JP3872576B2 - Separation membrane for organic liquid mixture and separation apparatus and method using the same - Google Patents

Separation membrane for organic liquid mixture and separation apparatus and method using the same Download PDF

Info

Publication number
JP3872576B2
JP3872576B2 JP30498797A JP30498797A JP3872576B2 JP 3872576 B2 JP3872576 B2 JP 3872576B2 JP 30498797 A JP30498797 A JP 30498797A JP 30498797 A JP30498797 A JP 30498797A JP 3872576 B2 JP3872576 B2 JP 3872576B2
Authority
JP
Japan
Prior art keywords
membrane
separation
liquid mixture
organic liquid
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30498797A
Other languages
Japanese (ja)
Other versions
JPH10180057A (en
Inventor
進一 峯岸
能成 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC filed Critical Petroleum Energy Center PEC
Priority to JP30498797A priority Critical patent/JP3872576B2/en
Publication of JPH10180057A publication Critical patent/JPH10180057A/en
Application granted granted Critical
Publication of JP3872576B2 publication Critical patent/JP3872576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、有機液体混合物の組成を変化させるのに使用する分離膜、およびそれを用いた分離装置および方法に関する。
【0002】
【従来の技術】
膜分離技術は、食品工業や医療分野、海水淡水化や超純水生成分野等の水処理分野等をはじめとして様々な分野で利用されているが、これまで特に水系を中心に発達し、工業化されてきた。膜分離技術は、省資源・省エネルギーおよび低環境負荷技術として注目されている分離技術であり、この膜分離技術を非水系分野、例えば石油精製プロセスや石油化学工業分野へ適用することが近年研究され始めている。
【0003】
石油精製プロセスや石油化学工業分野における分離は、蒸留法を主体とする既存の分離技術を組み合せた方法で行なわれており、省資源・省エネルギーおよび低負荷環境の立場からは、より有利な分離技術を開発し適用することが求められている。このような背景から膜分離技術を石油精製プロセスや石油化学工業分野の技術として開発し実用化することが求められている。
【0004】
特開平2−2852号、特開平2−2854号公報は、芳香族成分と非芳香族成分を分離するためのポリウレア/ウレタン膜を開示している。特開平2−138136号公報は、ポリエチレングリコール含浸親水性膜を用いて芳香族炭化水素を芳香族炭化水素と飽和炭化水素の混合物から分離する方法を開示している。特開平3−77634号公報は、架橋ポリウレタン膜で芳香族成分と非芳香族成分を分離する方法を開示している。特開昭62−234523号公報は、高分子複合膜による炭化水素混合ガス分離方法を開示している。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来技術は、必ずしも、有機液体に対して十分な耐久性を有し、かつ分離性能と膜透過速度をともに満足し、既存分離設備より経済的に有利な膜及び膜プロセスとは言えない。また、石油精製プロセスの場合、処理量が大量であるため、ガス状態の分離ではエネルギー的に不利になる。これらの理由から、現状では、石油精製プロセスや石油化学工業に膜分離技術を本格的に応用した例はない。
【0006】
有機液体混合物の組成を変化させることができれば、ガソリンのオクタン価を向上させたり、軽油のセタン価を向上できる。また、膜で目的成分を完全に分離することができなくとも、蒸留設備に入る前の原料組成を変えておくだけで経済的には有利であり、さらに蒸留プロセスを膜プロセスで置き換えることができれば経済的に有利になることは言うまでもない。また、ガソリンからベンゼン等の有害物質を除去できれば低環境負荷の観点から有利である。さらに、オレフィンの分離・濃縮ができればポリマーや石油化学製品の経済的に有利な原料製造方法を提供することができる。
【0007】
本発明の課題は、このような観点から、とくに石油精製プロセスや石油化学工業の分野に工業的に適用して好適な、有機液体混合物用分離膜、およびそれを用いた分離装置および方法を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明の有機液体混合物用分離膜は、分離操作により有機液体混合物の組成を変化させるのに用いる分離膜であって、前記有機液体混合物はパラフィン系炭化水素とオレフィン系炭化水素の混合物であり、前記分離膜の素材はポリアクリロニトリルであるとともに、前記分離膜には平均直径が4〜10nmの範囲にある微細孔を有していることを特徴とするものからなる。
【0009】
また、本発明に係る有機液体混合物用分離装置および方法は、このような分離膜を用いた装置、および、このような分離膜を用いて膜蒸留する方法からなる。
【0010】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態について説明する。
まず、本発明において適用する膜蒸留法は、微細孔を有する膜を介して液体混合物からある成分を選択的に富化した蒸気として得る膜分離技術で、膜の一次側に液体混合物を供給し、二次側を減圧するか窒素等の不活性ガスまたは液体で掃引する方法である。本発明における膜蒸留法は上述のいずれの方法でもよいが、二次側を減圧にする方法は、大容量の装置を高い真空度に保つ必要があり、エネルギー的に不利になるので、不活性ガスまたは温度差を有する液体で掃引する方法が有利である。
【0011】
本発明で対象となる有機液体混合物は、例えば、パラフィン系炭化水素、オレフィン系炭化水素、ナフテン系炭化水素、芳香族系炭化水素のうち、いずれか2つ以上の炭化水素成分を含むものである。また、硫黄化合物、窒素化合物、酸素化合物、金属化合物などの非炭化水素成分を含んでいても差し支えない。この有機液体混合物の例としては、ナフサ、ガソリン、灯油、軽油などの石油留分が挙げられるが、これらに限定されるものではない。
【0012】
ここで、パラフィン系炭化水素とは、Cn 2n+2の分子式の飽和鎖状化合物で、分枝のないn-パラフィンと枝分かれしたイソパラフィンとがあり、具体的には、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、n-ウンデカン、n-ドデカン、2-メチルブタン、2,2-ジメチルプロパンなどが挙げられる。オレフィン系炭化水素とは、二重結合を有する炭化水素で、二重結合1個の場合はCn 2nの一般式で示される鎖状炭化水素であり、具体的には、例えば、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセンなどが挙げられる。ナフテン系炭化水素とは、1分子中に少なくとも1個の飽和環を含む炭化水素で、炭素数5個のシクロペンタンと、炭素数6個のシクロヘキサンが最も基本となる環状化合物であり、一般式はCn 2nである。芳香族系炭化水素とは、1分子中に少なくとも1個の芳香族環を含む炭化水素のことで、具体的には、例えば、ベンゼンやベンゼンに側鎖のついたトルエン、キシレンなどの単環化合物である。
【0013】
有機液体混合物の温度は、膜の耐熱性の範囲内であれば特に限定されないが、有機液体混合物の粘度が極端に高くなるような温度は好ましくない。
【0014】
本発明で使用される分離膜は、平均孔径4〜10nmの微細孔を有していることを特徴とする。この微細孔の平均孔径の範囲は、ケルビン式
r=-2V ・ σ/[R・T・ln(P/P0)]
でおおよそ推定することができる。ここで、r は凝縮半径、Vは液体の分子容、σは液体の表面張力、Rは気体定数、Tは絶対温度、P0 は飽和蒸気圧、Pは毛管凝縮を起こす圧力である。すなわち、分離膜の微細孔の平均細孔径がケルビン式から求められる範囲にあれば、ある成分が分離膜の微細孔内で毛管凝縮を起こし、微細孔を閉塞するので、他の成分の透過が阻止され、高い分離性能が得られる。しかしながら、膜の孔径には分布があるので、必ずしもケルビン式から推定される平均孔径を有する膜が高い分離性能を発現するかどうかわからない。そこで、ケルビン式から推定される平均孔径を有する膜の性能を調査、検討したところ、多くの分離膜において、平均孔径が4〜10nmの範囲にあれば、高い分離性能が得られることがわかった。
【0015】
膜の平均孔径は、以下に述べる方法で測定する。すなわち、膜の透水性(Lp)と水の膜透過速度(Jv)から、次式の関係を使って計算して求める。
Jv=Lp・ΔP
Lp=(H/L)・[Rp2/(8η)]
ここで、ΔP :膜間圧力差、H :含水率、L :膜厚、Rp:平均細孔半径、η:水の粘性である。
【0016】
また、分離膜の形態は平膜、菅状膜、中空糸膜等のいずれの形状のものでもよく、さらに分離膜モジュールの形態も平板型、スパイラル型、プリーツ型、菅状型、中空糸型等いずれの形態でも本発明に用いることができる。特に膜の自己支持性と機械的・力学的特性、およびモジュールの構成要素が少なく、耐溶剤性の観点から有利な中空糸膜が好ましい形状である。
【0017】
分離膜の素材は、有機液体混合物に対して耐久性がある有機高分子であり、本発明ではポリアクリロニトリルである。
【0018】
【実施例】
以下に、より具体的な実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。
実施例1
平均細孔径4.8nm、外径 456μm、内径 315μmのポリアクリロニトリル中空糸膜を約20cmの長さに切り、20本を束ねてガラス製のミニモジュールに挿入し、両端をエポキシ接着剤でポッティングし、試験用膜モジュールを作製した。有効膜面積は 3.8×10-3m2であった。この試験用モジュールを使って、1−デセンとn−デカンを等モル混合した有機液体混合物の分離実験を行なった。有機液体混合物は約55℃に温調して中空糸膜の内側に膜面線速度0.2m/秒の流量で供給した。中空糸膜の外側には窒素ガスを膜面線速度0.9m/秒で流し、液体窒素のコールドトラップで透過蒸気を凝縮回収した。この透過液成分の濃度をガスクロマトグラフィーで測定したところ、1−デセンのモル濃度が61mol%であった。分離係数は 1.5で、気液平衡のレベルを越えた分離が起こった。膜透過速度は0.14kg/(m2・hr) であった。
【0020】
比較例1
平均細孔径0.38nm、外径 433μm、内径 308μmのポリアクリロニトリル中空糸膜を約20cmの長さに切り、20本を束ねてガラス製のミニモジュールに挿入し、両端をエポキシ接着剤でポッティングし、試験用膜モジュールを作製した。有効膜面積は 4.8×10-3m2であった。この試験用モジュールを使って、1−デセンとn−デカンを等モル混合した有機液体混合物の分離実験を行なった。有機液体混合物は中空糸膜の内側に膜面線速度0.2m/秒の流量で供給され、中空糸膜の外側に窒素ガスを膜面線速度1.1m/秒で流し、液体窒素のコールドトラップで透過蒸気を凝縮回収した。分離実験を5時間継続したが、透過蒸気をほとんど回収することはできなかった。
【0021】
比較例2
平均細孔径55nm、外径1286μm、内径 812μmのポリフェニレンスルフォン中空糸膜を約20cmの長さに切り、8本を束ねてガラス製のミニモジュールに挿入し、両端をエポキシ接着剤でポッティングし、試験用膜モジュールを作製した。有効膜面積は 4.3×10-3m2であった。この試験用モジュールを使って、1−デセンとn−デカンを等モル混合した有機液体混合物の分離実験を行なった。有機液体混合物は中空糸膜の内側に膜面線速度0.2m/秒の流量で供給され、中空糸膜の外側に窒素ガスを膜面線速度1.0m/秒で流し、液体窒素のコールドトラップで透過蒸気を凝縮回収した。この透過液成分の濃度をガスクロマトグラフィーで測定したところ、透過液組成に変化はなく、分離は起こらなかった。
【0022】
【発明の効果】
以上説明したように、本発明の分離膜およびそれを用いた装置および方法によれば、毛管凝縮の効果を利用して高い分離性能と膜透過速度を達成でき、有機液体混合物組成を効率的に変化させることができる。この膜分離技術は、容易に工業的に適用でき、大量の処理量が要求される石油精製プロセスや石油化学工業の分野に極めて有用な技術である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separation membrane used for changing the composition of an organic liquid mixture, and a separation apparatus and method using the separation membrane.
[0002]
[Prior art]
Membrane separation technology has been used in various fields including the food industry, medical field, water treatment field such as seawater desalination and ultrapure water production field, etc. It has been. Membrane separation technology is a separation technology that has attracted attention as a resource and energy saving and low environmental load technology. In recent years, it has been studied to apply this membrane separation technology to non-aqueous fields such as petroleum refining process and petrochemical industry. I'm starting.
[0003]
Separation in the oil refining process and the petrochemical industry is performed by a combination of existing separation technologies, mainly distillation methods, and more advantageous separation technologies from the standpoint of resource saving, energy saving and low load environment. Is required to be developed and applied. From such a background, it is required to develop and put into practical use a membrane separation technology as a technology in the oil refining process and the petrochemical industry.
[0004]
JP-A-2-2852 and JP-A-2-2854 disclose polyurea / urethane membranes for separating aromatic components and non-aromatic components. Japanese Patent Application Laid-Open No. 2-138136 discloses a method for separating aromatic hydrocarbons from a mixture of aromatic hydrocarbons and saturated hydrocarbons using a polyethylene glycol-impregnated hydrophilic membrane. Japanese Patent Laid-Open No. 3-77634 discloses a method for separating an aromatic component and a non-aromatic component with a crosslinked polyurethane membrane. Japanese Patent Laid-Open No. 62-234523 discloses a hydrocarbon mixed gas separation method using a polymer composite membrane.
[0005]
[Problems to be solved by the invention]
However, the above-described conventional technology does not necessarily have sufficient durability against organic liquids, satisfies both separation performance and membrane permeation speed, and is more economically advantageous than existing separation equipment. I can not say. In the case of an oil refining process, the amount of processing is large, so that separation in a gas state is disadvantageous in terms of energy. For these reasons, there are currently no examples of full-scale application of membrane separation technology to the oil refining process and the petrochemical industry.
[0006]
If the composition of the organic liquid mixture can be changed, the octane number of gasoline can be improved and the cetane number of light oil can be improved. Even if the target component cannot be completely separated by the membrane, it is economically advantageous to change the raw material composition before entering the distillation facility, and if the distillation process can be replaced by a membrane process. Needless to say, it is economically advantageous. In addition, it is advantageous from the viewpoint of low environmental load if harmful substances such as benzene can be removed from gasoline. Furthermore, if the olefin can be separated and concentrated, an economically advantageous raw material production method for polymers and petrochemical products can be provided.
[0007]
The subject of the present invention is to provide a separation membrane for an organic liquid mixture, and a separation apparatus and method using the same, which are suitable for industrial application particularly in the fields of petroleum refining process and petrochemical industry from such a viewpoint. There is to do.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, a separation membrane for an organic liquid mixture of the present invention is a separation membrane used for changing the composition of an organic liquid mixture by a separation operation, and the organic liquid mixture is composed of paraffinic hydrocarbon and olefin. A mixture of hydrocarbons, the material of the separation membrane is polyacrylonitrile, and the separation membrane has micropores having an average diameter in the range of 4 to 10 nm. Become.
[0009]
The separation apparatus and method for an organic liquid mixture according to the present invention includes an apparatus using such a separation membrane and a method of performing membrane distillation using such a separation membrane.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
First, the membrane distillation method applied in the present invention is a membrane separation technology that obtains a vapor selectively enriched with a certain component from a liquid mixture through a membrane having fine pores, and supplies the liquid mixture to the primary side of the membrane. In this method, the secondary side is depressurized or swept with an inert gas or liquid such as nitrogen. The membrane distillation method in the present invention may be any of the above-mentioned methods, but the method of reducing the pressure on the secondary side requires maintaining a high-capacity apparatus at a high degree of vacuum, which is disadvantageous in terms of energy. A method of sweeping with a gas or a liquid having a temperature difference is advantageous.
[0011]
The organic liquid mixture that is the subject of the present invention contains, for example, any two or more hydrocarbon components of paraffinic hydrocarbons, olefinic hydrocarbons, naphthenic hydrocarbons, and aromatic hydrocarbons. In addition, non-hydrocarbon components such as sulfur compounds, nitrogen compounds, oxygen compounds, and metal compounds may be included. Examples of the organic liquid mixture include, but are not limited to, petroleum fractions such as naphtha, gasoline, kerosene, and light oil.
[0012]
Here, the paraffinic hydrocarbon is a saturated chain compound having a molecular formula of C n H 2n + 2 , and includes n -paraffins having no branches and branched isoparaffins, and specifically, for example, n-pentane. N-hexane, n-heptane, n-octane, n-nonane, n-decane, n-undecane, n-dodecane, 2-methylbutane, 2,2-dimethylpropane and the like. The olefinic hydrocarbon is a hydrocarbon having a double bond, and in the case of one double bond, it is a chain hydrocarbon represented by the general formula of C n H 2n. Examples include pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, and 1-dodecene. A naphthenic hydrocarbon is a hydrocarbon containing at least one saturated ring in one molecule, and is a cyclic compound having a basic structure consisting of cyclopentane having 5 carbon atoms and cyclohexane having 6 carbon atoms. is a C n H 2n. An aromatic hydrocarbon is a hydrocarbon containing at least one aromatic ring in one molecule. Specifically, for example, benzene, benzene having a side chain with toluene, xylene, etc. A compound.
[0013]
The temperature of the organic liquid mixture is not particularly limited as long as it is within the heat resistance range of the film, but a temperature at which the viscosity of the organic liquid mixture becomes extremely high is not preferable.
[0014]
Separation membrane used in the present invention is characterized by having an average pore size 4 up to 10 nm of the micropores. The average pore diameter range of this micropore is the Kelvin type
r = -2V ・ σ / [R ・ T ・ ln (P / P 0 )]
Can be estimated roughly. Here, r is the condensation radius, V is the molecular volume of the liquid, σ is the surface tension of the liquid, R is the gas constant, T is the absolute temperature, P 0 is the saturated vapor pressure, and P is the pressure that causes capillary condensation. That is, if the average pore diameter of the micropores in the separation membrane is within the range obtained from the Kelvin equation, a certain component causes capillary condensation in the micropores of the separation membrane and closes the micropores, so that other components can permeate. It is blocked and high separation performance is obtained. However, since there is a distribution in the pore size of the membrane, it is not always known whether a membrane having an average pore size estimated from the Kelvin equation exhibits high separation performance. Therefore, the performance of a membrane having an average pore size estimated from the Kelvin equation was investigated and examined, and it was found that in many separation membranes, high separation performance can be obtained if the average pore size is in the range of 4 to 10 nm. It was.
[0015]
The average pore diameter of the membrane is measured by the method described below. That is, it calculates and calculates | requires using the relationship of following Formula from the water permeability (Lp) of a membrane, and the membrane permeation rate (Jv) of water.
Jv = Lp ・ ΔP
Lp = (H / L) ・ [Rp 2 / (8η)]
Here, ΔP: intermembrane pressure difference, H: moisture content, L: film thickness, Rp: average pore radius, η: water viscosity.
[0016]
Further, the form of the separation membrane may be any shape such as a flat membrane, a saddle-like membrane, a hollow fiber membrane, and the form of the separation membrane module is also a flat plate type, spiral type, pleated type, saddle type, hollow fiber type. Any of these forms can be used in the present invention. In particular, a hollow fiber membrane which is advantageous from the viewpoint of solvent resistance because of its low self-supporting property, mechanical / mechanical characteristics, and module components, is a preferred shape.
[0017]
Material of the separating membrane, Ri Oh organic polymer that is resistant to the organic liquid mixture, in the present invention is a polyacrylonitrile.
[0018]
【Example】
Hereinafter, the present invention will be described with reference to more specific examples, but the present invention is not limited to these examples.
Example 1
Polyacrylonitrile hollow fiber membranes with an average pore diameter of 4.8 nm, outer diameter of 456 μm, and inner diameter of 315 μm are cut into approximately 20 cm lengths, 20 bundles are bundled and inserted into a glass mini-module, and both ends are potted with an epoxy adhesive. A membrane module for test was prepared. The effective membrane area was 3.8 × 10 −3 m 2 . Using this test module, an organic liquid mixture in which equimolar amounts of 1-decene and n-decane were mixed was separated. The temperature of the organic liquid mixture was adjusted to about 55 ° C., and the mixture was supplied inside the hollow fiber membrane at a flow rate of 0.2 m / sec. Nitrogen gas was allowed to flow outside the hollow fiber membrane at a membrane surface linear velocity of 0.9 m / second, and the permeated vapor was condensed and recovered with a cold trap of liquid nitrogen. When the concentration of the permeate component was measured by gas chromatography, the molar concentration of 1-decene was 61 mol%. The separation factor was 1.5, and separation beyond the level of vapor-liquid equilibrium occurred. The membrane permeation rate was 0.14 kg / (m 2 · hr).
[0020]
Comparative Example 1
Cut a polyacrylonitrile hollow fiber membrane with an average pore size of 0.38nm, an outer diameter of 433μm, and an inner diameter of 308μm to a length of about 20cm, bundle 20 pieces into a glass mini-module, and pot both ends with epoxy adhesive. A test membrane module was prepared. The effective membrane area was 4.8 × 10 −3 m 2 . Using this test module, an organic liquid mixture in which equimolar amounts of 1-decene and n-decane were mixed was separated. The organic liquid mixture is supplied to the inside of the hollow fiber membrane at a flow rate of 0.2 m / sec, and nitrogen gas is allowed to flow outside the hollow fiber membrane at a membrane surface velocity of 1.1 m / sec. The permeate vapor was condensed and recovered. The separation experiment was continued for 5 hours, but almost no permeate vapor could be recovered.
[0021]
Comparative Example 2
Cut polyphenylene sulfone hollow fiber membranes with an average pore diameter of 55nm, outer diameter of 1286μm, inner diameter of 812μm to a length of about 20cm, bundle them into a glass mini-module, and pot both ends with epoxy adhesive for testing. A membrane module was prepared. The effective membrane area was 4.3 × 10 −3 m 2 . Using this test module, an organic liquid mixture in which equimolar amounts of 1-decene and n-decane were mixed was separated. The organic liquid mixture is supplied to the inside of the hollow fiber membrane at a flow rate of 0.2 m / sec, and nitrogen gas is allowed to flow outside the hollow fiber membrane at a membrane surface velocity of 1.0 m / sec. The permeate vapor was condensed and recovered. When the concentration of the permeate component was measured by gas chromatography, the permeate composition was not changed and no separation occurred.
[0022]
【The invention's effect】
As described above, according to the separation membrane of the present invention and the apparatus and method using the separation membrane, high separation performance and membrane permeation rate can be achieved by utilizing the effect of capillary condensation, and the composition of the organic liquid mixture can be efficiently achieved. Can be changed. This membrane separation technique can be easily applied industrially and is extremely useful in the fields of petroleum refining processes and petrochemical industries that require a large amount of processing.

Claims (8)

分離操作により有機液体混合物の組成を変化させるのに用いる分離膜であって、前記有機液体混合物はパラフィン系炭化水素とオレフィン系炭化水素の混合物であり、前記分離膜の素材はポリアクリロニトリルであるとともに、前記分離膜には平均直径が4〜10nmの範囲にある微細孔を有していることを特徴とする有機液体混合物用分離膜。A separation membrane used for changing the composition of an organic liquid mixture by a separation operation, wherein the organic liquid mixture is a mixture of paraffinic hydrocarbon and olefinic hydrocarbon, and the material of the separation membrane is polyacrylonitrile The separation membrane for organic liquid mixture , wherein the separation membrane has fine pores having an average diameter in the range of 4 to 10 nm. 有機液体混合物がナフサ、ガソリン、灯油、軽油である、請求項1の有機液体混合物用分離膜。The separation membrane for an organic liquid mixture according to claim 1, wherein the organic liquid mixture is naphtha, gasoline, kerosene, or light oil . 分離膜が中空糸膜である、請求項1または2に記載の有機液体混合物用分離膜。 The separation membrane for an organic liquid mixture according to claim 1 or 2, wherein the separation membrane is a hollow fiber membrane. 分離膜が平膜である、請求項1または2に記載の有機液体混合物用分離膜。 The separation membrane for an organic liquid mixture according to claim 1 or 2, wherein the separation membrane is a flat membrane. 分離膜が管状膜である、請求項1または2に記載の有機液体混合物用分離膜。 The separation membrane for an organic liquid mixture according to claim 1 or 2, wherein the separation membrane is a tubular membrane. 請求項1ないし5のいずれかに記載の分離膜を用いていることを特徴とする、有機液体混合物用分離装置。6. A separation device for an organic liquid mixture, wherein the separation membrane according to claim 1 is used. 請求項1ないし5のいずれかに記載の分離膜を用いて膜蒸留することを特徴とする、有機液体混合物の分離方法。6. A method for separating an organic liquid mixture, wherein the membrane is distilled using the separation membrane according to any one of claims 1 to 5. 分離操作を膜蒸留法により行い、該膜蒸留法において膜の透過側を不活性ガスで掃引して蒸気圧勾配駆動力を維持する、請求項7の有機液体混合物の分離方法。8. The method for separating an organic liquid mixture according to claim 7, wherein the separation operation is performed by a membrane distillation method, and the permeation side of the membrane is swept with an inert gas to maintain the vapor pressure gradient driving force.
JP30498797A 1996-10-21 1997-10-20 Separation membrane for organic liquid mixture and separation apparatus and method using the same Expired - Fee Related JP3872576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30498797A JP3872576B2 (en) 1996-10-21 1997-10-20 Separation membrane for organic liquid mixture and separation apparatus and method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29822496 1996-10-21
JP8-298224 1996-10-21
JP30498797A JP3872576B2 (en) 1996-10-21 1997-10-20 Separation membrane for organic liquid mixture and separation apparatus and method using the same

Publications (2)

Publication Number Publication Date
JPH10180057A JPH10180057A (en) 1998-07-07
JP3872576B2 true JP3872576B2 (en) 2007-01-24

Family

ID=26561429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30498797A Expired - Fee Related JP3872576B2 (en) 1996-10-21 1997-10-20 Separation membrane for organic liquid mixture and separation apparatus and method using the same

Country Status (1)

Country Link
JP (1) JP3872576B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5624542B2 (en) 2009-07-10 2014-11-12 日本碍子株式会社 Carbon membrane manufacturing method, carbon membrane, and separation apparatus

Also Published As

Publication number Publication date
JPH10180057A (en) 1998-07-07

Similar Documents

Publication Publication Date Title
KR100843791B1 (en) Membrane separation for sulfur reduction
US7479227B2 (en) Liquid-phase separation of low molecular weight organic compounds
Fihri et al. Pervaporative desulfurization of gasoline: a review
US5396019A (en) Fluorinated polyolefin membranes for aromatics/saturates separation
Iyer et al. Hydrocarbon separations by glassy polymer membranes
US20020007587A1 (en) Process for purifying a liquid hydrocarbon fuel
CA2084382A1 (en) Crosslinked polyester amide membranes and their use for organic separations
US20100108605A1 (en) Ethanol stable polyether imide membrane for aromatics separation
WO2005042672A1 (en) Process for upgrading a liquid hydrocarbon stream with a non-porous or nano-filtration membrane
Baheri et al. Sorption, diffusion and pervaporation study of thiophene/n-heptane mixture through self-support PU/PEG blend membrane
US6316684B1 (en) Filled superglassy membrane
US20040173529A1 (en) Liquid-phase separation of low molecular weight organic compounds
US7837880B2 (en) Acid tolerant polymeric membrane and process for the recovery of acid using polymeric membranes
US5107058A (en) Olefin/paraffin separation via membrane extraction
CA2695614A1 (en) Acid tolerant polymeric membrane and process for the recovery of acid using polymeric membranes
WO2015175184A1 (en) Polyimide membranes with very high separation performance for olefin/paraffin separations
US9327248B1 (en) Copolyimide membranes with high permeability and selectivity for olefin/paraffin separations
JP3872576B2 (en) Separation membrane for organic liquid mixture and separation apparatus and method using the same
US20160236151A1 (en) High temperature resistant epoxy resins for producing hollow fiber membrane modules for high temperature gas separation applications
JP3872577B2 (en) Separation method of organic liquid mixture
JP2001038155A (en) Separation membrane for organic liquid mixture
JP3872605B2 (en) Separation membrane for organic liquid mixture
WO2008021068A2 (en) Enhanced membrane separation system
JP2001038157A (en) Separation membrane for organic liquid mixture
JPH10180059A (en) Separation membrane for organic liquid mixture, device and method using the membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees