narrowed as a whole by the outer cylinder 3, the middle cylinder 4, and the inner cylinder 5. It is possible to obtain a high-temperature and high-pressure combustion gas or a so-called ultrasonic jet fluid shock wave through the above.
[0018]
Moreover, the base end portion 5a of the inner cylinder 5 is located in the middle cylinder 4 and is slidable along the inner cylinder 21 at the innermost position of the outer cylinder 3 and the circular substrate 1a to which the middle cylinder 4 is fixed. The cylindrical cover 22 that is disposed and surrounds the base end portion 5a is integrally fixed to the mounting portion on the upper portion of the inner peripheral wall 21 by the flange portion 23 provided on the cover 22, whereby the inner cylinder 5 The base end portion 5a can be expanded and contracted by a cylindrical cover 22 within a relatively small gap (gap slightly larger than the thickness of the inner cylinder 5) g with the inner peripheral wall 21.
[0019]
Further, a large number of inclined through holes 24 are formed in the lower portion of the base end portion 5a of the inner cylinder 5 so as to penetrate through the inner peripheral wall 21 of the circular substrate 1a so as to be conductive with the through holes 24. A large number of inclined through holes 25 are formed, and the through holes 25 are always in communication with the flow hole 11 so that the inner cylinder 5 can communicate with the through holes 24 when the inner cylinder 5 expands due to thermal expansion. It is formed.
[0020]
Based on the above configuration, when the combustion action is started, the combustion gas obtained in the initial combustion chamber 9 advances forward from the base portion of the inner cylinder 5 and is discharged from the inclined hole 18 of the inner cylinder 5. In response to the action of the heated air heat-exchanged at 16, high-temperature and high-pressure gas is produced at the spiral high-temperature combustion unit 19, and high-temperature and high-pressure combustion gas or so-called ultrasonic jet fluid shock waves are obtained from the discharge port 13 through the shock wave conversion unit 20. it can.
[0021]
By the way, the generated high-temperature and high-pressure fluid directly acts on the inner cylinder 5 and gives a very strong thermal action to the inner cylinder 5, so that the inner cylinder 5 is sufficiently heated, and thus receives the action of thermal expansion and is thus subjected to the base end. It will extend toward the portion 5a.
[0022]
Due to this extension, the state of FIG. 2 (a) changes to the state of FIG. 2 (b), and when the state of FIG. 2 (c) is reached, part of the high-pressure air passes through the through hole 11 and matches the through hole 25. Through the hole 24, cooling air is supplied into the gap g in the cylindrical cover 22, cools the base of the inner cylinder 5 and is introduced into the inner cylinder 5, and the gas in the inner cylinder 5 in a high-temperature and high-pressure state is discharged. The inner cylinder 5 that has been rapidly cooled and expanded begins to contract, gradually shifts from the state of FIG. 2B to the state of FIG. 2A, and can be restored to a state close to the current state.
[0023]
Therefore, deformation and distortion due to expansion of the inner cylinder 5 that occurs when the upper and lower ends of the inner cylinder 5 are fixed can be prevented, and it can be used as a safe and stable combustion gas burner.
[0024]
In particular, even in the case where a metal having a high heat and pressure resistance that constitutes the inner cylinder 5 is generated at a high temperature and high pressure that exceeds the original plastic limit of the metal, the inner cylinder is required to reach the plastic limit. 5 is a free end, and is not fixed or fixed. Therefore, the base end portion 5a expands and expands, and as soon as the through hole 24 coincides with the through hole 25, the high-pressure air is immediately cooled. Since this air is also introduced into the inner cylinder 5 from the inner peripheral portion of the inner cylinder 5 through the gap g formed by the cylindrical cover 22, the air is loosened. It exhibits a cooling action and can prevent dangerous high-temperature and high-pressure conditions.
[0025]
When heat-resistant stainless steel that can withstand 1300 ° C. is adopted as the specific inner cylinder 5 and heated to 1000 ° C. with respect to a length of 100 mm measured by an expansion coefficient, a case with an extension of 1 mm is used. According to this elongation rate, it is only necessary to calculate the gap between the through hole 24 formed in the base end portion 5a of the inner cylinder 5 and the through hole 25 on the fixed side, and to form both the through holes 24 and 25. Since the matching process of the through holes 24 and 25 is performed by gradually changing the opening state, the supply amount of the cooling air gradually increases and is gradually supplied into the combustion path 2, which causes a sudden temperature drop. In addition, a sensor signal for temperature management and temperature control in the combustion path 2 not shown is operated, and a pressure adjustment mechanism of a fuel adjustment device and a high-pressure air supply device (not shown) is operated to control to a steady state. Can be more stable It can be used as a Ttobana.
[0026]
In this embodiment, a cylindrical cover is provided, but the present invention can be implemented without this cylindrical cover.
[0027]
【The invention's effect】
According to the present invention, not only a supersonic jet burner that generates a high-temperature and high-pressure gas fluid having a multi-cylinder structure but also a combustion apparatus that uses various high-temperature and high-pressure gas fluids can be widely used. The metal composition can be operated within the plastic change limit of the metal composition, and since distortion and deformation are prevented from occurring due to thermal expansion, the durability is improved and the long-term use can be achieved.
[Brief description of the drawings]
1 is a partially cutaway sectional view of an embodiment according to the present invention. FIG. 2 (a), (b), (c) is a partially enlarged view showing a change in thermal expansion of a proximal end portion of an inner cylinder shown in FIG. (A) shows a state before thermal expansion, (b) shows a state in the process of thermal expansion, and (c) shows a state in which the two through holes coincide. In addition, the distance of both through-holes is shown long for description.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Combustion cylinder 2 Combustion path 3 Outer cylinder 4 Middle cylinder 5 Inner cylinder 8 Air supply means 9 Initial combustion chamber 10 Supply pipe 11 Flow hole 12 Inclination hole 13 Discharge port 16 Flow path 18 Inclination hole 19 Swirl high temperature combustion part 20 Shock wave conversion Part 22 cylindrical cover 23 collar part 24,25 through hole

Claims (2)

外筒に沿って中筒及び内筒を形成し、これら各筒間に高圧空気の流通路を形成し、この流通路を流通する高圧空気を内筒内に供給する多筒構造を備えると共に前記内筒の先端に吐出口を開口して高温高圧燃焼ガスないし超音速の衝撃波を吐出する高温高圧用の燃焼筒体を備え、この燃焼筒体の基部に燃料供給手段、点火手段、空気供給手段などを設けて、燃焼筒体の最内部でかつ内筒の基部上方に初期燃焼室を形成し、この初期燃焼室の前方で内筒の上部の側壁に、前記空気供給手段より燃焼筒体の基部の流通孔と接続される前記流通路に通ずる傾斜孔を開口して前記初期燃焼室に続く渦巻高温燃焼部ないし狭窄状の衝撃波変換部を形成できるようにした多筒構造の高温高圧燃焼装置に用いるものであって、内筒の先端部を燃焼筒体の先端部に固着し、内筒の基端部を燃焼筒体の最内位置の取付部の内壁に沿って摺動自在に支持させ、かつ内筒を構成する金属組成物の塑性変化限度を越えない温度以内で、膨脹伸長可能とし、許容された範囲内の伸長時に高圧空気の流通孔と通ずる通孔と、内筒に設けた通孔とを内筒の膨張伸長時に一致させて導通可能とし、内筒内に冷却のための空気を導入して内筒内の異常な高温高圧の発生を防ぐと共に内筒の熱膨張に基づく伸長に起因する歪変形を防止できるようにしたことを特徴とする多筒構造の高温高圧燃焼装置に用いる内筒の熱膨脹による歪変形防止装置。A middle cylinder and an inner cylinder are formed along the outer cylinder, a flow path for high-pressure air is formed between these cylinders, and a multi-cylinder structure for supplying high-pressure air flowing through the flow path into the inner cylinder is provided. A combustion cylinder for high-temperature and high-pressure that discharges a high-temperature and high-pressure combustion gas or a supersonic shock wave by opening a discharge port at the tip of the inner cylinder, and a fuel supply means, an ignition means, and an air supply means at the base of the combustion cylinder And an initial combustion chamber is formed at the innermost part of the combustion cylinder and above the base of the inner cylinder, and the combustion chamber is connected to the upper side wall of the inner cylinder in front of the initial combustion chamber by the air supply means. A high temperature and high pressure combustion apparatus having a multi-cylinder structure capable of forming a spiral high temperature combustion part or a constricted shock wave conversion part following the initial combustion chamber by opening an inclined hole connected to the flow passage connected to the flow hole of the base part The tip of the inner cylinder is used as the tip of the combustion cylinder. The temperature is fixed, the base end of the inner cylinder is slidably supported along the inner wall of the innermost mounting part of the combustion cylinder, and the plastic composition limit of the metal composition constituting the inner cylinder is not exceeded. In the expansion and extension of the inner cylinder, the through hole communicating with the high-pressure air flow hole and the through hole provided in the inner cylinder can be made to coincide with each other when the inner cylinder is expanded and extended. A multi-cylinder characterized in that air for cooling is introduced into the inner cylinder to prevent the occurrence of abnormal high temperature and pressure in the inner cylinder and to prevent distortion deformation due to expansion due to thermal expansion of the inner cylinder. An apparatus for preventing deformation due to thermal expansion of an inner cylinder used in a high-temperature and high-pressure combustion apparatus having a structure. 内筒の基端部が熱膨張により伸長する個処には、内筒の基端部を包囲する円筒カバーを配し、燃焼筒体の取付部に、前記円筒カバーに設けた鍔部を介して固着すると共に、内筒の基端部には通孔を穿ち、取付部に設けた高圧空気の流通孔と通ずる通孔と、熱膨脹で伸長した内筒の前記通孔とが一致した際、この通孔を介して高圧空気が円筒カバーで形成される間隙内に吐出され、かつ内筒内に導入されて内筒を冷却して伸長した内筒を収縮させることができるようにして成ることを特徴とする請求項1記載の多筒構造の高温高圧燃焼装置に用いる内筒の熱膨脹による歪変形防止装置。In the place where the base end portion of the inner cylinder extends due to thermal expansion, a cylindrical cover that surrounds the base end portion of the inner cylinder is disposed, and the mounting portion of the combustion cylinder is provided with a flange provided on the cylindrical cover. When the through hole is drilled in the base end portion of the inner cylinder and the through hole communicating with the high-pressure air circulation hole provided in the mounting portion coincides with the through hole of the inner cylinder extended by thermal expansion, High-pressure air is discharged into the gap formed by the cylindrical cover through this through hole, and is introduced into the inner cylinder so that the inner cylinder can be contracted by cooling the inner cylinder. The distortion prevention apparatus by the thermal expansion of the inner cylinder used for the high temperature / high pressure combustion apparatus of the multi-cylinder structure of Claim 1 characterized by these.
JP2002380446A 2002-12-27 2002-12-27 Strain deformation prevention device due to thermal expansion of inner cylinder used in high temperature and high pressure combustion apparatus of multi-cylinder structure. Expired - Fee Related JP3874721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380446A JP3874721B2 (en) 2002-12-27 2002-12-27 Strain deformation prevention device due to thermal expansion of inner cylinder used in high temperature and high pressure combustion apparatus of multi-cylinder structure.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380446A JP3874721B2 (en) 2002-12-27 2002-12-27 Strain deformation prevention device due to thermal expansion of inner cylinder used in high temperature and high pressure combustion apparatus of multi-cylinder structure.

Publications (2)

Publication Number Publication Date
JP2004211941A JP2004211941A (en) 2004-07-29
JP3874721B2 true JP3874721B2 (en) 2007-01-31

Family

ID=32816674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380446A Expired - Fee Related JP3874721B2 (en) 2002-12-27 2002-12-27 Strain deformation prevention device due to thermal expansion of inner cylinder used in high temperature and high pressure combustion apparatus of multi-cylinder structure.

Country Status (1)

Country Link
JP (1) JP3874721B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8522554B2 (en) * 2010-01-05 2013-09-03 General Electric Company Fuel nozzle for a turbine engine with a passive purge air passageway
CN102954468B (en) * 2012-11-27 2015-04-08 薛垂义 Burner for bright hood-type annealing furnace
JP6255643B2 (en) * 2015-03-27 2018-01-10 大陽日酸株式会社 Powder melting burner
WO2018107334A1 (en) * 2016-12-12 2018-06-21 深圳智慧能源技术有限公司 Ground torch for supplying combustion air by using air source energy
WO2018107335A1 (en) * 2016-12-12 2018-06-21 深圳智慧能源技术有限公司 Torch for supplying cooling air by using air source energy
CN114777575A (en) * 2022-03-18 2022-07-22 孙文宜 Universal cylindrical charging energy-gathering armor-breaking bomb for artillery

Also Published As

Publication number Publication date
JP2004211941A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
US5024058A (en) Hot gas generator
JP4540792B2 (en) Venturi tube for swirl cup package of gas turbine combustor with internal water injection
US5749720A (en) Gas heating apparatus with dual burners
JP3874721B2 (en) Strain deformation prevention device due to thermal expansion of inner cylinder used in high temperature and high pressure combustion apparatus of multi-cylinder structure.
US6204442B1 (en) Thermophotovoltaic generator
JP3634325B2 (en) Supersonic jet burner
JP4424553B2 (en) Jet burner
JP4365027B2 (en) Combustor and its operation method
JP2746496B2 (en) Method for promoting combustion in combustor and combustor
JP2003240211A (en) Combustion chamber forming group for heater for vehicle
JP3720833B1 (en) Inner cylinder device in multi-tube sonic jet burner
JP4847731B2 (en) Hot stove
JP4775398B2 (en) Radiant heating device
JP2014145486A (en) Cylindrical surface combustion burner and heater including the same
JP4056186B2 (en) Premix burner
EP2357408A1 (en) Combustor
JP2514782Y2 (en) Hot air generator
JP3988064B2 (en) Water heater
JP3426756B2 (en) Burner for end flue of coke oven
US4955202A (en) Hot gas generator
JP4132621B2 (en) Heating furnace burner and structure determination method thereof
KR200313201Y1 (en) exclusive use burner of brown gas
JP2010138900A (en) Cylinder head of self-ignition type engine
JP5967783B1 (en) Jet burner and grinding dryer
KR960018333A (en) High Temperature Heat Transfer Medium Submerged Combustor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040426

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees