JP3873203B2 - Speed control apparatus and method for wound induction machine - Google Patents

Speed control apparatus and method for wound induction machine Download PDF

Info

Publication number
JP3873203B2
JP3873203B2 JP36392999A JP36392999A JP3873203B2 JP 3873203 B2 JP3873203 B2 JP 3873203B2 JP 36392999 A JP36392999 A JP 36392999A JP 36392999 A JP36392999 A JP 36392999A JP 3873203 B2 JP3873203 B2 JP 3873203B2
Authority
JP
Japan
Prior art keywords
speed control
speed
switching element
winding
induction machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36392999A
Other languages
Japanese (ja)
Other versions
JP2001178192A5 (en
JP2001178192A (en
Inventor
佳稔 秋田
俊昭 奥山
善尚 岩路
繁 椙山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP36392999A priority Critical patent/JP3873203B2/en
Publication of JP2001178192A publication Critical patent/JP2001178192A/en
Publication of JP2001178192A5 publication Critical patent/JP2001178192A5/en
Application granted granted Critical
Publication of JP3873203B2 publication Critical patent/JP3873203B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/24Variable impedance in stator or rotor circuit
    • H02P25/26Variable impedance in stator or rotor circuit with arrangements for controlling secondary impedance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、巻線型誘導機の2次電力をチョッパと回生インバータを用いて制御するセルビウス方式を用いた巻線型誘導機の速度制御装置及び方法に係り、特に、複数台の巻線型誘導機を可変速制御する技術に関する。
【0002】
【従来の技術】
従来の装置としては、特開平6−105598号公報に記載のように、静止セルビウス装置を用いた複数台の誘導電動機の制御装置が提案されている。この制御装置は、各電動機に接続された順変換器の出力電流の合計を逆変換器に供給し、この逆変換器の点弧角を制御することにより、電動機の制御を行っている。この場合、複数台の電動機の速度は、各々独立に制御することは不可能である。また、このセルビウス装置では、同期速度付近、即ち、すべりが零付近では、逆変換器の力率が悪く、逆に起動時においては、すべりが1相当の大きな電圧に耐える必要があることから、逆変換器及び逆変換器と交流電源系統の間に接続される変圧器の容量が大きくなる、という問題がある。
上記の逆変換器及び変圧器容量の問題を解消する技術としては、例えば特開昭60−91890号公報に記載された方法がある。この方法は、誘導機の2次電力をチョッパと回生インバータを用いて制御するセルビウス方式を用いたものであり、従来のセルビウス装置に比べて、低コストな装置を実現できるが、複数台の電動機の制御には、各電動機毎にコンデンサ、逆変換器及び変圧器などを備える必要があった。
【0003】
【発明が解決しようとする課題】
上記従来技術においては、複数台の巻線型誘導電動機の速度を各々独立に制御できないこと、また、コンデンサ、逆変換器及び変圧器を複数台必要とする問題があった。
本発明の課題は、前記事情に鑑み、複数台の巻線型誘導電動機の速度を各々独立的に制御し、しかも装置のコンパクト化、コスト低減を可能にする巻線型誘導機の速度制御装置及び方法を提供することにある。
【0004】
【課題を解決するための手段】
上記課題を解決するために、複数台の各巻線型誘導機の2次側に接続した各々順変換器の直流出力端子間に直接またはリアクトルを介してスイッチング素子を接続し、複数台の巻線型誘導機の回転速度を各々独立的に制御するために、巻線型誘導機の回転速度とその指令値との偏差に応じて順変換器の出力電流を制御すべく前記スイッチング素子をオンオフ制御する速度制御手段を設け、各速度制御手段のスイッチング素子に並列にダイオードを介して各速度制御手段に対して共通のコンデンサを接続すると共に、スイッチング素子の動作のオフ時に順変換器の出力電流を共通のコンデンサに導く方向に接続し、さらに、共通のコンデンサの端子間に逆変換器を接続し、巻線型誘導機の2次電力を前記交流電源に回生するものであって、各速度制御手段のPWMキャリア信号の位相をずらすスイッチング位相設定手段を設け、各スイッチング素子に対してスイッチング位相をずらす。
【0005】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の一実施形態による誘導機の速度制御装置であり、複数台の巻線形誘導電動機の速度制御装置の構成を示す。
図1において、1は交流電源系統、2a〜2cは各巻線形誘導電動機、3a〜3cは各巻線形誘導電動機2a〜2cの2次電圧を直流に変換する順変換器(ダイオード整流器)である。6a〜6cは各巻線形誘導電動機2a〜2cに直結された速度検出器であり、各巻線形誘導電動機の速度を検出し、出力する。7a〜7cは電流検出器であり、順変換器3a〜3cの出力電流を検出し、出力する。8a〜8cは速度制御回路であり、速度検出器6a〜6cより出力される信号と電流検出器7a〜7cより出力される信号を入力し、この信号に基づいて自己消弧型素子(IGBT)4a〜4cをオンオフする制御信号を演算し、出力する。5a〜5cは逆流阻止用ダイオードであり、自己消弧型素子4a〜4cがオフ状態の時に順変換器3a〜3cの出力電流がコンデンサ9に流れる。10は各巻線形誘導電動機2a〜2cの2次電力の総合電力を交流電源1に回生するための逆変換器(IGBTインバータ)、11は逆変換器用変圧器である。12は電流検出器であり、逆変換器10の出力電流を検出し、出力する。13は電圧検出器であり、コンデンサ9の端子間の直流電圧を検出し、出力する。14は逆変換器10の制御装置であり、電流検出器12より出力される信号と電圧検出器13より出力される信号が入力され、この信号に基づいて逆変換器10の制御信号を出力する。
なお、順変換器の直流出力端子間つまり順変換器3a〜3cと自己消弧型素子(IGBT)4a〜4cの接続点間または逆流阻止用ダイオード5a〜5cと自己消弧型素子(IGBT)4a〜4cの接続点間にリアクトルを挿入してもよい。
【0006】
次に、本実施形態の動作を説明する。まず、図2を用いて、各誘導電動機の速度制御部分の動作について説明する。図2は、図1における巻線形誘導電動機2aの速度制御回路のブロック図である。1、2a〜8a及び9〜14までは図1のものと同一であるので、説明を省略する。
図2において、21は速度指令発生器であり、速度指令を出力する。22は速度制御器であり、速度指令発生器21の出力である速度指令と速度検出器6aより出力される速度検出値が入力され、この信号に基づいて電流指令信号を演算し、出力する。23は電流制御器であり、速度制御器22より出力される電流指令信号と電流検出器7aより出力される電流検出信号が入力され、この信号に基づいて電圧指令信号を出力する。24はPWM制御器であり、電流制御器23より出力される電圧指令信号とPWMキャリア信号が入力され、この信号に基づいて電圧指令とPWMキャリア信号と比較し、自己消弧型素子4aのオンオフ制御信号を出力する。
巻線形誘導電動機2aの回転速度は、速度検出器6aにより検出され、速度指令発生器21からの速度指令信号と共に速度制御器22に入力され、これにより回転速度は速度指令に一致するように制御される。そして、速度制御ループの内側には図2に示すように電流制御ループが設けられ、順変換器3aの出力電流は、電流検出器7aにより検出され、速度制御器22より出力される電流指令信号と共に電流制御器23に入力され、これにより順変換器3aの出力電流は電流指令値に一致するように制御される。電流制御器23からは電圧指令信号がPWM制御器24に入力され、ここでPWM制御により自己消弧型素子4aをオンオフ制御することによって順変換器3aの出力電圧を制御し、順変換器3aの出力電流を制御する。このように直流電流が制御されるので、巻線形誘導電動機2aの2次電流及びトルクは、電流指令に比例するように制御され、従って回転速度は速度指令に追従して制御される。
【0007】
次に、巻線形誘導電動機の2次電力の回生動作について説明する。図3の(a)に速度制御時の電圧指令とPWMキャリア信号、(b)に自己消弧型素子4aのオンオフ信号、(c)に順変換器3aの出力電流信号、(d)にダイオード5aに流れる電流、(e)にコンデンサ9の電圧波形を示す。電圧指令がキャリア信号より大きい場合は、PWMパルス信号がオンとなり、自己消弧型素子4aはオンする。この間、図2の順変換器3aの直流出力電流は自己消弧型素子4aを通して流れ、このときダイオード5aに流れる電流は零となる。また、逆に電圧指令がキャリア信号より小さい場合は、PWMパルス信号がオフとなり、自己消弧型素子4aはオフし、このとき直流電流はダイオード5aを通して流れる。このとき、順変換器3aの出力電流は図3(c)のように自己消弧型素子4aがオンのとき増加し、オフのとき減少する。このようにして、出力電流は電圧指令信号に従い制御される。また、ダイオード5aの電流はコンデンサ9を充電し、その電圧を高くする。その結果、逆変換器10の制御装置14の動作により、交流電源側に巻線形誘導電動機2aの2次電力が回生される。ここで、自己消弧型素子4a、ダイオード5a、コンデンサ9により構成される回路は、すべりにより2次電圧が変化する巻線形誘導電動機2aの2次電力を一定電圧に変換する作用があり、このとき、逆変換器10側に伝達される電力は巻線形誘導電動機2aの2次電力に等しくなる。以上が従来技術の説明である。
次に、本実施形態について述べる。ところで、速度制御部分は回生動作を行う逆変換器と独立に制御できるため、図1に示す複数台の誘導電動機の速度を各々独立に制御することができる。即ち、本実施形態では、前述の速度制御回路8aを複数台の誘導機2a,2b,2cに対して8b,8cとして各々構成し、各ダイオード5a,5b,5cを介して共通のコンデンサ9に接続する。この結果、各電動機2a,2b,2cの2次電力がダイオード5a,5b,5cを介してコンデンサ9に集積され、さらに1台の逆変換器10で交流電源側に回生させるものである。
本実施形態によれば、図2に示す従来の装置を複数台備える場合に比べて、コンデンサ、逆変換器及び変圧器の数が1/n(n:電動機の数)化されるため、低コストに装置が実現でき、かつ、各電動機の速度を各々独立に制御することができる。
【0008】
図4は、本発明の他の実施形態を示す。図1とは、各速度制御回路8a,8b,8cのPWMキャリア信号図3(a)の位相をずらすキャリア位相設定器15を設けた点が異なる。本実施形態によれば、図1に比べて、コンデンサ9の容量を低減し、低コスト化できる効果がある。
図3の波形を見ると、コンデンサ9への入力電流にはリプル成分が含まれるため、必要なコンデンサ容量が増加する。図1のように複数台の巻線形誘導電動機を各々独立に制御する構成とすることにより、同一のキャリア信号を用いた場合は、各順変換器3a,3b,3cからコンデンサ9に流れる入力電流は同期するため、各リプル成分が加算されたものとなり、リプル量が増加し、その結果コンデンサ容量が増加する。これに対して、図4では、設定器15によりキャリア位相をずらす、例えば360度/n(n:電動機の台数)とするようにしたため、各順変換器3a,3b,3cからダイオード5a,5b,5cを介して流入する電流リプルのタイミングがずれ、その結果コンデンサ9に流れる入力電流のリプル成分を平滑化でき、コンデンサ容量を低減することができる。
【0009】
【発明の効果】
以上説明したように、本発明によれば、複数台の誘導電動機に対して各速度制御回路によって個々の誘導電動機の速度制御を行い、各回路で発生する2次電力を1つの逆変換器によって電源側に回生する回路構成としたので、複数台の誘導電動機駆動システムにおいて、各電動機の速度制御を各々独立に行うことができ、かつ、コンデンサ、逆変換器及び変圧器などのシステムの部品数を低減することができ、コンパクト化、コストの低減化を図ることができる。
また、各々の速度制御回路において、各回路から発生するリプル成分を打消すように、各回路における自己消弧型素子のスイッチング位相をずらすことにより、リプル成分を低減することができ、コンデンサの容量を低減することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す誘導機の速度制御装置の構成図
【図2】本発明の速度制御装置を示す回路図
【図3】本発明による2次電流の波形図
【図4】本発明の他の実施形態の構成図
【符号の説明】
1…交流電源系統、2a〜2c…巻線形誘導電動機、3a〜3c…順変換器、4a〜4c…自己消弧型素子、5a〜5c…ダイオード、6a〜6c…速度検出器、7a〜7c…電流検出器、8a〜8c…速度制御回路、9…コンデンサ、10…逆変換器、11…逆変換器用変圧器である。12…電流検出器、13…電圧検出器14…逆変換器の制御装置、21…速度指令発生器、22…速度制御器、23…電流制御器、24…PWM制御器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a speed control device and method for a wound-rotor induction machine using Scherbius method of control using the regenerative inverter chopper secondary power for a wound-rotor induction machine, in particular, a plurality of wound-rotor induction machine The present invention relates to a technology for variable speed control.
[0002]
[Prior art]
As a conventional apparatus, as described in JP-A-6-105598, a control apparatus for a plurality of induction motors using a stationary Serbius apparatus has been proposed. This control device supplies the sum of the output currents of the forward converters connected to the electric motors to the reverse converter, and controls the electric motor by controlling the firing angle of the reverse converter. In this case, the speeds of the plurality of electric motors cannot be controlled independently. In addition, in this Serbius device, the power factor of the inverse converter is poor near the synchronous speed, that is, when the slip is near zero, and on the contrary, at the time of start-up, the slip needs to withstand a large voltage equivalent to 1. There exists a problem that the capacity | capacitance of the transformer connected between an inverter and an inverter and an alternating current power supply system becomes large.
As a technique for solving the problems of the inverse converter and the transformer capacity, there is a method described in, for example, Japanese Patent Application Laid-Open No. 60-91890. This method uses a Serbius method in which the secondary power of the induction machine is controlled using a chopper and a regenerative inverter, and a low-cost device can be realized compared to a conventional Serbius device. For this control, it was necessary to provide a capacitor, an inverse converter, a transformer, and the like for each electric motor.
[0003]
[Problems to be solved by the invention]
In the above prior art, there are problems that the speeds of a plurality of winding type induction motors cannot be controlled independently, and that a plurality of capacitors, inverters and transformers are required.
An object of the present invention, the circumstances in view, the respectively independently control the speed of the plurality of wound-rotor induction motor, yet compact, the speed control apparatus and method for a wound-rotor induction machine that enables cost reduction of the apparatus Is to provide.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a switching element is connected directly or via a reactor between the DC output terminals of the forward converters connected to the secondary side of each of the plurality of winding induction machines, and the plurality of winding inductions In order to control the rotation speed of each machine independently, a speed control that controls on / off of the switching element to control the output current of the forward converter according to the deviation between the rotation speed of the winding induction machine and its command value And a common capacitor is connected to each speed control means via a diode in parallel with the switching element of each speed control means, and the output current of the forward converter is connected to the common capacitor when the operation of the switching element is off. connect to the direction leading to further connect the inverter between the common capacitor terminal, be those for regenerating the secondary power for a wound-rotor induction machine to said AC power source, the speed The switching phase setting means for shifting the phase of the PWM carrier signal of the control means is provided, shifting the switching phases for each switching element.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a speed control device for an induction machine according to an embodiment of the present invention, and shows a configuration of a speed control device for a plurality of wound induction motors.
In FIG. 1, 1 is an AC power supply system, 2a to 2c are winding induction motors, and 3a to 3c are forward converters (diode rectifiers) that convert secondary voltages of the winding induction motors 2a to 2c into DC. Reference numerals 6a to 6c denote speed detectors directly connected to the respective winding induction motors 2a to 2c, which detect and output the speeds of the respective winding induction motors. Reference numerals 7a to 7c denote current detectors which detect and output the output currents of the forward converters 3a to 3c. Reference numerals 8a to 8c denote speed control circuits which receive a signal output from the speed detectors 6a to 6c and a signal output from the current detectors 7a to 7c, and based on these signals, a self-extinguishing element (IGBT). A control signal for turning on and off 4a to 4c is calculated and output. Reference numerals 5a to 5c denote backflow prevention diodes, and the output currents of the forward converters 3a to 3c flow to the capacitor 9 when the self-extinguishing elements 4a to 4c are in the off state. Reference numeral 10 denotes an inverter (IGBT inverter) for regenerating the total power of the secondary power of each of the winding induction motors 2a to 2c to the AC power source 1, and 11 is a transformer for the inverter. Reference numeral 12 denotes a current detector that detects and outputs the output current of the inverse converter 10. A voltage detector 13 detects and outputs a DC voltage between the terminals of the capacitor 9. Reference numeral 14 denotes a control device for the inverse converter 10, which receives a signal output from the current detector 12 and a signal output from the voltage detector 13, and outputs a control signal for the inverse converter 10 based on this signal. .
In addition, between the DC output terminals of the forward converter, that is, between the connection points of the forward converters 3a to 3c and the self-extinguishing element (IGBT) 4a to 4c, or the backflow blocking diodes 5a to 5c and the self-extinguishing element (IGBT). You may insert a reactor between the connection points of 4a-4c.
[0006]
Next, the operation of this embodiment will be described. First, the operation of the speed control portion of each induction motor will be described with reference to FIG. FIG. 2 is a block diagram of a speed control circuit of the winding induction motor 2a in FIG. 1, 2a to 8a and 9 to 14 are the same as those in FIG.
In FIG. 2, 21 is a speed command generator, which outputs a speed command. A speed controller 22 receives the speed command output from the speed command generator 21 and the speed detection value output from the speed detector 6a, and calculates and outputs a current command signal based on this signal. A current controller 23 receives a current command signal output from the speed controller 22 and a current detection signal output from the current detector 7a, and outputs a voltage command signal based on this signal. A PWM controller 24 receives a voltage command signal and a PWM carrier signal output from the current controller 23, compares the voltage command with the PWM carrier signal based on this signal, and turns on / off the self-extinguishing element 4a. Output a control signal.
The rotational speed of the winding induction motor 2a is detected by the speed detector 6a, and is input to the speed controller 22 together with the speed command signal from the speed command generator 21, whereby the rotational speed is controlled to match the speed command. Is done. A current control loop is provided inside the speed control loop as shown in FIG. 2, and the output current of the forward converter 3a is detected by the current detector 7a and is output from the speed controller 22 as a current command signal. At the same time, it is input to the current controller 23, whereby the output current of the forward converter 3a is controlled to match the current command value. A voltage command signal is input from the current controller 23 to the PWM controller 24, where the output voltage of the forward converter 3a is controlled by on / off control of the self-extinguishing element 4a by PWM control, and the forward converter 3a. To control the output current. Since the direct current is controlled in this way, the secondary current and torque of the winding induction motor 2a are controlled to be proportional to the current command, and therefore the rotation speed is controlled following the speed command.
[0007]
Next, the regenerative operation of the secondary power of the winding induction motor will be described. 3A shows the voltage command and PWM carrier signal during speed control, FIG. 3B shows the on / off signal of the self-extinguishing element 4a, FIG. 3C shows the output current signal of the forward converter 3a, and FIG. A current flowing through 5a and a voltage waveform of the capacitor 9 are shown in (e). When the voltage command is larger than the carrier signal, the PWM pulse signal is turned on and the self-extinguishing element 4a is turned on. During this time, the DC output current of the forward converter 3a in FIG. 2 flows through the self-extinguishing element 4a, and at this time, the current flowing through the diode 5a becomes zero. Conversely, when the voltage command is smaller than the carrier signal, the PWM pulse signal is turned off, the self-extinguishing element 4a is turned off, and at this time, a direct current flows through the diode 5a. At this time, the output current of the forward converter 3a increases when the self-extinguishing element 4a is on as shown in FIG. 3C and decreases when it is off. In this way, the output current is controlled according to the voltage command signal. Also, the current of the diode 5a charges the capacitor 9 and increases its voltage. As a result, the secondary power of the winding induction motor 2a is regenerated on the AC power supply side by the operation of the control device 14 of the inverter 10. Here, the circuit composed of the self-extinguishing element 4a, the diode 5a, and the capacitor 9 has an action of converting the secondary power of the winding induction motor 2a whose secondary voltage changes due to slipping into a constant voltage. At this time, the electric power transmitted to the inverter 10 side becomes equal to the secondary electric power of the winding induction motor 2a. The above is the description of the prior art.
Next, this embodiment will be described. By the way, since the speed control part can be controlled independently of the inverter that performs the regenerative operation, the speeds of the plurality of induction motors shown in FIG. 1 can be controlled independently. That is, in the present embodiment, the speed control circuit 8a is configured as 8b and 8c for the plurality of induction machines 2a, 2b, and 2c, and is connected to the common capacitor 9 via the diodes 5a, 5b, and 5c. Connecting. As a result, the secondary power of each of the electric motors 2a, 2b, 2c is accumulated in the capacitor 9 via the diodes 5a, 5b, 5c, and is further regenerated to the AC power supply side by one inverse converter 10.
According to this embodiment, the number of capacitors, inverters and transformers is reduced to 1 / n (n: the number of electric motors) compared to the case where a plurality of conventional devices shown in FIG. 2 are provided. The apparatus can be realized at a low cost, and the speed of each electric motor can be controlled independently.
[0008]
FIG. 4 shows another embodiment of the present invention. 1 is different from FIG. 1 in that a carrier phase setting unit 15 for shifting the phase of the PWM carrier signal of FIG. 3A of each speed control circuit 8a, 8b, 8c is provided. According to this embodiment, compared with FIG. 1, the capacity of the capacitor 9 can be reduced and the cost can be reduced.
Looking at the waveform in FIG. 3, the ripple current component is included in the input current to the capacitor 9, so that the required capacitor capacity increases. As shown in FIG. 1, when a plurality of winding induction motors are controlled independently, the input current flowing from the forward converters 3a, 3b, 3c to the capacitor 9 when the same carrier signal is used. Since these are synchronized, each ripple component is added, the ripple amount increases, and as a result, the capacitor capacity increases. On the other hand, in FIG. 4, the carrier phase is shifted by the setting device 15, for example, 360 degrees / n (n: the number of motors), so that the forward converters 3 a, 3 b, 3 c to the diodes 5 a, 5 b , 5c, the timing of the current ripple flowing through the capacitor 9 is shifted, and as a result, the ripple component of the input current flowing through the capacitor 9 can be smoothed, and the capacitance of the capacitor can be reduced.
[0009]
【The invention's effect】
As described above, according to the present invention, the speed of each induction motor is controlled by each speed control circuit for a plurality of induction motors, and the secondary power generated in each circuit is converted by one inverter. Since the circuit configuration regenerates on the power supply side, the speed control of each motor can be performed independently in a plurality of induction motor drive systems, and the number of system components such as capacitors, inverters and transformers Can be reduced, and downsizing and cost reduction can be achieved.
Further, in each speed control circuit, the ripple component can be reduced by shifting the switching phase of the self-extinguishing element in each circuit so as to cancel the ripple component generated from each circuit. Can be reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a speed controller for an induction machine showing an embodiment of the present invention. FIG. 2 is a circuit diagram showing a speed controller of the present invention. FIG. 3 is a waveform diagram of a secondary current according to the present invention. 4] Configuration diagram of another embodiment of the present invention [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... AC power supply system, 2a-2c ... Winding type induction motor, 3a-3c ... Forward converter, 4a-4c ... Self-extinguishing element, 5a-5c ... Diode, 6a-6c ... Speed detector, 7a-7c DESCRIPTION OF SYMBOLS ... Current detector, 8a-8c ... Speed control circuit, 9 ... Capacitor, 10 ... Inverter, 11 ... Inverter transformer. DESCRIPTION OF SYMBOLS 12 ... Current detector, 13 ... Voltage detector 14 ... Inverter control device, 21 ... Speed command generator, 22 ... Speed controller, 23 ... Current controller, 24 ... PWM controller

Claims (2)

複数台の巻線型誘導機の2次側を順変換器及び逆変換器を介して交流電源に接続し、前記巻線型誘導機の2次電力を前記交流電源に回生しつつ速度制御を行う巻線型誘導機の速度制御装置において、
前記複数台の各巻線型誘導機の2次側に接続した各々の前記順変換器の直流出力端子間に直接またはリアクトルを介してスイッチング素子を接続し、前記複数台の巻線型誘導機の回転速度を各々独立的に制御するために、前記巻線型誘導機の回転速度とその指令値との偏差に応じて前記順変換器の出力電流を制御すべく前記スイッチング素子をオンオフ制御する速度制御手段を設け、
前記速度制御手段の前記スイッチング素子に並列にダイオードを介して前記各速度制御手段に対して共通のコンデンサを接続すると共に、前記スイッチング素子の動作のオフ時に前記順変換器の出力電流を前記共通のコンデンサに導く方向に接続し、さらに、前記共通のコンデンサの端子間に前記逆変換器を接続し、前記巻線型誘導機の2次電力を前記交流電源に回生するものであって、
前記各速度制御手段のPWMキャリア信号の位相をずらすスイッチング位相設定手段を設け、前記各スイッチング素子に対してスイッチング位相をずらすことを特徴とする巻線型誘導機の速度制御装置。
A winding that performs speed control while regenerating secondary power of the winding type induction machine to the AC power source by connecting the secondary side of the plurality of winding type induction machines to an AC power source through a forward converter and an inverse converter. In the linear induction machine speed control device,
A switching element is connected directly or via a reactor between the DC output terminals of each of the forward converters connected to the secondary side of each of the plurality of winding induction machines, and the rotational speed of the plurality of winding induction machines In order to control each independently, a speed control means for on / off controlling the switching element to control the output current of the forward converter according to the deviation between the rotational speed of the winding induction machine and its command value. Provided,
A common capacitor is connected to each speed control means via a diode in parallel with the switching element of the speed control means, and the output current of the forward converter is changed to the common when the operation of the switching element is off. Connecting in a direction leading to a capacitor, further connecting the inverse converter between terminals of the common capacitor, and regenerating secondary power of the wire wound induction machine to the AC power source ,
A speed control device for a winding induction machine, characterized in that switching phase setting means for shifting the phase of the PWM carrier signal of each speed control means is provided, and the switching phase is shifted for each of the switching elements.
複数台の巻線型誘導機の2次側を順変換器及び逆変換器を介して交流電源に接続し、前記巻線型誘導機の2次電力を前記交流電源に回生しつつ速度制御を行う巻線型誘導機の速度制御方法において、
前記複数台の各巻線型誘導機の2次側に接続された各々の前記順変換器の直流出力端子間に直接またはリアクトルを介してスイッチング素子を接続し、前記複数台の巻線型誘導機の速度を制御する速度制御手段を設けると共に、前記スイッチング素子に並列にダイオードを介して共通のコンデンサを接続し、
前記速度制御手段によって前記巻線型誘導機の回転速度とその指令値との偏差に応じて前記順変換器の出力電流を制御すべく前記スイッチング素子をオンオフ制御し、前記スイッチング素子の動作のオフ時に前記順変換器の出力電流を前記ダイオードを通して前記共通のコンデンサに流し、前記複数台の巻線型誘導機の回転速度を各々独立的に制御し、さらに、前記共通のコンデンサの端子間に接続した前記逆変換器から前記巻線型誘導機の2次電力を前記交流電源に回生するものであり、
前記各速度制御手段に設けたPWMキャリア信号の位相をずらすスイッチング位相設定手段によって、前記各スイッチング素子に対してスイッチング位相をずらすことを特徴とする巻線型誘導機の速度制御方法。
The secondary side of a plurality of wound induction machines is connected to an AC power supply via a forward converter and an inverse converter, and the speed is controlled while regenerating secondary power of the wound induction machine to the AC power supply. In the linear induction machine speed control method,
A switching element is connected directly or via a reactor between the DC output terminals of each of the forward converters connected to the secondary side of each of the plurality of winding induction machines, and the speed of the plurality of winding induction machines A speed control means for controlling the switching element, and a common capacitor is connected in parallel to the switching element via a diode,
The switching element is turned on / off to control the output current of the forward converter according to the deviation between the rotational speed of the wire wound induction machine and its command value by the speed control means, and when the operation of the switching element is turned off An output current of the forward converter is caused to flow through the common capacitor through the diode, and the rotational speeds of the plurality of winding induction machines are independently controlled, and further connected between terminals of the common capacitor. Regenerating secondary power of the wire wound induction machine from the inverse converter to the AC power source ,
A speed control method for a winding induction machine, characterized in that a switching phase is shifted with respect to each switching element by a switching phase setting means for shifting the phase of a PWM carrier signal provided in each speed control means.
JP36392999A 1999-12-22 1999-12-22 Speed control apparatus and method for wound induction machine Expired - Fee Related JP3873203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36392999A JP3873203B2 (en) 1999-12-22 1999-12-22 Speed control apparatus and method for wound induction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36392999A JP3873203B2 (en) 1999-12-22 1999-12-22 Speed control apparatus and method for wound induction machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005246900A Division JP2005341799A (en) 2005-08-29 2005-08-29 Speed-regulating device of induction machine

Publications (3)

Publication Number Publication Date
JP2001178192A JP2001178192A (en) 2001-06-29
JP2001178192A5 JP2001178192A5 (en) 2005-09-15
JP3873203B2 true JP3873203B2 (en) 2007-01-24

Family

ID=18480546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36392999A Expired - Fee Related JP3873203B2 (en) 1999-12-22 1999-12-22 Speed control apparatus and method for wound induction machine

Country Status (1)

Country Link
JP (1) JP3873203B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194330B2 (en) * 2001-09-21 2013-05-08 富士電機株式会社 Electric motor drive control device
CN101340174B (en) * 2008-08-08 2010-08-04 周顺新 System asynchronously implementing frequency conversion and speed regulation of rotor by dragging multiple motors with inverter
CN102931890B (en) 2011-08-11 2014-11-26 周顺新 Control system for driving a plurality of motors by using inverter bridge to change input power simultaneously along with load and rotating speed

Also Published As

Publication number Publication date
JP2001178192A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
US6320767B1 (en) Inverter apparatus
US8400085B2 (en) Dynamic braking for current source converter based drive
US8508961B2 (en) Power conversion apparatus
US4843296A (en) AC motor drive apparatus
US4511835A (en) Voltage-controlled, inverter-motor system
JP2005528078A (en) Method, apparatus and system for drive control, power conversion and start control of an SRM or PBMDC drive system
JPS5840918B2 (en) Electric motor operation control device
JP3758059B2 (en) Synchronous motor drive control device
JP2911447B2 (en) Motor control device
JP3873203B2 (en) Speed control apparatus and method for wound induction machine
JP4549159B2 (en) Winding induction motor controller
JPH08251947A (en) Regenerative controller for power converter
JP3283155B2 (en) Power converter
JP2005341799A (en) Speed-regulating device of induction machine
EP1467475B1 (en) Control of the mains bridge of a frequency converter
JP3193809B2 (en) Three-phase rectifier
EP0752753B1 (en) Power circuit for reluctance machines
JP3771163B2 (en) Induction machine speed control device
JP3428256B2 (en) Induction motor speed controller
JP3263962B2 (en) DC braking system
JP2000092879A (en) Motor drive
JP2005341740A (en) Power generation system
JPH0329992Y2 (en)
JPH0824426B2 (en) Pulse width modulation type inverter device
JPH10146093A (en) Switched reluctance motor controller

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050325

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Ref document number: 3873203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees