JP3874495B2 - Power supply for arc welding - Google Patents

Power supply for arc welding Download PDF

Info

Publication number
JP3874495B2
JP3874495B2 JP20958297A JP20958297A JP3874495B2 JP 3874495 B2 JP3874495 B2 JP 3874495B2 JP 20958297 A JP20958297 A JP 20958297A JP 20958297 A JP20958297 A JP 20958297A JP 3874495 B2 JP3874495 B2 JP 3874495B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
output
welding
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20958297A
Other languages
Japanese (ja)
Other versions
JPH1119772A (en
Inventor
主治 長森
常夫 品田
常夫 三田
清吾 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp, Hitachi Via Mechanics Ltd filed Critical Yaskawa Electric Corp
Priority to JP20958297A priority Critical patent/JP3874495B2/en
Publication of JPH1119772A publication Critical patent/JPH1119772A/en
Application granted granted Critical
Publication of JP3874495B2 publication Critical patent/JP3874495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding Control (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Description

【発明の属する技術分野】
本発明は、ロボット等による自動溶接に好適なアーク溶接用電源に関するものである。
【従来の技術】
例えば消耗電極式のアーク溶接をする場合、良好な溶接部を得るためには、ワイヤに給電するためのチップ先端とワークとの距離を一定に保つ必要がある。しかし、ロボット等により自動溶接をする場合、ワークの固定位置にはばらつきがある。そこで、溶接開始前にチップ先端とワークとの距離を測定し、チップ先端をワークに対して予め定めた値に補正してから溶接をするようにしている。両者の位置を確認する方法としては、チップとワークとの間に所定の電圧を印加しておき、チップ先端から所定の長さ突き出させたワイヤを触針にして前記電圧が0あるいは所定の電圧以下になる位置を探すことにより両者の位置を求めている。以下、特開平2−179361号公報に開示された技術を図により説明する。図5はロボットにより溶接をする場合の外部接続図である。図で、1はアーク溶接用電源で、ダイオード2を介して直流電圧を外部出力端子3、4間に出力する。5はプラス側の出力ケーブルで、外部出力端子3とチップ6を接続している。7はワイヤ。8はロボットで、チップ6を保持している。9はマイナス側の出力ケーブルで、外部出力端子4とワーク10を接続している。11は開始点検出ユニットで、内部に直流の高電圧を発生する電源部12と、リレー13を内蔵している。リレー13のa接点は抵抗成分14の一方の端子に、b接点は電源部のプラス側端子に、共通端子cは出力ケーブル5にそれぞれ接続されている。そして、抵抗成分14の他方の端子と電源部12のマイナス側端子は、それぞれ出力ケーブル9に接続されている。なお、抵抗成分14は溶接中に溶接電圧のフィードバックを行うための溶接電圧検出回路に含まれるものであり、大きさは数キロオーム程度である。15は制御装置で、ロボット8を制御すると共に、インターフェイス16、17を介して溶接電源1および開始点検出ユニット11を制御する。
以下、動作を説明する。ワイヤ7の先端とワーク10との距離を測定するときには、リレー13のb接点と共通端子cとを接続する。そして、ワイヤ7とワーク10の間に直流高電圧を印加する。この場合、印加する電圧値が高いから、ワーク10の表面に電気抵抗が大きい錆等が存在していても、両者間の短絡を確実に判定できる。なお、抵抗成分14を溶接電源1の出力回路に接続した状態で検出電圧を印加すると、抵抗成分14が回り回路になってワイヤ7とワーク10間に印加される電圧値が降下してしまい、両者間の短絡判定が不確実になる。
【発明が解決しようとする課題】
通常、アーク溶接用電源1の無負荷電圧は100V以下であるため、耐圧が低いダイオード2も使用される。このため、高い検出電圧を常に印加できるとは限らず、耐圧が低いダイオード2を使用したアーク溶接用電源1の場合は、検出電圧の値を下げる必要があった。また、溶接をするための装置数が多く、設置面積を必要とした。また、それぞれの装置を接続する信号ケーブルや制御用電源ケーブルの数が多くなり、保守点検が面倒であった。
本発明の目的は、上記した課題を解決し、保守点検が容易で、設置面積を必要とせず、さらにワイヤとワークの短絡を確実に判定することができるアーク溶接用電源を提供するにある。
【課題を解決するための手段】
上記の目的を達成するため、請求項1の発明は、低電圧・大電流の出力を最終段に設けた半導体素子を介して外部出力端子に出力する溶接電圧出力回路を備えるアーク溶接用電源において、高電圧・小電流の出力を出力する検査電圧出力回路と、第1と第2のスイッチを備える切替回路と、短絡判定回路と、溶接電圧検出回路とを設け、前記半導体素子を前記検査電圧に耐えられるものとし、前記検査電圧出力回路の一方の出力端を第1のスイッチを介して前記外部出力端子の一方に、また他方の出力端を前記外部出力端子の他方にそれぞれ接続し、前記溶接電圧検出回路の一方の入力端を第2のスイッチを介して前記外部出力端子の一方に、また他方の入力端を前記外部出力端子の他方にそれぞれ接続し、前記短絡判定回路の一方の入力端を前記検査電圧出力回路の一方の出力端に、また他方の入力端を前記検査電圧出力回路の他方の出力端にそれぞれ接続し、前記切替回路により前記第1と第2のスイッチを排他制御すると共に、前記短絡判定回路の判定結果を外部に出力するように構成し、前記検査電圧出力回路、前記切替回路、前記短絡判定回路および前記溶接電圧検出回路を前記溶接電圧出力回路が収納される筐体に収納したことを特徴とする。
また、請求項2の発明は、請求項1の発明において、前記第1または第2のスイッチのいずれか一方を閉じる時、前記切替回路は前記外部出力端子間の電圧が0であることを確認する手段を設けたことを特徴とする。
さらに、請求項3の発明は、請求項1の発明において、前記外部出力端子間に検査電圧が出力されていることを表示する手段を設けたことを特徴とする。
また、請求項4の発明は、請求項1の発明において、前記短絡判定回路に、電極とワークが短絡した場合と等価の信号を出力させる手段を設けたことを特徴とする。
【発明の実施の形態】
以下、本発明を図示の実施の形態に基づいて説明する。◆
図1は本発明の一実施の形態に係るアーク溶接用電源を用いてロボットにより溶接をする場合の外部接続図であり、図5と同じものまたは同一機能のものは同一符号を付して説明を省略する。21は入力側ダイオードで、三相交流電源22の交流電圧を整流する。23はスイッチング回路で、通常IGBTやFET等の大電流スイッチング素子で構成され、入力側ダイオードで整流された電流を約20kHzの交流電流に変換しする。24はスイッチング制御回路でスイッチング回路23を構成する大電流スイッチング素子のON/OFFのタイミング制御を行う。25は高周波トランスである。そして、ダイオード2は直流300Vに十分耐えられるものが使用されている。26はリアクタである。27は溶接電圧検出回路で、電圧表示器27a、コンデンサ27b、抵抗27c、バリスタ27dで構成されている。そして、溶接電圧検出回路27のプラス側はスイッチ28の一方の端子に、マイナス側は外部出力端子4に接続されている。スイッチ28の他方の端子は外部出力端子3に接続されている。
30は絶縁トランスで、二次側巻線30aは整流用ダイオード31と共に検査電圧出力回路32を構成し、波高値約300V(以下、電圧Vaという。)の直流電圧を出力する。33は抵抗で、二次側巻線30aを流れる電流を数十mA以下に制限する。そして、検査電圧出力回路32のプラス側は抵抗33を介してスイッチ29の一方の端子に、マイナス側は外部出力端子4に接続されている。スイッチ29の他方の端子は外部出力端子3に接続されている。また、二次側巻線30bは整流用ダイオード34および電圧安定化回路35とで検出回路用電源を構成し、15Vの直流電圧を出力する。
40は短絡判定回路である。41,42は抵抗で、電圧Vaを分圧する。43はツェナーダイオード、44はコンデンサ44である。ここで、ツェナーダイオード43の両端の電圧はVbである。45は基準電圧発生回路で、基準電圧Vcを電圧比較器46に入力する。電圧比較器46はVc≧Vbのとき短絡信号Sを出力する。47はスイッチで、端子はツェナーダイオード43の両端に接続されている。
50は切替回路で、制御装置15からの指令により、スイッチ28、29、47を切り換える。また、51はランプで、スイッチ29が閉じると点灯するように構成されている。そして、上記検査電圧出力回路32、切替回路50、短絡判定回路40および溶接電圧検出回路27は溶接電圧出力回路を収納するアーク溶接用電源1の筐体に収納されている。
次に、本実施の形態の動作を図2により説明する。図2は本実施の形態の動作を示すフローチャートである。なお、チップ6は移動原点にあり、チップ6の先端からワイヤ7を所定の長さ突き出させてあり、スイッチング制御回路24はオフされている。
先ず、外部出力端子3と外部出力端子4の間の端子間電圧が0であることを確認し(手順S10)、0でない場合は、0になるのを待つ。端子間電圧が0になったら、スイッチ28を開く(手順S20)。次に、スイッチ29を閉じると(手順S30)、外部出力端子3と外部出力端子4の間に電圧Vaが印加されると共に、ランプ51が点灯する。そして、短絡信号Sが出力されるまで、チップ6を現在位置を確認しながら所定の方向に移動させ(手順S40)、短絡信号Sが出力されたら(手順S50)、移動を停止して(手順S60)移動原点からの距離を求め、予めプログラムされた位置と実際の位置との誤差を計算する。そして、位置測定作業が総て完了したかどうかを確認し(手順S70)、終了していない場合は手順S40の処理に戻り、位置測定作業が終了の場合はスイッチ29を開いてから(手順S80)、スイッチ28を閉じる(手順S90)。
次に、図3により、短絡判定回路40の動作をさらに詳細に説明する。図3は電圧Va、Vb、Vcのタイミングチャートである。ワイヤ7の先端がワーク10に接触すると(図中の時間Ta)、電圧Vaは直ちに約0に下がる。この結果、電圧Vbは抵抗41、42およびコンデンサ43からなるCR回路で決まる時定数によって低下する。そして、Vc≧Vbになると(図中の時間Tb)、電圧比較器46は短絡信号S(論理値1の信号)を出力する。なお、接触していたワイヤ7がワーク10から離れると(図中の時間Tc)、ワイヤ7とワーク10との間には再び電圧Vaが印加される。また、電圧Vbは上記CR回路で決まる時定数によって上昇し、Vb>Vcになると(図中の時間Td)、短絡信号S(論理値1の信号)は停止する(論理値0の信号になる)。なお、時間Taと時間Tbおよび時間Tcと時間Tdとの間には20msec程度のずれが発生するが、実用上問題になることはない。また、手順S20において、スイッチ28を開く前に外部出力端子3と外部出力端子4の間の端子間電圧が0であることを確認するのは、溶接終了信号が出された後であっても、リアクタ26にエネルギが残っている場合があるからである。なお、溶接終了信号が出されてから所定時間(2秒以上)後にスイッチ28を開く場合には、外部出力端子3と外部出力端子4の間の端子間電圧の確認を省略することができる。
次に、スイッチ47の動作を図4により説明する。スイッチ29を開いた状態でスイッチ47を閉じると、電圧Vbは直ちに0になり、短絡信号Sが出力される。そして、再びスイッチ47を開くと、短絡信号Sは直ちに停止する。このように、電圧Vaを印加せず、また、ワイヤ7とワーク10とを接触させなくても短絡状態を作ることができるから、例えば、制御装置15と溶接用電源1間の信号ケーブルの接続状態等を容易に確認することができる。
なお、スイッチ47の開閉は手動にしても良い。また、ランプ51の代わりにブザーを用いても良い。さらに、スイッチ28とスイッチ29を別のスイッチで構成したが、接点間の耐圧が高く、信号同士が短絡しなければ、NC接点回路とNO接点回路を備える1つの制御リレー接点回路に代えてもよい。
また、本発明は、消耗電極式のアーク溶接に限られるものではなく、TIG溶接等の非消耗電極式のアーク溶接にも使用することができる。
【発明の効果】
以上説明したように、本発明では、低電圧・大電流の出力を最終段に設けた半導体素子を介して外部出力端子に出力する溶接電圧出力回路を備えるアーク溶接用電源において、高電圧・小電流の出力を出力する検査電圧出力回路と、第1と第2のスイッチを備える切替回路と、短絡判定回路と、溶接電圧検出回路とを設け、前記半導体素子を前記検査電圧に耐えられるものとし、前記検査電圧出力回路の一方の出力端を第1のスイッチを介して前記外部出力端子の一方に、また他方の出力端を前記外部出力端子の他方にそれぞれ接続し、前記溶接電圧検出回路の一方の入力端を第2のスイッチを介して前記外部出力端子の一方に、また他方の入力端を前記外部出力端子の他方にそれぞれ接続し、前記短絡判定回路の一方の入力端を前記検査電圧出力回路の一方の出力端に、また他方の入力端を前記検査電圧出力回路の他方の出力端にそれぞれ接続し、前記切替回路により前記第1と第2のスイッチを排他制御すると共に、前記短絡判定回路の判定結果を外部に出力するように構成し、前記検査電圧出力回路、前記切替回路、前記短絡判定回路および前記溶接電圧検出回路を前記溶接電圧出力回路が収納される筐体に収納したから、従来アーク溶接用電源と開始点ユニットおよびインターフェイス等を接続していた信号ケーブルや制御ケーブルの接続作業が不要になり、保守点検が容易になると共に設置面積を小さくでき、しかもワイヤとワークの短絡を確実に判定することができる。また、高電圧を出力している時には、ランプで表示するから、誤操作、感電等のトラブルを未然に防ぐことができる。さらに、スイッチを操作させるだけで擬似的に短絡検出を行えるため、保守点検が容易である。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係るアーク溶接用電源を用いてロボットにより溶接をする場合の外部接続図である。
【図2】本実施の形態の動作を示すフローチャートである。
【図3】電圧Va、Vb、Vcのタイミングチャートである。
【図4】スイッチ47の動作を説明する図である。
【図5】従来の、アーク溶接用電源を用いてロボットにより溶接をする場合の外部接続図である。
【符号の説明】
1 アーク溶接用電源
2 ダイオード
3,4 外部出力端子
27 溶接電圧検出回路
28,29 スイッチ
32 検査電圧出力回路
40 短絡判定回路
50 切替回路
BACKGROUND OF THE INVENTION
The present invention relates to an arc welding power source suitable for automatic welding by a robot or the like.
[Prior art]
For example, when consumable electrode type arc welding is performed, in order to obtain a good weld, it is necessary to keep the distance between the tip of the tip for supplying power to the wire and the workpiece constant. However, when automatic welding is performed by a robot or the like, the fixed position of the workpiece varies. Therefore, the distance between the tip end and the workpiece is measured before welding is started, and the tip end is corrected to a predetermined value with respect to the workpiece before welding. As a method for confirming both positions, a predetermined voltage is applied between the tip and the workpiece, and the voltage is set to 0 or a predetermined voltage using a wire protruding a predetermined length from the tip of the tip as a stylus. Both positions are obtained by searching for the following positions. Hereinafter, the technique disclosed in Japanese Patent Laid-Open No. 2-179361 will be described with reference to the drawings. FIG. 5 is an external connection diagram in the case of welding by a robot. In the figure, reference numeral 1 denotes a power source for arc welding, which outputs a DC voltage between external output terminals 3 and 4 via a diode 2. A positive output cable 5 connects the external output terminal 3 and the chip 6. 7 is a wire. A robot 8 holds the chip 6. A negative output cable 9 connects the external output terminal 4 and the workpiece 10. Reference numeral 11 denotes a start point detection unit, which includes a power supply unit 12 that generates a high DC voltage and a relay 13 therein. The contact a of the relay 13 is connected to one terminal of the resistance component 14, the contact b is connected to the plus terminal of the power supply unit, and the common terminal c is connected to the output cable 5. The other terminal of the resistance component 14 and the negative terminal of the power supply unit 12 are each connected to the output cable 9. The resistance component 14 is included in a welding voltage detection circuit for performing feedback of the welding voltage during welding, and has a magnitude of about several kilohms. A control device 15 controls the robot 8 and also controls the welding power source 1 and the start point detection unit 11 via the interfaces 16 and 17.
The operation will be described below. When measuring the distance between the tip of the wire 7 and the workpiece 10, the b contact of the relay 13 and the common terminal c are connected. Then, a DC high voltage is applied between the wire 7 and the workpiece 10. In this case, since the voltage value to be applied is high, even if rust or the like having a large electric resistance exists on the surface of the workpiece 10, it is possible to reliably determine a short circuit between them. When the detection voltage is applied in a state where the resistance component 14 is connected to the output circuit of the welding power source 1, the resistance component 14 becomes a circuit and the voltage value applied between the wire 7 and the workpiece 10 decreases. The short circuit judgment between the two becomes uncertain.
[Problems to be solved by the invention]
Usually, since the no-load voltage of the arc welding power source 1 is 100 V or less, a diode 2 having a low withstand voltage is also used. For this reason, it is not always possible to apply a high detection voltage. In the case of the arc welding power source 1 using the diode 2 having a low withstand voltage, it is necessary to lower the value of the detection voltage. In addition, the number of apparatuses for welding is large and an installation area is required. In addition, the number of signal cables and control power cables connecting each device has increased, and maintenance and inspection have been troublesome.
An object of the present invention is to provide a power supply for arc welding that solves the above-described problems, is easy to perform maintenance and inspection, does not require an installation area, and can reliably determine a short circuit between a wire and a workpiece.
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is a power source for arc welding comprising a welding voltage output circuit for outputting a low voltage and large current output to an external output terminal via a semiconductor element provided at the final stage. An inspection voltage output circuit for outputting a high voltage / small current output, a switching circuit including first and second switches, a short circuit determination circuit, and a welding voltage detection circuit, and the semiconductor element is connected to the inspection voltage. One output terminal of the test voltage output circuit is connected to one of the external output terminals via a first switch, and the other output terminal is connected to the other of the external output terminals, respectively. One input terminal of the welding voltage detection circuit is connected to one of the external output terminals via a second switch, and the other input terminal is connected to the other one of the external output terminals. end The test voltage output circuit is connected to one output terminal, the other input terminal is connected to the other output terminal of the test voltage output circuit, and the first and second switches are exclusively controlled by the switching circuit. A case in which the determination result of the short-circuit determination circuit is output to the outside, and the inspection voltage output circuit, the switching circuit, the short-circuit determination circuit, and the welding voltage detection circuit are housed in the welding voltage output circuit It is characterized by being housed in.
According to a second aspect of the present invention, in the first aspect of the present invention, when the first or second switch is closed, the switching circuit confirms that the voltage between the external output terminals is zero. It is characterized in that means for performing the above is provided.
Further, the invention of claim 3 is characterized in that, in the invention of claim 1, means for displaying that a test voltage is outputted between the external output terminals is provided.
The invention of claim 4 is characterized in that, in the invention of claim 1, the short circuit determination circuit is provided with means for outputting a signal equivalent to a case where the electrode and the work are short-circuited.
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the illustrated embodiments. ◆
FIG. 1 is an external connection diagram in the case of welding by a robot using an arc welding power source according to an embodiment of the present invention, and the same or the same function as in FIG. Is omitted. An input side diode 21 rectifies the AC voltage of the three-phase AC power source 22. Reference numeral 23 denotes a switching circuit, which is usually composed of a large current switching element such as IGBT or FET, and converts the current rectified by the input side diode into an alternating current of about 20 kHz. Reference numeral 24 denotes a switching control circuit which performs ON / OFF timing control of a large current switching element constituting the switching circuit 23. Reference numeral 25 denotes a high-frequency transformer. A diode 2 that can withstand a direct current of 300 V is used. 26 is a reactor. A welding voltage detection circuit 27 includes a voltage indicator 27a, a capacitor 27b, a resistor 27c, and a varistor 27d. The plus side of the welding voltage detection circuit 27 is connected to one terminal of the switch 28, and the minus side is connected to the external output terminal 4. The other terminal of the switch 28 is connected to the external output terminal 3.
Reference numeral 30 denotes an insulating transformer, and the secondary winding 30a forms a test voltage output circuit 32 together with the rectifying diode 31, and outputs a DC voltage having a peak value of about 300V (hereinafter referred to as voltage Va). Reference numeral 33 denotes a resistor that limits the current flowing through the secondary winding 30a to several tens of mA or less. The positive side of the test voltage output circuit 32 is connected to one terminal of the switch 29 via the resistor 33, and the negative side is connected to the external output terminal 4. The other terminal of the switch 29 is connected to the external output terminal 3. The secondary winding 30b constitutes a detection circuit power supply with the rectifying diode 34 and the voltage stabilizing circuit 35, and outputs a DC voltage of 15V.
Reference numeral 40 denotes a short circuit determination circuit. Reference numerals 41 and 42 denote resistors, which divide the voltage Va. 43 is a Zener diode, and 44 is a capacitor 44. Here, the voltage across the Zener diode 43 is Vb. Reference numeral 45 is a reference voltage generating circuit for inputting the reference voltage Vc to the voltage comparator 46. The voltage comparator 46 outputs a short circuit signal S when Vc ≧ Vb. A switch 47 is connected to both ends of the Zener diode 43 at its terminals.
Reference numeral 50 denotes a switching circuit that switches the switches 28, 29, and 47 in accordance with a command from the control device 15. Reference numeral 51 denotes a lamp which is lit when the switch 29 is closed. The inspection voltage output circuit 32, the switching circuit 50, the short-circuit determination circuit 40, and the welding voltage detection circuit 27 are housed in the casing of the arc welding power source 1 that houses the welding voltage output circuit.
Next, the operation of the present embodiment will be described with reference to FIG. FIG. 2 is a flowchart showing the operation of the present embodiment. The chip 6 is at the moving origin, the wire 7 is protruded from the tip of the chip 6 by a predetermined length, and the switching control circuit 24 is turned off.
First, it is confirmed that the inter-terminal voltage between the external output terminal 3 and the external output terminal 4 is 0 (procedure S10). When the voltage between the terminals becomes 0, the switch 28 is opened (step S20). Next, when the switch 29 is closed (step S30), the voltage Va is applied between the external output terminal 3 and the external output terminal 4, and the lamp 51 is lit. The chip 6 is moved in a predetermined direction while confirming the current position until the short circuit signal S is output (procedure S40). When the short circuit signal S is output (procedure S50), the movement is stopped (procedure). S60) A distance from the moving origin is obtained, and an error between a pre-programmed position and an actual position is calculated. Then, it is confirmed whether or not all the position measurement work has been completed (step S70). If the position measurement work has not been completed, the process returns to step S40. If the position measurement work has been completed, the switch 29 is opened (step S80). ), The switch 28 is closed (step S90).
Next, the operation of the short circuit determination circuit 40 will be described in more detail with reference to FIG. FIG. 3 is a timing chart of the voltages Va, Vb, and Vc. When the tip of the wire 7 comes into contact with the workpiece 10 (time Ta in the figure), the voltage Va immediately decreases to about zero. As a result, the voltage Vb is reduced by a time constant determined by the CR circuit including the resistors 41 and 42 and the capacitor 43. When Vc ≧ Vb (time Tb in the figure), the voltage comparator 46 outputs a short circuit signal S (signal having a logical value of 1). When the wire 7 that has been in contact is separated from the workpiece 10 (time Tc in the figure), the voltage Va is applied between the wire 7 and the workpiece 10 again. Further, the voltage Vb rises by a time constant determined by the CR circuit, and when Vb> Vc (time Td in the figure), the short circuit signal S (signal with a logical value 1) stops (a signal with a logical value 0). ). Note that a deviation of about 20 msec occurs between the time Ta and the time Tb, and between the time Tc and the time Td, but there is no practical problem. In step S20, the terminal voltage between the external output terminal 3 and the external output terminal 4 is confirmed to be 0 before opening the switch 28 even after the welding end signal is output. This is because energy may remain in the reactor 26. When the switch 28 is opened after a predetermined time (2 seconds or more) after the welding end signal is issued, the confirmation of the inter-terminal voltage between the external output terminal 3 and the external output terminal 4 can be omitted.
Next, the operation of the switch 47 will be described with reference to FIG. When the switch 47 is closed while the switch 29 is open, the voltage Vb immediately becomes 0 and the short circuit signal S is output. When the switch 47 is opened again, the short circuit signal S is immediately stopped. Thus, since the short circuit can be created without applying the voltage Va and without bringing the wire 7 and the workpiece 10 into contact with each other, for example, the connection of the signal cable between the control device 15 and the welding power source 1 is possible. A state etc. can be confirmed easily.
Note that the switch 47 may be manually opened and closed. Further, a buzzer may be used instead of the lamp 51. Further, the switch 28 and the switch 29 are configured as separate switches. However, if the withstand voltage between the contacts is high and the signals are not short-circuited, the switch 28 and the switch 29 may be replaced with one control relay contact circuit including an NC contact circuit and an NO contact circuit. Good.
The present invention is not limited to consumable electrode type arc welding, but can also be used for non-consumable electrode type arc welding such as TIG welding.
【The invention's effect】
As described above, in the present invention, in an arc welding power source including a welding voltage output circuit that outputs a low voltage / large current output to an external output terminal via a semiconductor element provided in the final stage, An inspection voltage output circuit for outputting current, a switching circuit including first and second switches, a short-circuit determination circuit, and a welding voltage detection circuit are provided, and the semiconductor element can withstand the inspection voltage. The one output terminal of the inspection voltage output circuit is connected to one of the external output terminals via a first switch, and the other output terminal is connected to the other of the external output terminals. One input terminal is connected to one of the external output terminals via a second switch, the other input terminal is connected to the other of the external output terminal, and one input terminal of the short-circuit determination circuit is connected to the inspection voltage. One output terminal of the output circuit and the other input terminal are connected to the other output terminal of the test voltage output circuit, respectively, and the first and second switches are exclusively controlled by the switching circuit, and the short circuit The determination result of the determination circuit is configured to be output to the outside, and the inspection voltage output circuit, the switching circuit, the short circuit determination circuit, and the welding voltage detection circuit are housed in a housing in which the welding voltage output circuit is housed. This eliminates the need to connect the signal cable and control cable that previously connected the arc welding power supply, starting point unit, interface, etc., facilitates maintenance and inspection, and reduces the installation area. A short circuit can be reliably determined. In addition, since a lamp is displayed when a high voltage is being output, troubles such as erroneous operation and electric shock can be prevented. Furthermore, since a short circuit can be detected in a pseudo manner simply by operating the switch, maintenance and inspection are easy.
[Brief description of the drawings]
FIG. 1 is an external connection diagram in the case of welding by a robot using a power source for arc welding according to an embodiment of the present invention.
FIG. 2 is a flowchart showing the operation of the present embodiment.
FIG. 3 is a timing chart of voltages Va, Vb, and Vc.
FIG. 4 is a diagram for explaining the operation of a switch 47;
FIG. 5 is an external connection diagram in the case of welding by a robot using a conventional arc welding power source.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Power supply for arc welding 2 Diode 3, 4 External output terminal 27 Welding voltage detection circuit 28, 29 Switch 32 Inspection voltage output circuit 40 Short-circuit determination circuit 50 Switching circuit

Claims (4)

低電圧・大電流の出力を最終段に設けた半導体素子を介して外部出力端子に出力する溶接電圧出力回路を備えるアーク溶接用電源において、高電圧・小電流の出力を出力する検査電圧出力回路と、第1と第2のスイッチを備える切替回路と、短絡判定回路と、溶接電圧検出回路とを設け、前記半導体素子を前記検査電圧に耐えられるものとし、前記検査電圧出力回路の一方の出力端を第1のスイッチを介して前記外部出力端子の一方に、また他方の出力端を前記外部出力端子の他方にそれぞれ接続し、前記溶接電圧検出回路の一方の入力端を第2のスイッチを介して前記外部出力端子の一方に、また他方の入力端を前記外部出力端子の他方にそれぞれ接続し、前記短絡判定回路の一方の入力端を前記検査電圧出力回路の一方の出力端に、また他方の入力端を前記検査電圧出力回路の他方の出力端にそれぞれ接続し、前記切替回路により前記第1と第2のスイッチを排他制御すると共に、前記短絡判定回路の判定結果を外部に出力するように構成し、前記検査電圧出力回路、前記切替回路、前記短絡判定回路および前記溶接電圧検出回路を前記溶接電圧出力回路が収納される筐体に収納したことを特徴とするアーク溶接用電源。Inspection voltage output circuit that outputs high voltage and small current in a power source for arc welding equipped with a welding voltage output circuit that outputs a low voltage and large current output to an external output terminal via a semiconductor element provided in the final stage And a switching circuit including first and second switches, a short circuit determination circuit, and a welding voltage detection circuit, the semiconductor element being able to withstand the inspection voltage, and one output of the inspection voltage output circuit An end is connected to one of the external output terminals via a first switch, the other output end is connected to the other of the external output terminal, and one input end of the welding voltage detection circuit is connected to a second switch. And the other input terminal is connected to the other of the external output terminals, one input terminal of the short circuit determination circuit is connected to one output terminal of the test voltage output circuit, and The other input terminal is connected to the other output terminal of the inspection voltage output circuit, and the first and second switches are exclusively controlled by the switching circuit, and the determination result of the short circuit determination circuit is output to the outside. An arc welding power supply comprising the inspection voltage output circuit, the switching circuit, the short circuit determination circuit, and the welding voltage detection circuit in a housing in which the welding voltage output circuit is housed. 前記第1または第2のスイッチのいずれか一方を閉じる時、前記切替回路は前記外部出力端子間の電圧が0であることを確認する手段を設けたことを特徴とする請求項1に記載のアーク溶接用電源。2. The device according to claim 1, wherein when either one of the first switch and the second switch is closed, the switching circuit includes means for confirming that a voltage between the external output terminals is zero. Power supply for arc welding. 前記外部出力端子間に検査電圧が出力されていることを表示する手段を設けたことを特徴とする請求項1に記載のアーク溶接用電源。The power supply for arc welding according to claim 1, further comprising means for indicating that an inspection voltage is output between the external output terminals. 前記短絡判定回路に、電極とワークが短絡した場合と等価の信号を出力させる手段を設けたことを特徴とする請求項1に記載のアーク溶接用電源。The power supply for arc welding according to claim 1, wherein means for outputting a signal equivalent to a case where the electrode and the work are short-circuited is provided in the short-circuit determination circuit.
JP20958297A 1997-06-30 1997-06-30 Power supply for arc welding Expired - Lifetime JP3874495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20958297A JP3874495B2 (en) 1997-06-30 1997-06-30 Power supply for arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20958297A JP3874495B2 (en) 1997-06-30 1997-06-30 Power supply for arc welding

Publications (2)

Publication Number Publication Date
JPH1119772A JPH1119772A (en) 1999-01-26
JP3874495B2 true JP3874495B2 (en) 2007-01-31

Family

ID=16575227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20958297A Expired - Lifetime JP3874495B2 (en) 1997-06-30 1997-06-30 Power supply for arc welding

Country Status (1)

Country Link
JP (1) JP3874495B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103659063B (en) * 2012-09-04 2015-07-15 厦门思尔特机器人系统有限公司 Voltage switching device for welding and locating

Also Published As

Publication number Publication date
JPH1119772A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
KR100650610B1 (en) power supply for the resistance welding
US5786558A (en) Method and apparatus for controlling inverter resistance welding
JP3874495B2 (en) Power supply for arc welding
KR100650611B1 (en) apparatus and method for weld-time control
JP4175583B2 (en) AC or AC / DC arc welding power supply
JP2840006B2 (en) Proximity switch inspection device
US20180085845A1 (en) Power supply unit for a resistance welding apparatus
JPH0947883A (en) Controller for inverter type resistance welding
JPH1010187A (en) Kick tester
JP4799719B2 (en) DC arc machining power supply control method and power supply apparatus
JP4243441B2 (en) Arc sensor controller
JP3462304B2 (en) Electric welding apparatus and electric welding method
KR100443167B1 (en) Inverter Resistance Welding Power Supply
JP7265308B2 (en) welding equipment
JP4205270B2 (en) Arc welding power supply for AC or AC / DC
JP2635774B2 (en) DC resistance welding equipment
WO2016038756A1 (en) Welding current measuring device, resistance welding monitoring device, and resistance welding control device
KR960001529Y1 (en) Control device for welding
JPH0335491Y2 (en)
JP4304786B2 (en) Short-circuit state detection method and welding apparatus for consumable electrode arc welding
JP2022065508A (en) Energization state diagnostic circuit and power supply device
JPS632227Y2 (en)
KR830002412Y1 (en) Current detector
JPH05185225A (en) Dc tig arc welding machine
JPH06142925A (en) Tig arc welding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141102

Year of fee payment: 8

EXPY Cancellation because of completion of term