JP3871272B2 - Sewage treatment facility and sewage treatment method - Google Patents

Sewage treatment facility and sewage treatment method Download PDF

Info

Publication number
JP3871272B2
JP3871272B2 JP2003186601A JP2003186601A JP3871272B2 JP 3871272 B2 JP3871272 B2 JP 3871272B2 JP 2003186601 A JP2003186601 A JP 2003186601A JP 2003186601 A JP2003186601 A JP 2003186601A JP 3871272 B2 JP3871272 B2 JP 3871272B2
Authority
JP
Japan
Prior art keywords
treatment
sewage
ultraviolet irradiation
path
irradiation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003186601A
Other languages
Japanese (ja)
Other versions
JP2005021725A (en
Inventor
洋介 今川
崇 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2003186601A priority Critical patent/JP3871272B2/en
Publication of JP2005021725A publication Critical patent/JP2005021725A/en
Application granted granted Critical
Publication of JP3871272B2 publication Critical patent/JP3871272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、合流式下水を処理する下水処理設備およびその下水処理設備における下水処理方法に関する。
【0002】
【従来の技術】
下水道には、雨水と汚水とを別の管渠で処理設備へ排水するように構成されている「分流式下水道」と、同一の管渠で処理設備へ送水する「合流式下水道」とがある。合流式下水道は管渠が一系統で済み、施工が容易で安価であることから、下水道設備の急速な普及が進んだ明治後期から昭和前期に大都市を中心に自治体に多く採用されている。
【0003】
合流式下水道では雨天時等に汚水と雨水とが混合した多量の汚濁水が発生して下水処理設備に流入するため、合流式下水道にかかる下水処理設備では、最初沈殿池、曝気槽、最終沈殿池、塩素混和池といった通常の処理経路のほか、この通常の処理経路の設計処理水量を超えた分の下水を最初沈殿池から導いて夾雑物除去処理などの簡易処理を施した後あるいは夾雑物除去を行わずに、塩素投入して殺菌処理を行って処理系外に排出する他の処理経路を設けている。
【0004】
しかし、超過分下水は短時間で多量に発生するため殺菌も短時間で行わなければならないところ、塩素投入による殺菌処理は滞留時間を必要とするため、必ずしも好適な殺菌処理ではない。また、滞留時間をなるべく短くするために大量の塩素投入を行う必要があり、残留塩素による放流先生態系へ悪影響を与える可能性を否定できないという問題があった。
【0005】
そこで、本発明者らは、このような超過分下水に対して塩素殺菌を行う問題点を解決すべく、先の出願(特願2002−378422)において、前記他の処理経路にかかる処理として渦流式固液分離手段を用いるとともに、その後段に、数秒〜1分以内の高速殺菌が可能な紫外線照射装置を配置して殺菌を行う技術を開示した。
【0006】
【特許文献】
特開2001−219193
特開2000−185280
特開平11−347583
特開平11−216497
特開平9−271772
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来技術は、比較的濁度の高い超過分下水に対して十分な殺菌処理を達成するために、高価な高出力の紫外線照射装置を要するにもかかわらず、予測し難い雨天時など通常の処理経路の設計処理水量を超える下水が処理系内に流入したときにしか用いられないため、殺菌という観点からは極めて優れている設備であるにもかかわらず、紫外線照射装置導入にかかるコストにみあうだけの稼働率を達成することが難しいという欠点があった。
【0008】
他方で、超過分下水が発生しないときには、塩素混和池において次亜塩素酸ナトリウムに代表される塩素によって殺菌を行う方法が確立されているが、近年、塩素の残留性等の問題が指摘されるようになってきており、塩素使用量の削減が求められている。
【0009】
そこで、本発明の主たる課題は、これまで超過分下水の殺菌にしか用いられていなかった紫外線照射装置を、通常の処理系路でも用いるようにして、紫外線照射装置導入にかかるコスト面での欠点を改善するとともに、晴天時であっても雨天時であってもそれぞれに応じた最適な殺菌処理を施せるようにし、さらに晴天時等の通常の処理における殺菌処理に用いられている塩素の使用量の削減をも図ることにある。
【0010】
【課題を解決するための手段】
上記課題を解決した本発明およびその作用効果は次記のとおりである。
<請求項1記載の発明>
合流式下水が流入する最初沈殿池、曝気処理を行う曝気槽、沈殿処理を行う最終沈殿池を少なくともこの順に備える主処理経路と、
前記主処理経路の設計処理水量を超えた超過分下水が最初沈殿池から供給され、その超過分下水の濁質除去処理を行う副処理経路とを備え、かつ、
前記主処理経路または副処理経路で処理された処理水の殺菌処理を行う、紫外線照射出力の制御が可能な紫外線照射装置と、塩素殺菌を図る塩素混和池と、を備える下水処理設備であって、
流入下水が前記主処理経路の設計処理水量を超えないときには、
前記主処理経路で処理された処理水が前記紫外線照射装置、塩素混和池の順に供給されて殺菌がなされ、
流入下水が前記主処理経路の設計処理水量を超えたときには、
前記主処理経路の設計処理水量分については主処理経路で処理された後、前記紫外線照射装置に供給されずに前記塩素混和池に供給されて殺菌処理がなされ、超過分下水については前記副処理経路で処理された後、前記紫外線照射装置に供給されて殺菌がなされる、
ように構成されていることを特徴とする下水処理設備。
【0011】
<請求項2記載の発明>
前記紫外線照射装置の前段に、前記紫外線照射装置に供給される処理水の汚濁度を測定する汚濁度測定手段および前記紫外線照射装置に供給される処理水の流量を測定する流量測定手段の少なくとも一方を備える請求項1記載の下水処理設備。
【0012】
<請求項3記載の発明>
前記汚濁度測定手段の測定値および流量の測定値の少なくとも一方に基づいて、前記紫外線照射装置の紫外線照射出力を自動的に制御する照射出力自動制御手段を備える請求項2記載の下水処理設備。
【0013】
<請求項4記載の発明>
前記副処理経路に、渦流式固液分離装置および繊維濾過装置の少なくとも一方を含む請求項1〜3のいずれか1項に記載の下水処理設備。
【0014】
<請求項5記載の発>
合流式下水が流入する最初沈殿池、曝気処理を行う曝気槽、沈殿処理を行う最終沈殿池を少なくともこの順に備える主処理経路と、
前記主処理経路の設計処理水量を超えた分の下水が最初沈殿池から供給され、その超過分下水の濁質除去処理を行う副処理経路とを備え、かつ、
前記主処理経路または副処理経路で処理された処理水の殺菌処理を行う、紫外線照射出力の制御が可能な紫外線照射装置と、塩素殺菌を図る塩素混和池と、を備える下水処理設備における下水処理方法であって、
流入下水が前記主処理経路の設計処理水量を超えないときには、
前記主処理経路で処理された処理水を前記紫外線照射装置、塩素混和池の順に供給して殺菌を行い、
流入下水が前記主処理経路の設計処理水量を超えたときには、
前記主処理経路の設計処理水量分については主処理経路で処理した後、前記紫外線照射装置に供給せずに前記塩素混和池に供給して殺菌処理を行い、超過分下水については前記副処理経路で処理した後、前記紫外線照射装置に供給して殺菌を行う、
ことを特徴とする下水処理方法。
【0015】
<請求項6記載の発明>
流入下水が前記主処理経路の設計処理水量を超えないときにおける紫外線照射装置の出力を、流入下水が前記主処理経路の設計処理水量を超えたときにおける紫外線照射装置の出力よりも、低い出力で紫外線照射する請求項5記載の下水処理設備の運転方法。
【0016】
<請求項7記載の発明>
前記紫外線照射装置に供給する処理水の汚濁度および流量の少なくとも一方を測定し、その測定値に基づいて、前記紫外線照射装置の紫外線照射出力を制御する請求項5または6記載の下水処理方法。
【0017】
<請求項8記載の発明>
前記副処理経路において、渦流式固液分離装置および濾過装置の少なくとも一方を用いて濁質除去処理を行う請求項5〜7のいずれか1項に記載の下水処理方法。
【0018】
(作用効果)
本発明では、従来、超過分下水にのみ用いられた紫外線照射装置を、晴天時等の超過下水部が発生しない場合における主処理経路で処理された処理水に対しても適用する構成とした。このため紫外線照射装置が非稼動となることがなくなり、コストにみあう運転がなされる。また、常時稼動であり紫外線照射装置のON/OFFを繰り返さないので紫外線照射ランプのランプライフの点からも有利な効果がある。
【0019】
一方、本発明では、超過分下水が発生しない場合に主処理経路で処理された処理水に対して、塩素混和池の前段に紫外線照射装置を配置して、紫外線殺菌、塩素殺菌の順に殺菌を行う。このように構成すると後段の塩素混和池の負荷が減り、使用する塩素量が削減され、塩素使用量の削減により、放流先における生態系の影響も小さいものとなる。また、塩素殺菌と紫外線殺菌との組み合わせにより、塩素耐性の高い例えばクリプトスポリジウム、ジアルジア等についても効果的な殺菌が期待できる。さらに、紫外線照射装置および塩素殺菌による処理とすると殺菌時間の大幅な短縮が図られる。
【0020】
他方、本発明者らは、紫外線照射装置、塩素混和池をこの順に構成すると、塩素混和池、紫外線照射装置の順に配置するのと比較して、塩素残留性が少なく、濁質に付着した細菌への効果が高く、細菌の光回復が小さいという利点があることを知見しており、本発明ではこのような効果も得られる。
【0021】
まとめると、超過分下水が発生しない場合には、紫外線殺菌および塩素混和池により殺菌がなされるので、塩素の使用量が削減されるとともに、紫外線殺菌装置が使用されることにより、これまで超過分下水が発生したときにしか使用されず非稼動とされなくなる効果が得られ、超過分下水が発生したときには、従来例と同様に、主処理経路分については塩素による殺菌、超過分下水に対しては紫外線殺菌がなされ、双方に対して殺菌がなされた後に放流され未殺菌の処理水が放流されることがなくなる効果がえられる。
【0022】
他方、本発明に用いる紫外線照射装置は、紫外線の照射出力を可変とすることができるものとする。これは、主処理経路で処理された処理水は、曝気処理および終沈処理を経るため汚濁度が低い。従って、紫外線透過度が高く低い照射出力で高い殺菌効果が得られる。一方で、主処理経路の設計水量を超える超過分下水は、雨天時等に発生することがおおく、さらに、副処理経路における処理が比較的簡易な処理であることもあって、主処理経路で処理された処理水と比較して汚濁度が高く紫外線透過度が低い。従って、紫外線照射により殺菌するにあたっては主処理経路で処理された処理水よりも高出力での紫外線照射が必要となる。このため紫外線照射出力を可変とすると、各々の処理水に対して効果的なあるいは最低限必要な出力での紫外線照射が可能となり、照射に用いるエネルギーコストを抑えることができる。
【0023】
他方、前記紫外線照射装置の前段に、前記紫外線照射装置に供給される処理水の汚濁度を測定する汚濁度測定手段および前記紫外線照射装置に供給される処理水の流量を測定する流量測定手段の少なくとも一方を備えると、紫外線照射装置の紫外線照射出力を最適なものとすることができる。なお、本発明でいう汚濁度とは、紫外線透過度に影響を及ぼす汚濁水の汚れ具合の指標となる値であり、少なくとも濁度、COD、BOD、TOC、TOD、紫外線透過率を含む意味である。
【0024】
また、副処理経路に、渦流式固液分離装置および濾過装置の少なくとも一方を設けると、紫外線照射するにあたって有効な濁質除去がなされ、紫外線透過度が上昇し、好適な紫外線照射による殺菌が効果的に行える。すなわち、固形分が多く含まれ濁度が高い被処理水であると、紫外線の透過率が低く紫外線照射しても所望の殺菌効果が得られないことがあるが、紫外線照射装置の前段に渦流式固液分離装置や高速濾過装置を設けて、汚濁水中の固形物を分離除去すれば、被処理水の紫外線透過率が高まるので、後段の紫外線照射装置による殺菌処理が効果的に行われる。
【0025】
【発明の実施の形態】
以下に、本実施の形態を図面を参照しながら以下に詳述する。
図1は、本実施の形態にかかる下水処理設備を示す図である。図中、1は沈砂池、2は最初沈殿池、3は曝気槽、4は最終沈殿池、5は紫外線照射装置、6は塩素混和池、7は渦流式固液分離装置、8は高速繊維濾過装置、V1〜V3は流路切替弁、Fは流量計、P1およびP2は汚濁度計、をそれぞれ示す。また、図中点線Aで囲まれた領域は主処理経路、点線Bで囲まれた領域は副処理経路をそれぞれ示す。本設備は、前記流路切替弁V1〜V3により、L1〜L4への流路の切り替えが行われる。
【0026】
また、用いる紫外線照射装置は、出力が可変のものとし、さらには、前記主処理経路Aで処理された比較的濁度が低い処理水に対して殺菌が行える程度の出力から、雨天時に副処理経路で処理された濁度の高い処理水に対して殺菌が行える程度の高出力まで、出力可変ができるものとする。
【0027】
以下に、本下水処理設備の説明も含めつつ、晴天時など下水処理設備内に流入する合流式下水が主処理経路Aの設計処理水量を超えない場合(以下、単に晴天時と記載する)と、雨天時など主処理経路Aの設計処理水量を超える合流式下水が下水処理設備内に流入する場合(以下、単に雨天時と記載する)とに分けて、本下水処理設備における下水処理方法を詳述する。
【0028】
<晴天時における下水処理>
本実施の形態にかかる下水処理設備(以下、単に本下水設備と記載する。)では、合流式下水道を通った合流式下水(以下、単に下水と記載する。)は、まず沈砂池1に流入される。沈砂池1では、下水中の比較的大きな夾雑物がスクリーンにより除去される。
【0029】
沈砂池1で夾雑物が除去された下水は、次いで最初沈殿池2に供給される。最初沈殿池2では、曝気処理の予備処理として下水中の有機成分等を主体とする比重の大きいSSを沈殿分離する。この最初沈殿池における沈殿処理は、従来既知の方法に従って処理することができ、沈殿時間なども従来既知の方法に従って適宜選択することができる。
【0030】
最初沈殿池で処理された下水(清澄分)は、晴天時には、全て曝気槽に供給される。曝気槽では、従来既知の処理方法に従って、曝気処理を行う。曝気処理は、例えば、好気性菌と混合するとともに空気あるいは酸素等を供給して行う生物処理とすることができる。この場合、用いる菌類や曝気時間等は、従来既知の技術に従って適宜選択することができる。曝気処理により浮遊物(フロック)が形成される。
【0031】
次いで、曝気処理されたフロック等を含む処理水を最終沈殿池に供給して、比重が小さく流れによって浮遊しやすいフロックを沈殿分離する。最終沈殿池における処理についても、従来既知の技術により行うことができる。
【0032】
最終沈殿池で分離された清澄分についは、本設備では、晴天時においては紫外線照射装置に供給する。すなわち、紫外線照射装置は、後述の超過分下水にも用いるが、晴天時においては超過分下水は発生しない。従って、紫外線照射装置が非稼動となるのを防止すべく、晴天時においては曝気処理までの主処理経路Aにより処理された処理水(以下、清澄液と記載する)を供給する。
【0033】
紫外線照射装置においては、前記清澄液は濁度が低く紫外線透過度が高いことに留意して、過度の出力にならないように気をつけながら紫外線照射量および照射時間を決定する。そして、このような点に留意しつつ、紫外線照射装置における照射出力は、前記紫外線照射装置に供給する処理水の汚濁度により決定することができる。ここで汚濁度の測定は、紫外線照射装置に通ずる管渠等あるいは前段に貯留槽を設けその貯留槽に、紫外線透過率計、濁度計、COD計、BOD計、TOC計、TOD計等の測定手段のうち少なくとも一つ測定手段P1を設けて、前記清澄液の濁度、COD値、BOD値,TOC値、TOD値、紫外線透過率等を測定し、この測定値M1から清澄液に対して最適な殺菌が行える照射出力値を決定することができる。
【0034】
ここで、紫外線照射装置としては、図2に示されるように、被処理水を流通させる管50内に紫外線照射用のランプ51,51…が複数配置され、このランプを点灯させた状態で、管内に一方側50Aから被処理水Wを流通させ他方側50Bから排出させて、紫外線照射を行う紫外線照射装置5を用いるのが好適である。このような構成の紫外線照射装置5は、被処理水Wを流しつつ紫外線照射処理できるので、晴天時に清澄液を流通させて処理するのに適するほか、雨天時に不定期に大量に流入する超過分下水を迅速に処理および殺菌するのにも適するからである。通常は清澄液の紫外線(254nm)の透過率は30〜80%Tであるので、紫外線出力を1〜2kW程度とすれば、5秒〜1分程度の滞留時間で殺菌が可能である。
【0035】
紫外線照射装置5で、殺菌がなされた殺菌処理水は、次いで、塩素混和池6に供給される。ここで、清澄液を紫外線照射装置5、塩素混和池6の順に流通させるには、図中の流路切替弁V1〜V3を操作して、清澄液が流路L1、L2、L3を通るようにするとともに、流路L4、L5を通らないようにする。こうすると、清澄液が紫外線照射装置5を通らずに塩素混和池6に供給されることがなく、また、紫外線照射装置5を通った処理水が塩素混和池6に供給されないで流路L5から処理系外に排出されることがなくなり、最終沈殿池4からの清澄液が紫外線照射装置5に導かれ紫外線照射された後、塩素混和池6に供給されるようになる。塩素混和池6では、前段で紫外線による殺菌が既に行われているため、紫外線による殺菌効果を維持および補助を目的とした、極めて短時間、かつ、少量の塩素投入での処理とすることができる。塩素投入量については、前段の紫外線照射装置5における紫外線照射出力にも左右されるが、従来の1/4〜1/15程度とすることができる。また、塩素との混和時間についても従来の1/4〜1/10程度でよい。塩素混和池6におけるその他の操作については従来既知の技術により行うことができる。例えば、塩素殺菌に用いる薬剤としては、次亜塩素酸ナトリウム等の従来既知の薬剤を用いることができる。塩素混和池6で塩素殺菌がなされた処理済水は、処理系外に排出することができる。例えば、河川等に放流することができる。
【0036】
<雨天時における処理>
次いで、雨天時における下水処理を説明する。雨天時においても沈砂池1、最初沈殿池2における処理は晴天時と同様である。雨天時においては、主処理経路Aの設計処理水量を超える下水が発生するので、この場合には、最初沈殿池2から、その超過分下水を副処理経路Bに導く。この副処理経路Bに導く方法としては、最初沈殿池1から曝気槽3に向かう管渠の途中に堰を設けて、堰を越えた分の下水が副処理経路に向かうように管渠を構成する。なお、このように堰を越えた分の下水は、越流水と呼ばれることもあるが、本明細書では超過分下水という。
【0037】
そして、主処理経路Aの設計水量分として、堰を越えずに曝気槽3に供給された下水は、晴天時と同様に曝気処理が施された後、最終沈殿池4に供給され同様に晴天時と同様に沈殿処理がなされる。すなわち、主処理経路Aにて晴天時と同様に処理される。
【0038】
そして雨天時において主処理経路Aで処理された処理水は、晴天時とは異なり紫外線照射装置5に供給することなく、塩素混和池6に供給する。これは、紫外線照射装置5は、前記超過分下水に対する処理に用いるため、主処理経路Aで処理された処理水については、紫外線照射装置5を用いないようにするためである。このような主処理経路Aで処理された処理水を紫外線照射装置5に通さないようにするには、流路切替弁V1,V2を操作して、清澄液が流路L4、L3を流れるようにするとともに、流路L1,L2を通らないようにする。
【0039】
このようにして、塩素混和池6に供給された清澄液は、塩素との混和により殺菌処理を図る。ここでの塩素殺菌は、前段において紫外線殺菌がなされていないので、従来技術に従った塩素量、混和時間とする。そして、塩素混和池6で殺菌処理された後、処理系外に排出する。例えば、河川に放流する。
【0040】
一方、副処理経路Bに導かれた超過分下水は、副処理経路Bで濁質除去処理が行われる。超過分下水は、多量かつ短時間で急激に増加するため、用いる濁質除去処理としては、長時間の沈殿時間を必要とする沈殿処理槽等は不適であり、迅速に処理を行える固液分離装置7を用いる必要がある。固液分離装置として好適なのは、渦流式固液分離装置である。渦流式固液分離装置は、円筒型水槽内に被処理水を前記水槽の接線方向に沿って送入し、前記水槽内で渦流を発生させて固形分を前記水槽の中央下部に集めることで清澄分と固形分と分離し、清澄分を水槽外に送りだすとともに、集めた固形分を水槽下部に設けられた引抜き弁の開閉およびポンプ手段により水槽外に引抜いて固液分離するものであり、具体例としては、図3に示すように、円筒型水槽70の内部に円筒型スクリーン71が縦向きに配置され、この円筒型スクリーン71内に被処理水を前記スクリーン71の接線方向に沿って送入し、前記スクリーン71内で渦流を発生させて清澄分を前記スクリーン71を通して槽外に送り出しつつ前記固形分を水槽70の中央下部72に集め、この集めた固形分を水槽70の外に引抜くように構成されたものが挙げられる。
【0041】
なお、本下水設備の副処理経路Bは、渦流式固液分離装置の後段に凝集剤添加手段を設け、さらに、この凝集剤添加手段の後段にさらに別の渦流式固液分離装置を設けて、第1の渦流式固液分離装置、従来既知の凝集剤添加装置、第2の渦流式固液分離装置をこの順に設置するのが好適である。
【0042】
また、副処理経路における固液分離装置は、高速繊維濾過を用いることができる。ただし、高濁度の超過分下水を高速繊維濾過装置のみで処理しようとすると、補足した固形分の除去の手間がかかるため、高速繊維濾過装置を用いるときは、前記渦流式固液分離装置、高速繊維濾過装置の順で配置するのがよい。
【0043】
雨天時には、このように副処理経路Bで濁質除去処理を行った濁質除去処理水を上記晴天時の処理の際に用いていた紫外線照射装置5に供給する。従って、上述のとおり雨天時において主処理経路Aで処理された処理水は、流路切替弁V1,V2の操作により流路L1,L2を通らないようにして紫外線照射装置5には供給されないようにする。ここで、紫外線照射装置5の出力は雨天時には晴天時と異なり、終沈処理されているわけではないので汚濁度が高い。従って、晴天時のときよりも高出力としなければならない点に留意しながら照射出力を決定する必要がある。紫外線照射装置5における照射出力は、晴天時と同様に、前記紫外線照射装置5に供給する処理水の汚濁度により決定することができる。ここで汚濁度の測定は、晴天時と同様に、紫外線照射装置に通ずる管渠等あるいは前段に貯留槽を設けその貯留槽に、紫外線透過率計、濁度計、COD計、BOD計、TOC計、TOD計等の測定手段のうち少なくとも一つ測定手段P2を設けて、前記処理水の濁度、COD値、BOD値,TOC値、TOD値、紫外線透過率等を測定し、この測定値M2から被処理水に対して最適な殺菌が行える照射出力値を決定することができる。
【0044】
紫外線照射装置5により殺菌がなされた殺菌処理水は、雨天時においては、流路切替弁V3を操作して流路L5を通るようにして、塩素混和池6に送ることなく処理系外に排出する。例えば、河川に放流する。塩素混和池6では、主処理経路Aで処理された処理水の処理を行う必要があるからである。
【0045】
(その他)
なお、本下水設備における流路切替弁V1〜V3の操作は、最初沈殿池2から副処理経路Bに向かう管渠の途中に超過分下水の発生を知らせる流量計Fを設け、この流量計Fの測定値に基づいて、設備管理者等が手動で行ってもよいし、既知のコンピュータ制御手段等により自動制御で切り替えるように構成してもよい。また、汚濁度に基づく紫外線照射装置5の照射出力制御についても、測定値M1,M2に基づいて管理者などが手動で行ってもよいし、既知のコンピュータ制御等による自動制御としてもよい。紫外線照射装置5の照射出力を変化させる具体的な操作については、用いる紫外線照射装置5の操作方法による。
【0046】
上記紫外線照射出力の変更は、濁度に応じて変更する場合を例にすると、汚濁度測定計P1,P2で測定された清澄液または濁質除去水の濁度M1,M2が所定値A値を超えるまでは紫外線照射出力を出力αにし、濁度が高まり所定値A値を超えたならば、紫外線照射出力を出力αから出力βに上昇させ、さらに濁度が高まり所定値B値を超えたならば、紫外線照射出力を出力βから出力γに上昇させるように紫外線照射出力を変化させる。反対に、汚濁度測定計P1,P2で測定された測定値M1,M2が所定値B未満になったならば、紫外線照射出力を出力γから出力βに低下させ、さらに濁度が低下して所定値A未満となったならば、紫外線照射出力を出力βから出力αに低下させるように紫外線照射出力を変化させることができる。紫外線照射出力を出力α→出力β→出力γあるいは出力γ→出力β→出力αというように段階的に変動させるのではなく、濁度の経時的な連続的変化に応じて、紫外線照射出力も経時的に連続的に変化させることができる。
【0047】
また、前記例は濁度による制御であるが、上述のとおり、汚濁度測定計P1,P2で測定した、紫外線透過率、COD値、BOD値、TOC値、TOD値の測定値に応じて、紫外線照射出力を変化させることもできる。また、照射出力を決定すべき判断値として、紫外線透過率または濁度の測定値とCOD値との乗算値、紫外線透過率または濁度とCOD値の和算値、紫外線透過率または濁度の測定値とBOD値との乗算値、あるいは、紫外線透過率または濁度の測定値とBOD値とCOD値との乗算値など適宜決定することができる。
【0048】
他方で、紫外線照射装置5における殺菌効率は、前記汚濁度のほか、紫外線照射装置に供給する流量にも左右される。すなわち、流量が多い場合には、短時間で紫外線照射装置5を通過するので、高出力での照射が必要となる。そこで、最終沈殿池4から紫外線照射装置5に向かう管渠の途中に清澄液の流量を測定する流量計F2を設け、副処理経路Bから紫外線照射装置5に向かう管渠の途中に流量計F3を設けて、晴天時においては清澄液、雨天時においては濁質除去水の流量をそれぞれ測定するとともに、これらの流量計で測定された流量を考慮して紫外線照射装置5における紫外線照射出力を決定することができる。変更の具体的態様は、前記濁度に基づく例と同様に行うことができる。
【0049】
もっとも望ましくは、上述汚濁度と流量との測定値の双方を考慮して紫外線照射出力を決定する。この場合には、例えば、汚濁度×流量で表される演算値を紫外線照射出力決定パラメータとして、当該パラメータに応じて紫外線照射装置5の紫外線照射出力を適宜定めることができる。
【0050】
<実験例>
次いで、本発明の実験例を示す。
(実験1:雨天時想定殺菌実験)
雨天時の超過分下水に対する処理を想定して高濁質(紫外線透過率30%T)の擬似排水を用いて、紫外線照射装置により殺菌処理した場合と、塩素殺菌した場合とについて、殺菌時間や菌類の不活化率等を比較検討した。殺菌対照とした菌類は、大腸菌群である。紫外線照射装置は、4kW出力の中圧水銀ランプを内部に2本配した通水タイプのものを用いた。
【0051】
紫外線照射装置における紫外線出力は、8kWとした。一方、塩素殺菌における塩素投入量は、10mg-CL/Lとした。その他の実験条件および結果は、表1に示す。
【0052】
【表1】

Figure 0003871272
【0053】
表1からわかるように、大腸菌群の不活化率は、塩素殺菌の場合も紫外線殺菌の場合もほぼ同様であることがわかる。ここで、殺菌に要した時間に着目してみると、紫外線殺菌の場合は、殺菌時間が0.2minと極めて短時間であるのに対して、塩素殺菌の場合は殺菌時間が15minと長時間を要している。このことは、紫外線殺菌は、塩素殺菌と比較して極めて短時間で同様の殺菌効果があることを表している。そうすると、紫外線殺菌は、雨天時において短時間に多量に発生する超過分下水を迅速に処理可能な殺菌方法であるといえる。
【0054】
(実験2:晴天時想定殺菌実験)
晴天時に主処理経路で処理された処理水に対して殺菌処理を行った場合を想定して下水処理場の二次処理水(紫外線透過率50%T)を擬似処理水として用い、紫外線殺菌、塩素殺菌の順に殺菌処理した場合(以下、UV-CL処理と記載)と、塩素殺菌のみとした場合とについて、塩素投入量、殺菌時間、菌類の不活化率等を比較検討した。殺菌対照とした菌類は、実験1と同様に大腸菌群であり、用いた紫外線照射装置も実験1で用いたものと同様である。ただし、実験2においては紫外線出力を2.4kWとした。その他の実験条件および結果は、表2に示す。
【0055】
【表2】
Figure 0003871272
【0056】
表2からわかるように、大腸菌群の不活化率は、UV−CL処理の場合も塩素の殺菌のみの場合もほぼ同様であることがわかる。ここで、殺菌に要した時間に着目してみると、UV−CL処理の場合は、5secの紫外線照射と1minの塩素処理という極めて短時間である。それ対して、塩素殺菌の場合は殺菌時間が15minと長時間を要している。さらに、UV−CL処理の場合には、塩素投入量が1mg-CL/Lであるの対して、塩素殺菌のみの場合は、4mg-CL/Lであり、1/4の塩素投入量となっている。このことは、UV−CL処理は、塩素殺菌のみと比較して極めて短時間で殺菌でき、かつ塩素投入量を削減できることを示している。そうすると、UV−CL処理は、晴天時における主処理経路で処理された処理水を短時間でかつ低塩素投入量で殺菌処理できる処理方法であり、これは残留塩素濃度を低減できる殺菌方法であるともいえる。
【0057】
なお、本実験1および2により、雨天時および晴天時ともに同じ紫外線殺菌装置を使用して効率的な処理が可能であることも示された。
【0058】
【発明の効果】
以上詳述のとおり、晴天時では、紫外線殺菌、塩素混和池の順に殺菌を行うことにより、塩素混和池での塩素使用量が削減されるとともに、これまで予測できない雨天時にしか使用されていなかった紫外線照射装置を有効に活用できるようになる効果が得られる。また、雨天時においては、紫外線照射による超過分下水に対して迅速な殺菌が行われるとともに、設計処理水量分に対して塩素混和池における通常の殺菌処理が図られ、未殺菌の処理水が放流等されることがないという効果が得られる。
【図面の簡単な説明】
【図1】本実施の形態にかかる下水処理設備および下水処理方法を説明するためのフロー図である。
【図2】紫外線照射装置の例を示す図である。
【図3】渦流式固液分離装置の例を示す斜視図である。
【符号の説明】
1…沈砂池、2…最初沈殿池、3…曝気槽、4…最終沈殿池、5…紫外線照射装置、6…塩素混和池、7…渦流式固液分離装置、8…高速繊維濾過装置、50…紫外線照射装置外管、51…紫外線照射ランプ、 70…円筒型水槽、71…円筒型スクリーン、72…円筒型水槽中央底部、B…副処理経路、F,F1,F2…流量計、L1、L2、L3、L4…流路(管渠)、P1,P2…汚濁度測定手段、V1,V2,V3…流路切替弁(可動堰)、W…被処理水。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sewage treatment facility for treating combined sewage and a sewage treatment method in the sewage treatment facility.
[0002]
[Prior art]
There are two types of sewers: “Separated sewer”, which is configured to drain rainwater and sewage into separate treatment pipes, and “Combined sewer”, which sends water to the treatment equipment using the same pipe. . The combined sewerage system has been adopted by local governments mainly in large cities from the late Meiji to the early Showa era when the sewerage system was rapidly popularized because it only requires one system of pipes and is easy to construct and inexpensive.
[0003]
In the combined sewer, a large amount of contaminated water mixed with sewage and rainwater is generated in rainy weather and flows into the sewage treatment facility. Therefore, in the sewage treatment facility for the combined sewer, the first sedimentation tank, aeration tank, and final sedimentation In addition to normal treatment paths such as ponds and chlorine-mixing ponds, or after sewage that exceeds the design treatment amount of this normal treatment path is first introduced from the settling basin and subjected to simple treatment such as contaminant removal treatment, or impurities Instead of removing, another processing path is provided in which chlorine is added to perform sterilization and discharge out of the processing system.
[0004]
However, since excessive sewage is generated in a large amount in a short time, the sterilization must be performed in a short time. However, the sterilization process by adding chlorine requires a residence time, and thus is not necessarily a suitable sterilization process. In addition, in order to shorten the residence time as much as possible, it is necessary to perform a large amount of chlorine input, and there is a problem that it is not possible to deny the possibility that residual chlorine will adversely affect the destination ecosystem.
[0005]
Therefore, in order to solve the problem of performing chlorine sterilization on such excess sewage, the present inventors in the previous application (Japanese Patent Application No. 2002-378422) have eddy currents as a process related to the other process path. Disclosed is a technique for disinfecting by using an ultraviolet irradiation device capable of high-speed sterilization within a few seconds to 1 minute in the subsequent stage while using a solid-liquid separation unit.
[0006]
[Patent Literature]
JP 2001-219193 A
JP 2000-185280 A
JP-A-11-347583
JP-A-11-216497
JP-A-9-271772
[0007]
[Problems to be solved by the invention]
However, the above-mentioned prior art usually requires an expensive, high-power ultraviolet irradiation device to achieve sufficient sterilization treatment for excess sewage with a relatively high turbidity, but it is usually difficult to predict in rainy weather. Because it is used only when sewage exceeding the design treatment amount of the treatment path flows into the treatment system, the cost of introducing the ultraviolet irradiation device is high despite the fact that it is an extremely excellent facility from the viewpoint of sterilization. There was a drawback that it was difficult to achieve an operating rate that would just meet.
[0008]
On the other hand, when excess sewage does not occur, a method of sterilizing with chlorine typified by sodium hypochlorite in a chlorine-mixing pond has been established, but problems such as chlorine persistence have been pointed out in recent years. There is a need to reduce the amount of chlorine used.
[0009]
Therefore, the main problem of the present invention is that the ultraviolet irradiation device that has been used only for the sterilization of excess sewage so far is also used in a normal treatment system, so that it is a disadvantage in terms of cost for introducing the ultraviolet irradiation device. The amount of chlorine used for sterilization treatment in normal processing such as in fine weather, so that it can be optimally sterilized depending on whether it is sunny or rainy. It is also intended to reduce the amount.
[0010]
[Means for Solving the Problems]
The present invention that has solved the above-described problems and the effects thereof are as follows.
<Invention of Claim 1>
A main treatment path comprising at least a first sedimentation basin into which combined sewage flows, an aeration tank for performing aeration treatment, and a final sedimentation basin for carrying out precipitation treatment in this order;
An excess sewage that exceeds the design treated water amount of the main treatment path is first supplied from the settling basin, and includes a sub-treatment path that performs turbidity removal treatment of the excess sewage, and
A sewage treatment facility comprising an ultraviolet irradiation device capable of controlling ultraviolet irradiation output and performing a sterilization treatment of treated water treated in the main treatment path or the sub-treatment path, and a chlorine mixing pond for chlorination. ,
When the inflow sewage does not exceed the design treatment amount of the main treatment path,
The treated water treated in the main treatment path is supplied in the order of the ultraviolet irradiation device and the chlorine basin, and sterilized,
When the inflow sewage exceeds the design treatment amount of the main treatment path,
After the amount of the design treated water in the main treatment path is treated in the main treatment path, it is supplied to the chlorine-mixing basin without being supplied to the ultraviolet irradiation device, and is sterilized. After being treated by the route, it is supplied to the ultraviolet irradiation device to be sterilized.
A sewage treatment facility characterized by being configured as follows.
[0011]
<Invention of Claim 2>
At least one of a turbidity measuring unit for measuring the turbidity of the treated water supplied to the ultraviolet irradiating device and a flow rate measuring unit for measuring the flow rate of the treated water supplied to the ultraviolet irradiating device, in the preceding stage of the ultraviolet irradiating device A sewage treatment facility according to claim 1.
[0012]
<Invention of Claim 3>
The sewage treatment facility according to claim 2, further comprising an irradiation output automatic control unit that automatically controls an ultraviolet irradiation output of the ultraviolet irradiation device based on at least one of a measurement value of the pollution degree measurement unit and a measurement value of a flow rate.
[0013]
<Invention of Claim 4>
The sewage treatment facility according to any one of claims 1 to 3, wherein the sub-treatment path includes at least one of a vortex type solid-liquid separation device and a fiber filtration device.
[0014]
<Derivation of Claim 5>
A main treatment path comprising at least a first sedimentation basin into which combined sewage flows, an aeration tank for performing aeration treatment, and a final sedimentation basin for carrying out precipitation treatment in this order;
A sewage in excess of the design treatment amount of the main treatment path is first supplied from the settling basin, and a sub-treatment path for performing turbidity removal treatment of the excess sewage, and
Sewage treatment in a sewage treatment facility comprising a UV irradiation device capable of controlling the UV irradiation output and performing a sterilization treatment of the treated water treated in the main treatment path or the sub-treatment path, and a chlorine mixing pond for chlorination. A method,
When the inflow sewage does not exceed the design treatment amount of the main treatment path,
The treated water treated in the main treatment path is supplied in the order of the ultraviolet irradiation device and the chlorine-mixing basin to sterilize,
When the inflow sewage exceeds the design treatment amount of the main treatment path,
The amount of the design treatment water in the main treatment path is treated in the main treatment path, and then supplied to the chlorine-mixing basin without being supplied to the ultraviolet irradiation device, and the sterilization treatment is performed for excess sewage. After processing with, supply to the ultraviolet irradiation device to sterilize,
A sewage treatment method characterized by the above.
[0015]
<Invention of Claim 6>
The output of the ultraviolet irradiation device when the inflow sewage does not exceed the design treatment water amount of the main treatment path is lower than the output of the ultraviolet irradiation device when the inflow sewage exceeds the design treatment water amount of the main treatment path. The method of operating a sewage treatment facility according to claim 5, wherein the ultraviolet ray is irradiated.
[0016]
<Invention of Claim 7>
The sewage treatment method according to claim 5 or 6, wherein at least one of a turbidity and a flow rate of treated water supplied to the ultraviolet irradiation device is measured, and an ultraviolet irradiation output of the ultraviolet irradiation device is controlled based on the measured value.
[0017]
<Invention of Claim 8>
The sewage treatment method according to any one of claims 5 to 7, wherein in the sub-treatment path, turbidity removal treatment is performed using at least one of a vortex solid-liquid separation device and a filtration device.
[0018]
(Function and effect)
In the present invention, conventionally, the ultraviolet irradiation device used only for the excess sewage is configured to be applied to the treated water treated in the main treatment path when the excess sewage part does not occur during fine weather. For this reason, the ultraviolet irradiation device is not deactivated, and an operation that matches the cost is performed. Moreover, since it is always operating and the ultraviolet irradiation device is not repeatedly turned ON / OFF, there is an advantageous effect from the viewpoint of the lamp life of the ultraviolet irradiation lamp.
[0019]
On the other hand, in the present invention, when the excess sewage is not generated, an ultraviolet irradiation device is disposed in the preceding stage of the chlorine mixing basin for the treated water treated in the main treatment path, and sterilized in the order of ultraviolet sterilization and chlorine sterilization. Do. When configured in this manner, the load on the subsequent chlorine mixing pond is reduced, the amount of chlorine used is reduced, and the influence of the ecosystem at the discharge destination is reduced by reducing the amount of chlorine used. In addition, effective sterilization can be expected with respect to, for example, Cryptosporidium, Giardia and the like having high chlorine resistance by combining chlorine sterilization and ultraviolet sterilization. Furthermore, when the treatment is performed by an ultraviolet irradiation device and chlorine sterilization, the sterilization time can be greatly shortened.
[0020]
On the other hand, the present inventors have configured the ultraviolet irradiation device and the chlorine mixing pond in this order, so that there is less residual chlorine and bacteria attached to the turbidity than arranging the chlorine mixing pond and the ultraviolet irradiation device in this order. It has been found that there is an advantage that the effect on the light is high and the light recovery of bacteria is small, and such an effect can be obtained in the present invention.
[0021]
In summary, when excess sewage is not generated, it is sterilized by ultraviolet sterilization and a chlorine basin, so the amount of chlorine used is reduced and the use of an ultraviolet sterilizer is used. It is used only when sewage is generated and is not deactivated. When excess sewage is generated, the main treatment route is sterilized with chlorine for excess sewage, as in the conventional example. Is sterilized by ultraviolet rays, and after being sterilized for both, it is released and untreated water is not discharged.
[0022]
On the other hand, the ultraviolet irradiation device used in the present invention can change the irradiation output of ultraviolet rays. This is because the treated water treated in the main treatment path undergoes aeration treatment and final sedimentation treatment, and thus has low pollution. Accordingly, a high bactericidal effect can be obtained with a low ultraviolet ray transmittance and a low irradiation output. On the other hand, excess sewage exceeding the design water volume of the main treatment path can occur during rainy weather, etc., and the process in the sub-treatment path is relatively simple. Compared with treated water, it has high pollution and low UV transmittance. Accordingly, when sterilizing by ultraviolet irradiation, ultraviolet irradiation with a higher output than the treated water treated in the main treatment path is required. For this reason, if the ultraviolet irradiation output is variable, the ultraviolet irradiation can be performed with an effective or minimum required output for each treated water, and the energy cost used for the irradiation can be suppressed.
[0023]
On the other hand, before the ultraviolet irradiating device, a pollution measuring means for measuring the turbidity of the treated water supplied to the ultraviolet irradiating device and a flow measuring means for measuring the flow of the treated water supplied to the ultraviolet irradiating device. When at least one is provided, the ultraviolet irradiation output of the ultraviolet irradiation apparatus can be optimized. In addition, the pollution degree as used in the field of this invention is a value used as the parameter | index of the contamination condition of the polluted water which affects ultraviolet-ray transmittance, and is a meaning containing at least turbidity, COD, BOD, TOC, TOD, and ultraviolet-ray transmittance. is there.
[0024]
In addition, if at least one of the vortex-type solid-liquid separation device and the filtration device is provided in the sub-treatment path, effective turbidity removal is performed when irradiating with ultraviolet rays, the ultraviolet transmittance increases, and sterilization by suitable ultraviolet irradiation is effective. Can be done. In other words, if the water to be treated contains a large amount of solids and has high turbidity, the ultraviolet light transmittance is low and the desired sterilizing effect may not be obtained even when irradiated with ultraviolet light. If a solid-liquid separation device or a high-speed filtration device is provided to separate and remove solid matter in the polluted water, the ultraviolet transmittance of the water to be treated is increased, so that the sterilization treatment by the subsequent ultraviolet irradiation device is effectively performed.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The present embodiment will be described in detail below with reference to the drawings.
FIG. 1 is a diagram showing a sewage treatment facility according to the present embodiment. In the figure, 1 is a sand basin, 2 is a first sedimentation tank, 3 is an aeration tank, 4 is a final sedimentation tank, 5 is an ultraviolet irradiation device, 6 is a chlorine mixing pond, 7 is a vortex solid-liquid separation device, and 8 is a high-speed fiber. A filtration device, V1 to V3 are flow path switching valves, F is a flow meter, and P1 and P2 are turbidity meters, respectively. In the figure, an area surrounded by a dotted line A indicates a main processing path, and an area surrounded by a dotted line B indicates a sub processing path. In this equipment, the flow path is switched to L1 to L4 by the flow path switching valves V1 to V3.
[0026]
Further, the ultraviolet irradiation device to be used has a variable output, and further, a sub-treatment in rainy weather from an output capable of sterilizing the relatively low turbidity treated water treated in the main treatment path A. It is assumed that the output can be varied up to a high output that can sterilize the treated water with high turbidity treated by the route.
[0027]
In the following, including the explanation of this sewage treatment facility, when the combined sewage flowing into the sewage treatment facility such as in fine weather does not exceed the design treated water amount of the main treatment path A (hereinafter simply described as clear weather) The sewage treatment method in this sewage treatment facility is divided into cases where combined sewage exceeding the design treatment amount of the main treatment path A flows into the sewage treatment facility (hereinafter simply referred to as rainy weather). Detailed description.
[0028]
<Sewage treatment in fine weather>
In the sewage treatment facility according to the present embodiment (hereinafter simply referred to as the main sewage facility), the combined sewage (hereinafter simply referred to as sewage) that has passed through the combined sewer flows into the sand basin 1 first. Is done. In the sand basin 1, relatively large contaminants in the sewage are removed by the screen.
[0029]
The sewage from which impurities have been removed in the settling basin 1 is then supplied to the settling basin 2 first. In the first sedimentation basin 2, SS having a large specific gravity mainly composed of organic components in sewage is precipitated and separated as a preliminary treatment for aeration treatment. The precipitation treatment in the first settling basin can be carried out according to a conventionally known method, and the precipitation time and the like can be appropriately selected according to a conventionally known method.
[0030]
The sewage (clarified portion) initially treated in the settling basin is all supplied to the aeration tank in fine weather. In the aeration tank, aeration processing is performed according to a conventionally known processing method. The aeration treatment can be, for example, a biological treatment performed by mixing with aerobic bacteria and supplying air or oxygen. In this case, the fungi used, the aeration time, and the like can be appropriately selected according to a conventionally known technique. A floating substance (floc) is formed by the aeration process.
[0031]
Next, treated water containing aerated floc and the like is supplied to the final sedimentation basin, and flocs having a small specific gravity and easily floating due to the flow are settled and separated. The treatment in the final sedimentation basin can also be performed by a conventionally known technique.
[0032]
The clarified portion separated in the final sedimentation basin is supplied to the UV irradiation device in fine weather. That is, the ultraviolet irradiation device is used for excess sewage described later, but no excess sewage is generated in fine weather. Accordingly, in order to prevent the ultraviolet irradiation apparatus from becoming inoperative, treated water (hereinafter referred to as a clarified liquid) treated by the main treatment path A up to the aeration treatment is supplied in fine weather.
[0033]
In the ultraviolet irradiation apparatus, the clarified liquid has low turbidity and high ultraviolet transmittance, and the ultraviolet irradiation amount and the irradiation time are determined while taking care not to generate excessive output. And while paying attention to these points, the irradiation output in the ultraviolet irradiation apparatus can be determined by the degree of contamination of the treated water supplied to the ultraviolet irradiation apparatus. Here, the measurement of turbidity is conducted by using a tube tank or the like connected to the ultraviolet irradiation device or a storage tank in the previous stage, and an ultraviolet transmittance meter, turbidity meter, COD meter, BOD meter, TOC meter, TOD meter, etc. At least one measuring means P1 among the measuring means is provided to measure the turbidity, COD value, BOD value, TOC value, TOD value, ultraviolet transmittance, etc. of the clarified liquid. 1 From this, it is possible to determine an irradiation output value at which optimum sterilization can be performed on the clarified liquid.
[0034]
Here, as shown in FIG. 2, as the ultraviolet irradiation device, a plurality of ultraviolet irradiation lamps 51, 51... Are arranged in a pipe 50 through which the water to be treated is circulated. It is preferable to use the ultraviolet irradiation device 5 that irradiates ultraviolet rays by allowing the water to be treated W to flow from the one side 50A and discharging from the other side 50B in the pipe. Since the ultraviolet irradiation device 5 having such a configuration can perform the ultraviolet irradiation treatment while flowing the water to be treated W, it is suitable for flowing and treating the clarified liquid in fine weather, and an excessive amount that flows irregularly in rainy weather. This is because it is also suitable for quickly treating and sterilizing sewage. Usually, since the transmittance of the clarified liquid with ultraviolet rays (254 nm) is 30 to 80% T, sterilization is possible with a residence time of about 5 seconds to 1 minute when the ultraviolet output is about 1 to 2 kW.
[0035]
The sterilized water that has been sterilized by the ultraviolet irradiation device 5 is then supplied to the chlorine-mixing basin 6. Here, in order to distribute the clarified liquid in the order of the ultraviolet irradiation device 5 and the chlorine mixing pond 6, the clarified liquid passes through the flow paths L1, L2, and L3 by operating the flow path switching valves V1 to V3 in the figure. And not through the flow paths L4 and L5. In this way, the clarified liquid is not supplied to the chlorine mixing basin 6 without passing through the ultraviolet irradiation device 5, and the treated water that has passed through the ultraviolet irradiation device 5 is not supplied to the chlorine mixing basin 6 from the flow path L5. The clarified liquid from the final sedimentation basin 4 is guided to the ultraviolet irradiation device 5 and irradiated with ultraviolet rays, and then supplied to the chlorine-mixing basin 6. Since the chlorine-mixing pond 6 has already been sterilized by ultraviolet rays in the previous stage, it can be treated with a small amount of chlorine input for the purpose of maintaining and assisting the sterilizing effect by ultraviolet rays. . The amount of chlorine input depends on the ultraviolet irradiation output in the ultraviolet irradiation device 5 in the previous stage, but can be about 1/4 to 1/15 of the conventional amount. Further, the mixing time with chlorine may be about 1/4 to 1/10 of the conventional time. Other operations in the chlorine mixing pond 6 can be performed by a conventionally known technique. For example, a conventionally known drug such as sodium hypochlorite can be used as the drug used for chlorine sterilization. Treated water that has been sterilized by chlorine in the chlorine mixing pond 6 can be discharged out of the treatment system. For example, it can be discharged into a river or the like.
[0036]
<Treatment in case of rain>
Next, sewage treatment during rainy weather will be described. The treatment in the settling basin 1 and the first settling pond 2 is the same as that in fine weather even in rainy weather. In rainy weather, sewage exceeding the design treatment water amount of the main treatment path A is generated. In this case, the excess sewage is led from the first settling basin 2 to the sub-treatment path B. As a method for leading to this sub-treatment path B, a weir is first provided in the middle of the pipe dredging from the settling basin 1 to the aeration tank 3, and the pipe dredging is configured so that sewage beyond the weir is directed to the sub-treatment path. To do. The sewage that exceeds the weir is sometimes referred to as overflow water, but is referred to as excess sewage in this specification.
[0037]
Then, the sewage supplied to the aeration tank 3 without passing through the weir as the design water amount of the main treatment path A is supplied to the final settling basin 4 after being subjected to the aeration treatment in the same manner as in fine weather, and also in fine weather in the same way. Precipitation treatment is done in the same way as time. That is, the processing is performed in the main processing path A in the same manner as in fine weather.
[0038]
And the treated water processed by the main process path A at the time of rainy weather is supplied to the chlorine mixing basin 6 without supplying to the ultraviolet irradiation device 5 unlike the time of fine weather. This is because the ultraviolet irradiation device 5 is used for the treatment of the excess sewage, so that the ultraviolet irradiation device 5 is not used for the treated water treated in the main treatment path A. In order to prevent the treated water treated in the main treatment path A from passing through the ultraviolet irradiation device 5, the flow path switching valves V1 and V2 are operated so that the clarified liquid flows through the flow paths L4 and L3. And not passing through the flow paths L1, L2.
[0039]
In this way, the clarified liquid supplied to the chlorine mixing pond 6 is sterilized by mixing with chlorine. The chlorine sterilization here is not sterilized by ultraviolet rays in the previous stage, so the chlorine amount and the mixing time according to the prior art are used. And after sterilizing in the chlorine mixing pond 6, it discharges | emits out of a processing system. For example, release into a river.
[0040]
On the other hand, the excess sewage led to the sub-treatment route B is subjected to turbidity removal treatment in the sub-treatment route B. Excess sewage increases rapidly in a large amount and in a short time, so as a turbidity removal treatment, a precipitation tank that requires a long sedimentation time is not suitable, and solid-liquid separation can be performed quickly. It is necessary to use the device 7. A vortex type solid-liquid separator is suitable as the solid-liquid separator. The vortex-type solid-liquid separation device feeds water to be treated into a cylindrical aquarium along the tangential direction of the aquarium, generates a vortex in the aquarium, and collects solids at the lower center of the aquarium. The clarified portion and the solid portion are separated, and the clarified portion is sent out of the water tank, and the collected solid content is pulled out of the water tank by the opening and closing of the extraction valve provided at the lower part of the water tank and pump means, and is separated into a solid and liquid. As a specific example, as shown in FIG. 3, a cylindrical screen 71 is arranged vertically in a cylindrical water tank 70, and water to be treated is placed in the cylindrical screen 71 along the tangential direction of the screen 71. The solid content is collected in the central lower part 72 of the water tank 70 while generating a vortex in the screen 71 and sending the clarified portion out of the tank through the screen 71, and the collected solid content is outside the water tank 70. Pull out And those which are configured.
[0041]
The sub-treatment path B of this sewage facility is provided with a flocculant addition means at the subsequent stage of the vortex type solid-liquid separation apparatus, and further with another vortex type solid-liquid separation apparatus at the subsequent stage of the flocculant addition means. It is preferable to install the first vortex type solid-liquid separation device, the conventionally known flocculant addition device, and the second vortex type solid-liquid separation device in this order.
[0042]
Moreover, the high-speed fiber filtration can be used for the solid-liquid separator in the sub-processing path. However, when trying to process the excess sewage with high turbidity only with the high-speed fiber filtration device, it takes time and effort to remove the supplemented solids, so when using the high-speed fiber filtration device, the vortex-type solid-liquid separation device, It is good to arrange in the order of the high-speed fiber filtration device.
[0043]
When it is raining, the turbidity-removed water that has been subjected to the turbidity-removing process in the sub-processing path B is supplied to the ultraviolet irradiation device 5 that was used for the above-mentioned process in the fine weather. Therefore, as described above, the treated water treated in the main treatment path A during rainy weather is not supplied to the ultraviolet irradiation device 5 so as not to pass through the flow paths L1 and L2 by the operation of the flow path switching valves V1 and V2. To. Here, the output of the ultraviolet irradiation device 5 is different from that in fine weather when it is raining, and is not subjected to final subsidence treatment, so the pollution level is high. Therefore, it is necessary to determine the irradiation output while paying attention to the fact that the output must be higher than that in sunny weather. The irradiation output in the ultraviolet irradiation device 5 can be determined by the turbidity of the treated water supplied to the ultraviolet irradiation device 5 as in fine weather. Here, the measurement of the turbidity is conducted in the same way as in fine weather, such as a tube connected to an ultraviolet irradiation device or a storage tank in the previous stage, and an ultraviolet transmittance meter, turbidity meter, COD meter, BOD meter, TOC in the storage tank. At least one measuring means P2 among measuring means such as a meter and a TOD meter is provided to measure the turbidity, COD value, BOD value, TOC value, TOD value, ultraviolet transmittance, etc. of the treated water. M 2 From the above, it is possible to determine an irradiation output value at which optimum sterilization can be performed on the water to be treated.
[0044]
The sterilized water that has been sterilized by the ultraviolet irradiation device 5 is discharged outside the treatment system without being sent to the chlorine mixing basin 6 by operating the flow path switching valve V3 and passing through the flow path L5 in rainy weather. To do. For example, release into a river. This is because the chlorine-mixing pond 6 needs to treat the treated water treated in the main treatment path A.
[0045]
(Other)
The operation of the flow path switching valves V1 to V3 in this sewage facility is provided with a flow meter F for informing the generation of excess sewage in the middle of the pipe from the first settling basin 2 to the sub-treatment path B. On the basis of the measured value, the facility manager or the like may perform the operation manually, or may be configured to be switched by automatic control by a known computer control means or the like. Moreover, the measured value M is also used for the irradiation output control of the ultraviolet irradiation device 5 based on the degree of contamination. 1 , M 2 It may be performed manually by an administrator based on the above, or may be automatic control by known computer control or the like. The specific operation for changing the irradiation output of the ultraviolet irradiation device 5 depends on the operation method of the ultraviolet irradiation device 5 to be used.
[0046]
The change of the ultraviolet irradiation output is, for example, a case where the output is changed according to the turbidity. 1 , M 2 Until the value A exceeds the predetermined value A, the ultraviolet irradiation output is set to the output α. If the turbidity increases and exceeds the predetermined value A value, the ultraviolet irradiation output is increased from the output α to the output β, and the turbidity is further increased to the predetermined value. If the value B is exceeded, the ultraviolet irradiation output is changed so that the ultraviolet irradiation output is increased from the output β to the output γ. On the other hand, the measured value M measured by the pollution measuring meters P1 and P2. 1 , M 2 Is less than the predetermined value B, the ultraviolet irradiation output is reduced from the output γ to the output β. Further, when the turbidity is lower than the predetermined value A, the ultraviolet irradiation output is output from the output β to the output α. It is possible to change the ultraviolet irradiation output so as to decrease it. Rather than changing the UV irradiation output in steps of output α → output β → output γ or output γ → output β → output α, the UV irradiation output is also changed according to the continuous change in turbidity over time. It can be changed continuously over time.
[0047]
Moreover, although the said example is control by turbidity, as above-mentioned, according to the measured value of ultraviolet-ray-transmittance, COD value, BOD value, TOC value, and TOD value measured with the turbidity meter P1, P2, The ultraviolet irradiation output can also be changed. Further, as a judgment value for determining the irradiation output, a value obtained by multiplying a measured value of ultraviolet transmittance or turbidity by a COD value, an ultraviolet transmittance or a sum of turbidity and COD value, an ultraviolet transmittance or turbidity A value obtained by multiplying the measured value by the BOD value or a value obtained by multiplying the measured value of the ultraviolet transmittance or turbidity by the BOD value and the COD value can be determined as appropriate.
[0048]
On the other hand, the sterilization efficiency in the ultraviolet irradiation device 5 depends on the flow rate supplied to the ultraviolet irradiation device in addition to the pollution degree. That is, when the flow rate is large, it passes through the ultraviolet irradiation device 5 in a short time, so that irradiation with high output is required. Therefore, a flow meter F2 for measuring the flow rate of the clarified liquid is provided in the middle of the pipe shed from the final sedimentation basin 4 to the ultraviolet irradiation device 5, and the flow meter F3 is provided in the middle of the pipe shed from the sub-processing path B to the ultraviolet irradiation device 5. Measure the flow rate of clear liquid in fine weather and the flow of turbidity-removed water in rainy weather, and determine the ultraviolet irradiation output in the ultraviolet irradiation device 5 in consideration of the flow rate measured by these flow meters. can do. The specific mode of change can be performed in the same manner as in the example based on the turbidity.
[0049]
Most preferably, the ultraviolet irradiation output is determined in consideration of both the measured values of the above-described pollution degree and flow rate. In this case, for example, the calculation value represented by pollution degree × flow rate is used as an ultraviolet irradiation output determination parameter, and the ultraviolet irradiation output of the ultraviolet irradiation device 5 can be appropriately determined according to the parameter.
[0050]
<Experimental example>
Next, experimental examples of the present invention will be shown.
(Experiment 1: Expected sterilization experiment in rainy weather)
Assuming the treatment of excess sewage in rainy weather, the sterilization time and the sterilization treatment with the ultraviolet irradiation device using the high turbidity (ultraviolet light transmittance 30% T) simulated waste water We compared the inactivation rate of fungi. The fungus used as a sterilization control is the coliform group. The ultraviolet irradiation device used was a water-flowing type in which two medium-pressure mercury lamps with 4 kW output were arranged inside.
[0051]
The ultraviolet output in the ultraviolet irradiation device was 8 kW. On the other hand, the amount of chlorine input in chlorine sterilization was 10 mg-CL / L. Other experimental conditions and results are shown in Table 1.
[0052]
[Table 1]
Figure 0003871272
[0053]
As can be seen from Table 1, it can be seen that the inactivation rate of coliform bacteria is almost the same in both the case of chlorine sterilization and the case of ultraviolet sterilization. Here, focusing on the time required for sterilization, in the case of ultraviolet sterilization, the sterilization time is as short as 0.2 min, whereas in the case of chlorine sterilization, the sterilization time is as long as 15 min. Is needed. This indicates that ultraviolet sterilization has the same sterilization effect in a very short time compared with chlorine sterilization. If it does so, it can be said that ultraviolet sterilization is a sterilization method which can process rapidly the excess sewage which generate | occur | produces in large quantities in a short time at the time of rain.
[0054]
(Experiment 2: Aseptic sterilization experiment in fine weather)
Assuming the case where sterilization treatment is performed on the treated water treated in the main treatment route in fine weather, the secondary treated water (ultraviolet light transmittance 50% T) of the sewage treatment plant is used as the pseudo treated water, The amount of chlorine input, the sterilization time, the inactivation rate of fungi, and the like were compared between a case where sterilization was performed in the order of chlorine sterilization (hereinafter referred to as UV-CL treatment) and a case where only chlorination was performed. The fungi used as a sterilization control are coliforms as in Experiment 1, and the ultraviolet irradiation apparatus used is the same as that used in Experiment 1. However, in Experiment 2, the ultraviolet output was 2.4 kW. Other experimental conditions and results are shown in Table 2.
[0055]
[Table 2]
Figure 0003871272
[0056]
As can be seen from Table 2, it can be seen that the inactivation rate of the coliform group is almost the same both in the case of UV-CL treatment and in the case of only chlorine sterilization. Here, paying attention to the time required for sterilization, in the case of UV-CL treatment, it is an extremely short time of 5 seconds of ultraviolet irradiation and 1 minute of chlorine treatment. On the other hand, in the case of chlorine sterilization, the sterilization time is as long as 15 minutes. Furthermore, in the case of UV-CL treatment, the chlorine input is 1 mg-CL / L, whereas in the case of only chlorine sterilization, it is 4 mg-CL / L, which is a 1/4 chlorine input. ing. This indicates that the UV-CL treatment can be sterilized in an extremely short time as compared with only chlorine sterilization, and the amount of chlorine input can be reduced. Then, the UV-CL treatment is a treatment method that can sterilize the treated water treated in the main treatment path in fine weather in a short time and with a low chlorine input amount, and this is a sterilization method that can reduce the residual chlorine concentration. It can be said.
[0057]
In addition, this experiment 1 and 2 also showed that efficient treatment was possible using the same ultraviolet sterilizer in rainy weather and sunny weather.
[0058]
【The invention's effect】
As detailed above, in clear weather, sterilization in the order of UV sterilization and chlorine-mixed ponds reduces the amount of chlorine used in the chlorine-mixed ponds and has been used only in rainy weather that has not been predicted so far. The effect that the ultraviolet irradiation device can be effectively used is obtained. In rainy weather, excess sewage by ultraviolet irradiation is quickly sterilized, and normal sterilization treatment in the chlorine-mixing basin is planned for the amount of treated water, and unsterilized treated water is discharged. The effect that it is not equalized is acquired.
[Brief description of the drawings]
FIG. 1 is a flowchart for explaining a sewage treatment facility and a sewage treatment method according to the present embodiment.
FIG. 2 is a diagram showing an example of an ultraviolet irradiation device.
FIG. 3 is a perspective view showing an example of a vortex type solid-liquid separator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sand basin, 2 ... First sedimentation tank, 3 ... Aeration tank, 4 ... Final sedimentation tank, 5 ... Ultraviolet irradiation apparatus, 6 ... Chlorine mixing tank, 7 ... Eddy current type solid-liquid separation apparatus, 8 ... High-speed fiber filtration apparatus, DESCRIPTION OF SYMBOLS 50 ... Ultraviolet irradiation apparatus outer tube, 51 ... Ultraviolet irradiation lamp, 70 ... Cylindrical water tank, 71 ... Cylindrical screen, 72 ... Cylindrical water tank center bottom part, B ... Sub-processing path, F, F1, F2 ... Flowmeter, L1 , L2, L3, L4 ... flow channel (pipe), P1, P2 ... pollution measuring means, V1, V2, V3 ... flow channel switching valve (movable weir), W ... treated water.

Claims (8)

合流式下水が流入する最初沈殿池、曝気処理を行う曝気槽、沈殿処理を行う最終沈殿池を少なくともこの順に備える主処理経路と、
前記主処理経路の設計処理水量を超えた超過分下水が最初沈殿池から供給され、その超過分下水の濁質除去処理を行う副処理経路とを備え、かつ、
前記主処理経路または副処理経路で処理された処理水の殺菌処理を行う、紫外線照射出力の制御が可能な紫外線照射装置と、塩素殺菌を図る塩素混和池と、を備える下水処理設備であって、
流入下水が前記主処理経路の設計処理水量を超えないときには、
前記主処理経路で処理された処理水が前記紫外線照射装置、塩素混和池の順に供給されて殺菌がなされ、
流入下水が前記主処理経路の設計処理水量を超えたときには、
前記主処理経路の設計処理水量分については主処理経路で処理された後、前記紫外線照射装置に供給されずに前記塩素混和池に供給されて殺菌処理がなされ、超過分下水については前記副処理経路で処理された後、前記紫外線照射装置に供給されて殺菌がなされる、
ように構成されていることを特徴とする下水処理設備。
A main treatment path comprising at least a first sedimentation basin into which combined sewage flows, an aeration tank for performing aeration treatment, and a final sedimentation basin for carrying out precipitation treatment in this order;
An excess sewage that exceeds the design treated water amount of the main treatment path is first supplied from the settling basin, and includes a sub-treatment path that performs turbidity removal treatment of the excess sewage, and
A sewage treatment facility comprising an ultraviolet irradiation device capable of controlling ultraviolet irradiation output and performing a sterilization treatment of treated water treated in the main treatment path or the sub-treatment path, and a chlorine mixing pond for chlorination. ,
When the inflow sewage does not exceed the design treatment amount of the main treatment path,
The treated water treated in the main treatment path is supplied in the order of the ultraviolet irradiation device and the chlorine basin, and sterilized,
When the inflow sewage exceeds the design treatment amount of the main treatment path,
After the amount of the design treated water in the main treatment path is treated in the main treatment path, it is supplied to the chlorine-mixing basin without being supplied to the ultraviolet irradiation device, and is sterilized. After being treated by the route, it is supplied to the ultraviolet irradiation device to be sterilized.
A sewage treatment facility characterized by being configured as follows.
前記紫外線照射装置の前段に、前記紫外線照射装置に供給される処理水の汚濁度を測定する汚濁度測定手段および前記紫外線照射装置に供給される処理水の流量を測定する流量測定手段の少なくとも一方を備える請求項1記載の下水処理設備。At least one of a turbidity measuring unit that measures the turbidity of the treated water supplied to the ultraviolet irradiating device and a flow rate measuring unit that measures the flow rate of the treated water supplied to the ultraviolet irradiating device is provided at the front stage of the ultraviolet irradiating device. A sewage treatment facility according to claim 1. 前記汚濁度測定手段の測定値および流量の測定値の少なくとも一方に基づいて、前記紫外線照射装置の紫外線照射出力を自動的に制御する照射出力自動制御手段を備える請求項2記載の下水処理設備。The sewage treatment facility according to claim 2, further comprising irradiation output automatic control means for automatically controlling the ultraviolet irradiation output of the ultraviolet irradiation apparatus based on at least one of the measurement value of the pollution degree measurement means and the measurement value of the flow rate. 前記副処理経路に、渦流式固液分離装置および繊維濾過装置の少なくとも一方を含む請求項1〜3のいずれか1項に記載の下水処理設備。The sewage treatment facility according to any one of claims 1 to 3, wherein the sub-treatment path includes at least one of a vortex type solid-liquid separation device and a fiber filtration device. 合流式下水が流入する最初沈殿池、曝気処理を行う曝気槽、沈殿処理を行う最終沈殿池を少なくともこの順に備える主処理経路と、
前記主処理経路の設計処理水量を超えた分の下水が最初沈殿池から供給され、その超過分下水の濁質除去処理を行う副処理経路とを備え、かつ、
前記主処理経路または副処理経路で処理された処理水の殺菌処理を行う、紫外線照射出力の制御が可能な紫外線照射装置と、塩素殺菌を図る塩素混和池と、を備える下水処理設備における下水処理方法であって、
流入下水が前記主処理経路の設計処理水量を超えないときには、
前記主処理経路で処理された処理水を前記紫外線照射装置、塩素混和池の順に供給して殺菌を行い、
流入下水が前記主処理経路の設計処理水量を超えたときには、
前記主処理経路の設計処理水量分については主処理経路で処理した後、前記紫外線照射装置に供給せずに前記塩素混和池に供給して殺菌処理を行い、超過分下水については前記副処理経路で処理した後、前記紫外線照射装置に供給して殺菌を行う、
ことを特徴とする下水処理方法。
A main treatment path comprising at least a first sedimentation basin into which combined sewage flows, an aeration tank for performing aeration treatment, and a final sedimentation basin for carrying out precipitation treatment in this order;
A sewage in excess of the design treatment amount of the main treatment path is first supplied from the settling basin, and a sub-treatment path for performing turbidity removal treatment of the excess sewage, and
Sewage treatment in a sewage treatment facility comprising a UV irradiation device capable of controlling the UV irradiation output and performing a sterilization treatment of the treated water treated in the main treatment path or the sub-treatment path, and a chlorine mixing pond for chlorination. A method,
When the inflow sewage does not exceed the design treatment amount of the main treatment path,
The treated water treated in the main treatment path is supplied in the order of the ultraviolet irradiation device and the chlorine-mixing basin to sterilize,
When the inflow sewage exceeds the design treatment amount of the main treatment path,
The amount of the design treatment water in the main treatment path is treated in the main treatment path, and then supplied to the chlorine-mixing basin without being supplied to the ultraviolet irradiation device, and the sterilization treatment is performed for excess sewage. After processing with, supply to the ultraviolet irradiation device to sterilize,
A sewage treatment method characterized by the above.
流入下水が前記主処理経路の設計処理水量を超えないときにおける紫外線照射装置の出力を、流入下水が前記主処理経路の設計処理水量を超えたときにおける紫外線照射装置の出力よりも、低い出力で紫外線照射する請求項5記載の下水処理設備の運転方法。The output of the ultraviolet irradiation device when the inflow sewage does not exceed the design treatment water amount of the main treatment path, and the output lower than the output of the ultraviolet irradiation device when the inflow sewage exceeds the design treatment water amount of the main treatment path. The method of operating a sewage treatment facility according to claim 5, wherein the ultraviolet ray is irradiated. 前記紫外線照射装置に供給する処理水の汚濁度および流量の少なくとも一方を測定し、その測定値に基づいて、前記紫外線照射装置の紫外線照射出力を制御する請求項5または6記載の下水処理方法。The sewage treatment method according to claim 5 or 6, wherein at least one of a turbidity and a flow rate of treated water supplied to the ultraviolet irradiation device is measured, and an ultraviolet irradiation output of the ultraviolet irradiation device is controlled based on the measured value. 前記副処理経路において、渦流式固液分離装置および濾過装置の少なくとも一方を用いて濁質除去処理を行う請求項5〜7のいずれか1項に記載の下水処理方法。The sewage treatment method according to any one of claims 5 to 7, wherein in the sub-treatment path, turbidity removal treatment is performed using at least one of a vortex solid-liquid separator and a filtration device.
JP2003186601A 2003-06-30 2003-06-30 Sewage treatment facility and sewage treatment method Expired - Fee Related JP3871272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186601A JP3871272B2 (en) 2003-06-30 2003-06-30 Sewage treatment facility and sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186601A JP3871272B2 (en) 2003-06-30 2003-06-30 Sewage treatment facility and sewage treatment method

Publications (2)

Publication Number Publication Date
JP2005021725A JP2005021725A (en) 2005-01-27
JP3871272B2 true JP3871272B2 (en) 2007-01-24

Family

ID=34185691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186601A Expired - Fee Related JP3871272B2 (en) 2003-06-30 2003-06-30 Sewage treatment facility and sewage treatment method

Country Status (1)

Country Link
JP (1) JP3871272B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5091515B2 (en) * 2007-03-26 2012-12-05 メタウォーター株式会社 Sewage treatment method and sewage treatment apparatus
JP5276855B2 (en) * 2008-02-18 2013-08-28 株式会社日立製作所 Ultraviolet water treatment facility and its ultraviolet irradiation amount control device
KR100960015B1 (en) * 2009-08-28 2010-05-28 주식회사 부강테크 Waste water treatment apparatus for processing early rain effectively and the method thereof

Also Published As

Publication number Publication date
JP2005021725A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
KR101320327B1 (en) Wastewater treatment method comprising decantation and fine screening stages, and device for carrying out said method
US6383370B1 (en) Apparatus for treating wastewater
JP4901250B2 (en) UV disinfection equipment
KR200449869Y1 (en) Floating Water Purification Device Using Advanced Oxidation Process
KR100789955B1 (en) High density sludge and waste water treatment apparatus
CN101671084B (en) Liquid processor
JP4413077B2 (en) Water treatment equipment
JPS63310699A (en) Device for treating waste automobile washing water
JP3871272B2 (en) Sewage treatment facility and sewage treatment method
KR20160085101A (en) A comprehensive method and system of treating sewage and rainwater
KR20090111188A (en) Discharged Water Treatment System and Method for Treating Discharged Water Using the Same
JP2000140888A (en) Method for purifying and sterilizing sewage and device therefor
CN210419655U (en) Comprehensive wastewater treatment device for laboratory
JP6459127B2 (en) Water treatment equipment
EP2822901B1 (en) Water treatment system and method
US20030150817A1 (en) Method and apparatus for treating wastewater
JP2007105681A (en) Water treatment apparatus
JP2008307494A (en) Sewage treating method and sewage treatment apparatus
JP2005137991A (en) Drainage treatment apparatus
JP3695713B2 (en) Polluted water treatment and sterilization method
KR100430071B1 (en) Facility supplying extinguish water and living water by recycling waste water
CN214327363U (en) Textile sewage treatment control system
JP5876671B2 (en) Sewage treatment method and sewage treatment apparatus
KR960014026A (en) Heavy water treatment method
KR200359729Y1 (en) Mud and sand removal and ultraviolet rays sterilization device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees