JP3869402B2 - MIMO radio signal transmission device - Google Patents
MIMO radio signal transmission device Download PDFInfo
- Publication number
- JP3869402B2 JP3869402B2 JP2003318354A JP2003318354A JP3869402B2 JP 3869402 B2 JP3869402 B2 JP 3869402B2 JP 2003318354 A JP2003318354 A JP 2003318354A JP 2003318354 A JP2003318354 A JP 2003318354A JP 3869402 B2 JP3869402 B2 JP 3869402B2
- Authority
- JP
- Japan
- Prior art keywords
- transmission
- radio signal
- response matrix
- receiving
- antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Description
本発明は、無線通信システムに関し、特に、複数の送信アンテナと複数の受信アンテナとを用いてMIMO(Multiple−Input Multiple−Output)チャネルを構成するMIMO無線信号伝送装置に関する。 The present invention relates to a radio communication system, and more particularly, to a MIMO radio signal transmission apparatus that configures a MIMO (Multiple-Input Multiple-Output) channel using a plurality of transmission antennas and a plurality of reception antennas.
無線通信システムにおいては、受信局側の受信電力が、送信局と受信局間の距離、周辺の反射物などの影響を受ける。したがって、無線通信システムにおいては、受信局側の受信電力が、送信局並びに受信局の位置に著しく依存する。たとえば、位置固定の基地局と位置移動可の移動局とから構成される移動無線通信システムにおいては、受信局側の受信電力が、移動局の位置に依存している。 In a wireless communication system, the received power on the receiving station side is affected by the distance between the transmitting station and the receiving station, surrounding reflectors, and the like. Therefore, in the radio communication system, the reception power on the receiving station side depends significantly on the positions of the transmitting station and the receiving station. For example, in a mobile radio communication system composed of a base station whose position is fixed and a mobile station whose position is movable, the received power on the receiving station side depends on the position of the mobile station.
また、1送信アンテナと1受信アンテナを用いて無線信号を伝送するSISO(Single−Input Single−Output)伝送では、受信信号の信号品質が、受信電力と1受信系の雑音電力の比SNR(Signal−Noise−Ratio)に依存する。ただし、この熱雑音電力の平均値は移動局の位置によらず一定であるため、実質的には、受信信号の信号品質が受信電力に依存していると考えて良い。 In SISO (Single-Input Single-Output) transmission in which a radio signal is transmitted using one transmitting antenna and one receiving antenna, the signal quality of the received signal is a ratio SNR (Signal of the received power and noise power of one receiving system). -Depends on Noise-Ratio). However, since the average value of the thermal noise power is constant regardless of the position of the mobile station, it can be considered that the signal quality of the received signal substantially depends on the received power.
このようなSISO伝送の場合、送信局側の送信電力が一定の場合、移動局が移動するごとに受信局側の受信電力が変動するため、受信信号品質を一定に保つことが困難であり、安定した無線通信サービスを提供することが難しい。 In such SISO transmission, when the transmission power on the transmission station side is constant, the reception power on the reception station side varies every time the mobile station moves, so it is difficult to keep the received signal quality constant, It is difficult to provide a stable wireless communication service.
これを防ぐために、相手局側の受信電力を一定に保つよう、自局の受信電力や制御信号などにより相手局の受信電力を把握し、この相手局の受信電力に応じて自局の送信電力を制御(以下、「受信電力一定送信電力制御」という。)する方法が良く適用される(非特許文献1参照)。 In order to prevent this, grasp the receiving power of the partner station from the receiving power of its own station or control signal so that the receiving power of the partner station side is kept constant, and transmit power of its own station according to the receiving power of this partner station Is often applied (referred to as “transmission power control with constant reception power”) (see Non-Patent Document 1).
この受信電力一定送信電力制御を送信局側に適用すると、送信局側の送信可能な送信電力値の範囲において、移動局の位置によらず基地局側、移動局側とともに一定の受信電力で受信できるため、安定した通信サービスを提供することが可能となる。このことを具体的に示した概念図を図5に示す。 When this transmission power constant transmission power control is applied to the transmission station side, reception is performed at a constant reception power with the base station side and the mobile station side regardless of the position of the mobile station within the range of transmission power values that can be transmitted on the transmission station side. Therefore, it is possible to provide a stable communication service. A conceptual diagram specifically showing this is shown in FIG.
図5では、基地局を送信局とし、移動局を受信局としている。基地局の送信電力を一定にした場合(図5におけるグラフ5−1)、移動局の位置によって移動局の受信電力が変動する(図5におけるグラフ5−2)伝搬環境においては、移動局の受信電力がある信号品質に対する所要受信電力に対して少ない分、基地局の送信電力を増加させることにより(図5におけるグラフ5−3)移動局の受信電力を所要受信電力の値に保つことが可能となる(図5におけるグラフ5−4)。これにより、移動局に対して一定の無線信号品質を保つことが可能であり、安定した無線通信サービスを提供することが可能となる。
しかしながら、上記受信電力一定送信電力制御を、複数の送信アンテナと複数の受信アンテナを用いてMIMO(Multiple−Input Multiple−Output)チャネルを構成し、受信側において、各受信アンテナの受信信号から推定した各MIMOチャネルの伝達応答を用いてICI(Inter−Channel−Interference)をキャンセルするなどのMIMOチャネル復調を行うことにより各送信アンテナからの送信信号を全て復元するMIMO伝送に適用した場合、以下の問題が生じる。 However, the above-described constant reception power transmission power control is configured from a plurality of transmission antennas and a plurality of reception antennas to form a MIMO (Multiple-Input Multiple-Output) channel, and is estimated from the reception signal of each reception antenna on the reception side. When applied to MIMO transmission in which all transmission signals from each transmission antenna are restored by performing MIMO channel demodulation such as canceling ICI (Inter-Channel-Interference) using the transmission response of each MIMO channel, the following problems occur: Occurs.
送信アンテナ数をNとし(2≦N)、各送信アンテナから送信される無線信号をベクトルT(T=(t1,t2,・・・,tN)t、tは転置ベクトル、Tiのiは送信アンテナ番号)とおく。また、受信アンテナ数をMとし、各受信アンテナ受信する無線信号をR(R=(r1,r2,・・・,rM)t、tは転置ベクトル、rjのjは受信アンテナ番号)とおく。送信アンテナj番目と受信アンテナiの伝達応答をhijとおき、hijを各要素とする伝達応答行列をHとおくと、T,R,H,の間には以下の関係がある。 The number of transmission antennas is N (2 ≦ N), and radio signals transmitted from the respective transmission antennas are represented by vectors T (T = (t 1 , t 2 ,..., T N ) t , t are transposed vectors, T i I is a transmission antenna number). The number of receiving antennas is M, and the radio signal received by each receiving antenna is R (R = (r 1 , r 2 ,..., R M ) t , t is a transposed vector, and j of r j is a receiving antenna number. )far. The transfer response of the transmit antennas j-th and receive antenna i h ij Distant, placing and H transmission response matrix of h ij and each element, T, R, H, the following relationship exists between.
受信信号Rから、推定した伝達応答行列Hに基づき送信信号tjを復元するMIMOチャネル復調処理をWj(r1,r2,・・・,rM;H)(tj=Wj(r1,r2,・・・,rM;H))とおくと、この復調処理後の復元信号T〜(T〜=(t1 〜,t2 〜,・・・,tN 〜)t、tは転置ベクトル、tj 〜は無線信号tjに対す復元信号)は、下記のように表される。
MIMO channel demodulation processing for restoring the transmission signal t j from the received signal R based on the estimated transfer response matrix H is performed using W j (r 1 , r 2 ,..., R M ; H) (t j = W j ( r 1 , r 2 ,..., r M ; H)), the restored signal T ˜ (T ˜ = (t 1 ˜ , t 2 ˜ ..., t N ˜ ) after this demodulation processing. t 1 , t are transposed vectors, and t j ˜ are restoration signals for the radio signal t j ) are expressed as follows:
この系に前記受信電力一定送信電力制御を適用した場合の受信電力、(SNRj)AVRを示した図を図6に示す。各受信アンテナiの受信電力|Li|2は下記のように表される。 FIG. 6 is a diagram showing the received power (SNR j ) AVR when the constant received power transmission power control is applied to this system. The reception power | Li | 2 of each reception antenna i is expressed as follows.
したがって、(SNRj)AVRは、|Wj(n1,n2,・・・nM;H)|2 AVR、|Wj(r1,r2,・・・,rM;H)|2 AVRに依存するが、増幅度αjが|Wj(n1,n2,・・・nM;H)|2 AVRとは無関係の数6に従って決定されるため、増幅度αjによって(SNRj)AVRを一定にすることができない。
よって、移動局の位置によって|Wj(n1,n2,・・・nM;H)|2 AVRの値が変化した場合(図6の6−3)、受信電力一定送信電力制御では数7の(SNRj)AVRを一定にすることができない(図6の6−4)。すなわち、移動局の位置によって|Wj(n1,n2,・・・nM;H)|2 AVRが変化するような環境でMIMO伝送を用いるとき、受信電力一定送信電力制御適用しても、安定した無線通信サービスを提供することが困難な問題があった。
Therefore, (SNR j ) AVR is | W j (n 1 , n 2 ,... N M ; H) | 2 AVR , | W j (r 1 , r 2 ,..., R M ; H) | depends on 2 AVR, amplification factor alpha j is | W j (n 1, n 2, ··· n M; H) | because it is determined according to the number 6 unrelated and 2 AVR, amplification factor alpha j (SNR j ) AVR cannot be made constant.
Therefore, when the value of | W j (n 1 , n 2 ,... N M ; H) | 2 AVR changes according to the position of the mobile station (6-3 in FIG. 6), the received power constant transmission power control The (SNR j ) AVR in Equation 7 cannot be made constant (6-4 in FIG. 6). That is, when MIMO transmission is used in an environment where | W j (n 1 , n 2 ,... N M ; H) | 2 AVR changes depending on the position of the mobile station, the received power constant transmission power control is applied. However, there is a problem that it is difficult to provide a stable wireless communication service.
そこで、本発明は、かかる事情に鑑み、|Wj(n1,n2,・・・nM;H)|2 AVRの値に基づいて送信電力を制御することにより、MIMO伝送において(SNRj)AVRを一定とするMIMO無線信号伝送装置を提供することを目的とする。 The present invention has been made in view of such circumstances, | W j (n 1, n 2, ··· n M; H) | by controlling the transmission power based on 2 AVR value, in MIMO transmission (SNR j ) An object of the present invention is to provide a MIMO radio signal transmission apparatus in which AVR is constant.
本発明によれば、上記課題は、次の手段によって解決される。 According to the present invention, the above problem is solved by the following means.
第1の発明は、N(N≧2)個の送信アンテナを具備し、前記N個の送信アンテナから同一の周波数を用いて無線信号T(T=(t1,t2,・・・,tN)t、tは転置ベクトル、tiのiは送信アンテナ番号)を送信する無線信号送信装置と、M(M≧1)個の受信アンテナを具備し、前記N個の送信アンテナと前記M個の受信アンテナとの組み合わせであるN×M個の無線経路の伝達応答行列H(Hの(i,j)成分hijは送信アンテナjと受信アンテナi間との伝達応答)が推定可能であり、M個の受信信号R(R=(r1,r2,・・・,rM)t、tは転置ベクトル、rjのjは受信アンテナ番号)に前記推定した伝達応答行列Hを基に定まる復調処理Wj(r1,r2,・・・,rM;H)(1≦j≦N)を施すことによって元の無線信号tj(tj=Wj(r1,r2,…rM;H))を復元する無線信号受信装置と、を備えるN×MのMIMO無線信号伝送装置において、
前記無線信号受信装置は、前記推定した伝達応答行列Hを前記無線信号送信装置に定常的に通知する手段を具備し、前記無線信号送信装置は、前記無線信号受信装置における任意の伝達応答行列Hallに対する前記復調処理Wj(r1,r2,・・・rM;Hall)と前記無線信号受信装置における各受信アンテナに接続される受信ブランチの熱雑音電力とを既知とする手段と、前記通知された伝達応答行列Hと前記既知とした復調処理Wj(r1,r2,・・・rM;H)と前記既知とした熱雑音電力とを用いて前記無線信号受信装置における前記復調処理Wj(r1,r2,・・・,rM;H)後の雑音電力ajを算出し、前記算出した雑音電力ajに比例して前記送信アンテナj番目の送信電力を制御する手段と、を具備する、ことを特徴とするMIMO無線信号伝送装置である。
The first invention includes N (N ≧ 2) transmission antennas, and the radio signals T (T = (t 1 , t 2 ,...) Using the same frequency from the N transmission antennas. t N ) t , t is a transposed vector, i of t i is a transmission antenna number), M (M ≧ 1) reception antennas, and the N transmission antennas and The transfer response matrix H of N × M radio paths, which is a combination with M receive antennas, can be estimated (the (i, j) component h ij of H is the transfer response between the transmit antenna j and the receive antenna i). And M received signals R (R = (r 1 , r 2 ,..., R M ) t , t is a transposed vector, j of r j is a receiving antenna number), and the estimated transfer response matrix H determined based on the demodulation process W j (r 1, r 2 , ···, r M; H) (1 ≦ j ≦ N Original wireless signal t j (t j = W j (r 1, r 2, ... r M; H)) by the applied MIMO radio signal transmission apparatus N × M; and a radio signal receiving apparatus for restoring In
The radio signal receiving device includes means for constantly notifying the radio signal transmitting device of the estimated transfer response matrix H, and the radio signal transmitting device includes an arbitrary transfer response matrix H in the radio signal receiving device. means for the thermal noise power of the receiver branches that the connected to the receiving antennas in the radio signal receiving apparatus known; the respect all demodulation processing Wj (H all r 1, r 2, ··· r M) In the radio signal receiving apparatus, the notified transfer response matrix H, the known demodulation processing W j (r 1 , r 2 ,... R M ; H) and the known thermal noise power are used. The noise power a j after the demodulation processing W j (r 1 , r 2 ,..., R M ; H) is calculated, and the j-th transmission power of the transmission antenna is proportional to the calculated noise power a j. Means to control Comprises a, it is MIMO radio signal transmission apparatus according to claim.
第2の発明は、N(N≧2)個の送信アンテナを具備し、前記N個の送信アンテナから同一の周波数を用いて無線信号T(T=(t1,t2,・・・,tN)t、tは転置ベクトル、tiのiは送信アンテナ番号)を送信する無線信号送信装置と、M(M≧1)個の受信アンテナを具備し、前記N個の送信アンテナと前記M個の受信アンテナとの組み合わせであるN×M個の無線経路の伝達応答行列H(Hの(i,j)成分hijは送信アンテナjと受信アンテナi間との伝達応答)が推定可能であり、M個の受信信号R(R=(r1,r2,・・・,rM)t、tは転置ベクトル、rjのjは受信アンテナ番号)に前記推定した伝達応答行列Hを基に定まる復調処理Wj(r1,r2,・・・,rM;H)(1≦j≦N)を施すことによって元の無線信号tj(tj=Wj(r1,r2,…rM;H))を復元する無線信号受信装置と、を備えるN×MのMIMO無線信号伝送装置において、
前記無線信号受信装置は、前記推定した任意の伝達応答行列Hallに対する前記復調処理Wj(r1,r2,・・・rM;Hall)と各受信アンテナに接続される受信ブランチの熱雑音電力とを既知とする手段と、前記推定した伝達応答行列Hと前記既知とした復調処理Wj(r1,r2,・・・rM,Hall)と前記既知とした熱雑音電力とを用いて前記無線信号受信装置における前記復調処理Wj(r1,r2,・・・,rM;H)後の雑音電力ajを算出し、前記算出した雑音電力ajを前記無線信号送信装置に定常的に通知する手段と、を具備し、前記無線信号送信装置は、前記通知された雑音電力ajに比例して前記送信アンテナj番目の送信電力を制御する手段を具備する、ことを特徴とするMIMO無線信号伝送装置である。
The second invention includes N (N ≧ 2) transmission antennas, and uses the same frequency from the N transmission antennas to transmit a radio signal T (T = (t 1 , t 2 ,..., t N ) t , t is a transposed vector, i of t i is a transmission antenna number), M (M ≧ 1) reception antennas, and the N transmission antennas and The transfer response matrix H of N × M radio paths, which is a combination with M receive antennas, can be estimated (the (i, j) component h ij of H is the transfer response between the transmit antenna j and the receive antenna i). And M received signals R (R = (r 1 , r 2 ,..., R M ) t , t is a transposed vector, j of r j is a receiving antenna number), and the estimated transfer response matrix H determined based on the demodulation process W j (r 1, r 2 , ···, r M; H) (1 ≦ j ≦ N Original wireless signal t j (t j = W j (r 1, r 2, ... r M; H)) by the applied MIMO radio signal transmission apparatus N × M; and a radio signal receiving apparatus for restoring In
The radio signal receiving apparatus includes the demodulation processing W j (r 1 , r 2 ,... R M ; H all ) for the estimated arbitrary transfer response matrix H all and the receiving branch connected to each receiving antenna. Means for making known thermal noise power, the estimated transfer response matrix H, the known demodulation process W j (r 1 , r 2 ,... R M , H all ) and the known thermal noise. the demodulation process W j in the wireless signal receiving apparatus using a power (r 1, r 2, ··· , r M; H) calculates a noise power a j after the noise power a j with the calculated Means for steadily notifying the radio signal transmitter, and the radio signal transmitter controls the j-th transmit power of the transmit antenna in proportion to the notified noise power a j. MI characterized by comprising O is a wireless signal transmission device.
第3の発明は、N(N≧2)個の送信アンテナを具備し、前記N個の送信アンテナから同一の周波数を用いて無線信号T(T=(t1,t2,・・・,tN)t、tは転置ベクトル、tiのiは送信アンテナ番号)をTDD方式で送信する無線信号送信装置と、M(M≧1)個の受信アンテナを具備し、前記N個の送信アンテナと前記M個の受信アンテナとの組み合わせであるN×M個の無線経路の伝達応答行列H(Hの(i,j)成分hijは送信アンテナjと受信アンテナi間との伝達応答)が推定可能であり、M個の受信信号R(R=(r1,r2,・・・,rM)t、tは転置ベクトル、rjのjは受信アンテナ番号)に前記推定した伝達応答行列Hを基に定まる復調処理Wj(r1,r2,・・・,rM;H)(1≦j≦N)を施すことによって元の無線信号tj(tj=Wj(r1,r2,…rM;H))を復元する無線信号受信装置と、を備えるN×MのMIMO無線信号伝送装置において、前記無線信号受信装置は、パイロット信号を定常的に送信する手段を具備し、前記無線信号送信装置は、前記パイロット信号を受信することによって前記伝達応答行列Hを推定し、任意の伝達応答行列Hallに対する前記無線信号受信装置の前記復調処理Wj(r1,r2,・・・rM;Hall)と前記無線信号受信装置における各受信アンテナに接続される受信ブランチの熱雑音電力とを既知とする手段と、前記推定した伝達応答行列Hと前記既知とした復調処理Wj(r1,r2,・・・rM;Hall)と前記既知とした熱雑音電力とを用いて前記無線信号受信装置における前記復調処理Wj(r1,r2,・・・,rM;H)後の雑音電力ajを算出し、前記算出した雑音電力ajに比例して前記送信アンテナj番目の送信電力を制御する手段と、を具備する、ことを特徴とするMIMO無線信号伝送装置である。 The third invention includes N (N ≧ 2) transmission antennas, and uses the same frequency from the N transmission antennas to transmit a radio signal T (T = (t 1 , t 2 ,..., t N ) t , t is a transposed vector, i of t i is a transmission antenna number) by a TDD system, and M (M ≧ 1) reception antennas, and the N transmissions Transfer response matrix H of N × M radio paths that is a combination of an antenna and the M reception antennas (H (i, j) component h ij is a transfer response between transmission antenna j and reception antenna i) Can be estimated, and the above estimated transmission is performed on M received signals R (R = (r 1 , r 2 ,..., R M ) t , t is a transposed vector, and j of r j is a receiving antenna number). determined based on the response matrix H demodulation W j (r 1, r 2 , ···, r M; H) 1 ≦ j ≦ N) original radio signal by a applying t j (t j = W j (r 1, r 2, ... r M; H)) N × M ; and a radio signal receiving apparatus for restoring In the MIMO radio signal transmission apparatus, the radio signal reception apparatus includes means for constantly transmitting a pilot signal, and the radio signal transmission apparatus estimates the transfer response matrix H by receiving the pilot signal. And the demodulation processing W j (r 1 , r 2 ,... R M ; H all ) of the radio signal receiving apparatus for an arbitrary transfer response matrix H all and each receiving antenna in the radio signal receiving apparatus. Means for making known the thermal noise power of the receiving branch, the estimated transfer response matrix H, the known demodulation processing W j (r 1 , r 2 ,... R M ; H all ) and the known Was The demodulation process W j in the wireless signal receiving apparatus using the noise power (r 1, r 2, ··· , r M; H) calculates a noise power a j after noise power a j with the calculated And a means for controlling the j-th transmission power of the transmission antenna in proportion to the transmission power of the MIMO radio signal transmission apparatus.
以上説明したように、本発明に係るMIMO無線信号伝送装置よれば、|Wj(n1,n2,・・・nM;H)|2 AVRの値に基づいて送信電力を制御することにより、MIMO伝送において(SNRj)AVRを一定とすることができる。 As described above, according to the MIMO radio signal transmission apparatus according to the present invention, the transmission power is controlled based on the value of | W j (n 1 , n 2 ,... N M ; H) | 2 AVR. Thus, (SNR j ) AVR can be kept constant in MIMO transmission.
以下に、添付した図面を参照しつつ、本発明の好適な実施の形態を詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
図1は、本発明の実施例1を示す図である。実施例1は、第1の発明に係るMIMO無線信号伝送装置の実施例である。 FIG. 1 is a diagram showing a first embodiment of the present invention. Example 1 is an example of the MIMO radio signal transmission apparatus according to the first invention.
図1に示すように、実施例1に係るMIMO無線信号伝送装置は、無線信号送信装置1と無線信号受信装置2とを備えている。
無線信号送信装置1においては、まず、N個の独立な無線信号T=(t1,t2,・・・,tN)tが入力される。なお、この無線信号Tは、PCなどの外部から独立なN個のデータ信号列が供給され、それを各々独立に無線変調するような形態でもよいし、また、同じくPCなどの外部から1個のデータ信号列が供給され、このデータ信号系列をこの無線装置がシリアル−パラレル変換によりN個のデータ信号系列に分解した後、各々を独立に無線変調するような形態でもよいし、また、この無線装置自体がN個の独立なデータ信号を発生し、これらを無線変調するような形態でもよい。
As illustrated in FIG. 1, the MIMO radio signal transmission apparatus according to the first embodiment includes a radio signal transmission apparatus 1 and a radio signal reception apparatus 2.
In the wireless signal transmission device 1, first, N independent wireless signals T = (t 1 , t 2 ,..., T N ) t are input. The radio signal T may be supplied with N data signal sequences independent from the outside such as a PC, and each of them may be independently radio-modulated. Similarly, one radio signal T from the outside such as a PC may be used. The data signal sequence is supplied, and after the radio apparatus decomposes the data signal sequence into N data signal sequences by serial-parallel conversion, each of the data signal sequences may be wirelessly modulated independently. The wireless device itself may generate N independent data signals and wirelessly modulate them.
無線信号送信装置1は、この無線信号Tに対して、
・ 無線信号受信装置2が伝達応答行列Hを推定するための経路伝達応答行列H推定用パイロット信号を生成する経路伝達応答行列H推定用パイロット信号生成手段1−1、
・ 無線信号Tに経路伝達応答行列H推定用パイロット信号を付加するN個の信号多重手段1−2−1〜1−2−N、
・ N個の信号多重手段1−2−1〜1−2−Nの出力信号を無線周波数へ変換するN個の周波数変換手段1−3−1〜1−3−N、
・ N個の周波数変換手段の出力信号に対して増幅する増幅度可変の可変アンプ1−4−1〜1−4−N、
・ N個の可変アンプ1−4−1〜1−4−Nが増幅したN個の信号を各々無線送信するN個の送信アンテナ1−5−1〜1−5−N、
・ 後述する無線信号受信装置2が推定した経路伝達応答行列Hの情報を取得するための受信アンテナ1−6、
・ 受信アンテナで受信した信号を復調する復調手段1−7、
・ 後述する無線信号受信装置2における任意の伝達応答行列Hallに対する復調処理Wj(r1,r2,・・・rM;Hall)、並びに無線信号受信装置における各受信アンテナに接続される受信ブランチの熱雑音電力を既知として、復調手段が復調した伝達応答行列Hと復調処理Wj(r1,r2,・・・rM;Hall)と熱雑音電力を用いて無線信号受信装置における復調処理Wj(r1,r2,・・・,rM;H)後の雑音電力ajを算出し、この算出した雑音電力ajに比例して、可変アンプ1−4−jの増幅度を制御する送信電力制御手段1−8、から構成される。
The radio signal transmission device 1 responds to this radio signal T.
A path transfer response matrix H estimation pilot signal generating unit 1-1 for generating a path transfer response matrix H estimation pilot signal for the radio signal receiving apparatus 2 to estimate the transfer response matrix H;
N signal multiplexing means 1-2-1 to 1-2-N for adding a path transfer response matrix H estimation pilot signal to the radio signal T;
N frequency conversion means 1-3-1 to 1-3-N for converting the output signals of N signal multiplexing means 1-2-1 to 1-2N to radio frequencies,
A variable amplifier 1-4-1 to 1-4 -N having a variable amplification degree for amplifying the output signals of the N frequency conversion means;
N transmission antennas 1-5-1 to 1-5-N for wirelessly transmitting N signals amplified by N variable amplifiers 1-4-1 to 1-4-N,
A receiving antenna 1-6 for acquiring information of a path transfer response matrix H estimated by the radio signal receiving apparatus 2 described later;
Demodulation means 1-7 for demodulating the signal received by the receiving antenna;
A demodulating process W j (r 1 , r 2 ,... R M ; H all ) for an arbitrary transfer response matrix H all in the radio signal receiving apparatus 2 described later, and each receiving antenna in the radio signal receiving apparatus A radio signal using the transfer response matrix H demodulated by the demodulating means, the demodulating process W j (r 1 , r 2 ,... R M ; H all ), and the thermal noise power. The noise power a j after demodulation processing W j (r 1 , r 2 ,..., R M ; H) in the receiving apparatus is calculated, and the variable amplifier 1-4 is proportional to the calculated noise power a j. It comprises transmission power control means 1-8 for controlling the amplification factor of -j.
また、無線信号受信装置2は、
・ M個の受信アンテナ2−1−1〜2−1−M
・ 受信アンテナ2−1−1〜2−1−Mが受信した信号に対してベースバンド帯へ周波数変換する周波数変換手段2−2−1〜2−2−N、
・ 前記M個の受信アンテナで受信した経路伝達応答行列H推定用パイロット信号から経路伝達応答行列Hを推定する伝達応答行列H推定手段2−3、
・ 伝達応答行列H推定手段2−3が推定した伝達応答行列Hに基づいて、M個の受信アンテナ2−1−1〜2−1−Mが受信したM個の受信信号R=(r1,r2,・・・,rN)tについて、元のN個の無線信号Tを復元するための復調処理Wj(r1,r2,・・・,rM;H)(tj=Wj(r1,r2,・・・,rM;H)、(1≦j≦N))を行うMIMOチャネル復調手段2−4、
・ 伝達応答行列H推定手段2−3が推定した伝達応答行列Hを前記無線信号送信装置1に通知するために、推定した伝達応答行列Hの情報を無線信号に変調する変調手段2−5、
・ 変調手段が変調した無線信号を無線送信する送信アンテナ2−6、
から構成される。
Further, the radio signal receiving device 2 is
-M receiving antennas 2-1-1-2-1 -M
Frequency conversion means 2-2-1 to 2-2N for frequency-converting the signals received by the receiving antennas 2-1-1 to 2-1-M to the baseband;
A transmission response matrix H estimation means 2-3 for estimating a path transmission response matrix H from a pilot signal for path transmission response matrix H estimation received by the M receiving antennas;
Based on the transfer response matrix H estimated by the transfer response matrix H estimation means 2-3, M received signals R = (r 1 ) received by the M receiving antennas 2-1-1-2-1 -M. , R 2 ,..., R N ) t , demodulation processing W j (r 1 , r 2 ,..., R M ; H) (t j for restoring the original N radio signals T MIMO channel demodulating means 2-4 for performing = W j (r 1 , r 2 ,..., R M ; H), (1 ≦ j ≦ N))
A modulation means 2-5 for modulating information of the estimated transfer response matrix H into a radio signal in order to notify the radio signal transmitting apparatus 1 of the transfer response matrix H estimated by the transfer response matrix H estimating means 2-3;
A transmitting antenna 2-6 for wirelessly transmitting a wireless signal modulated by the modulating means;
Consists of
まず、無線信号送信装置1は、送信したいN個の無線信号T=(t1,t2,・・・,tN)tに先立ち、無線信号受信装置2が経路伝達応答行列Hを推定するための無線信号受信装置2が既知の信号パターンである前記伝達応答行列H推定用パイロット信号を前記伝達応答行列H推定用パイロット信号生成手段1−1により生成し、N個の信号多重手段1−2−1〜1−2−NによってN個の無線信号T=(t1,t2,・・・,tN)tの前に伝達応答行列H推定用パイロット信号を付加する。 First, in the wireless signal transmission device 1, the wireless signal reception device 2 estimates the path transfer response matrix H prior to N wireless signals T = (t 1 , t 2 ,..., T N ) t to be transmitted. For generating the transmission response matrix H estimation pilot signal having a known signal pattern by the transmission response matrix H estimation pilot signal generating means 1-1, and N signal multiplexing means 1- The transmission response matrix H estimation pilot signal is added before N radio signals T = (t 1 , t 2 ,..., T N ) t by 2-1 to 1-2-N.
なお、伝達応答行列H推定用パイロット信号は、無線信号受信装置2が伝達応答行列Hを推定できればどんなパイロット信号パターンでも良い。たとえば、各送信アンテナから同じパイロット信号パターンを時分割に送信するような形態が考えられる。この信号パターンを図3に示す。 The transmission response matrix H estimation pilot signal may be any pilot signal pattern as long as the wireless signal receiving apparatus 2 can estimate the transmission response matrix H. For example, a mode in which the same pilot signal pattern is transmitted from each transmission antenna in a time division manner is conceivable. This signal pattern is shown in FIG.
図3では、例えば送信アンテナ1から順に同じパイロット信号パターンを送信しており、ある送信アンテナからパイロット信号を送信している間は、他の送信アンテナは送信していない。この場合、たとえば、送信アンテナjからパイロット信号が送信された場合、無線信号受信装置2の受信アンテナiでは、送信アンテナjから受信アンテナiを経由したパイロット信号のみが受信されるため、無線信号受信装置2がパイロット信号パターンを既知であれば、送信アンテナjと受信アンテナi間の伝達応答hijが推定可能である。 In FIG. 3, for example, the same pilot signal pattern is transmitted in order from the transmission antenna 1, and other transmission antennas are not transmitting while transmitting a pilot signal from a certain transmission antenna. In this case, for example, when a pilot signal is transmitted from the transmission antenna j, the reception antenna i of the wireless signal receiving apparatus 2 receives only the pilot signal from the transmission antenna j via the reception antenna i. If the device 2 knows the pilot signal pattern, the transfer response h ij between the transmitting antenna j and the receiving antenna i can be estimated.
以下、同様な動作を各送信アンテナから順番に送信されるパイロット信号について、各受信アンテナで行えば、N個の送信アンテナとM個の受信アンテナの全ての組み合わせの伝達応答hij、すなわち伝達応答行列Hが推定可能である。なお、無線信号受信装置において自動利得制御(AGC)が装備されている場合、自動利得制御(AGC)後は、各受信電力|Li|2がhijによらず一定のレベルを保つよう調整される。本伝達応答hijは、この自動利得制御(AGC)による電力増幅を含まない送信アンテナjから受信アンテナiまでの空間上の純粋な伝達応答とする。このような伝達応答hijを推定する方法としては、上記の方法で推定したhijを、さらに自動利得制御(AGC)の電力増幅度で割るような方法が考えられる。 Hereinafter, if a similar operation is performed for each pilot antenna sequentially transmitted from each transmission antenna, the transmission responses h ij of all combinations of N transmission antennas and M reception antennas, that is, transmission responses, are performed. The matrix H can be estimated. If the radio signal receiver is equipped with automatic gain control (AGC), after automatic gain control (AGC), each received power | L i | 2 is adjusted to maintain a constant level regardless of hij. Is done. This transmission response h ij is a pure transmission response in space from the transmission antenna j to the reception antenna i that does not include power amplification by this automatic gain control (AGC). As a method for estimating such a transfer response h ij , a method is conceivable in which h ij estimated by the above method is further divided by the power gain of automatic gain control (AGC).
以上の無線信号受信装置2における伝達応答行列Hの推定動作は、図1において、伝達応答行列H手段2−2で行われる。
N個の多重手段1−2−1〜1−2−NがN個の無線信号T=(t1,t2,・・・,tN)tに伝達応答行列H推定用パイロット信号を付加したN個の信号はN個の周波数変換手段1−3−1〜1−3−Nによって無線周波数帯へ周波数変換される。
The operation for estimating the transfer response matrix H in the radio signal receiving apparatus 2 is performed by the transfer response matrix H means 2-2 in FIG.
N multiplexing means 1-2-1 to 1-2-N add a pilot signal for estimating a transfer response matrix H to N radio signals T = (t 1 , t 2 ,..., T N ) t. The N signals thus converted are converted into a radio frequency band by N frequency converting means 1-3-1 to 1-3-N.
実施例1に係るMIMO無線信号伝送装置は、無線信号送信装置1側で無線信号受信装置2における復調処理Wj(r1,r2,・・・,rM;H)を用いるため、無線信号送信装置1から無線信号受信装置2方向の伝達応答行列Hを取得する必要がある。 Since the MIMO wireless signal transmission apparatus according to the first embodiment uses the demodulation processing W j (r 1 , r 2 ,..., R M ; H) in the wireless signal receiving apparatus 2 on the wireless signal transmitting apparatus 1 side, it is wireless. It is necessary to acquire the transfer response matrix H in the direction of the wireless signal receiving device 2 from the signal transmitting device 1.
実施例1に係るMIMO無線信号伝送装置では、FDD伝送のような無線信号送信装置側で伝達応答行列Hを推定することができない状況を想定し、無線信号受信装置2が推定した伝達応答行列Hを無線信号送信装置1に通知する。そのために、無線信号受信装置2は、伝達応答行列H推定手段2−2で推定した伝達応答行列Hの情報を変調手段2−4、送信アンテナ2−5により、無線信号送信装置1へ無線送信する。無線信号送信装置1は、受信アンテナ1−6、復調手段1−7により、伝達応答行列Hの情報を取得する。その後、取得した伝達応答行列Hは前記送信電力制御手段1−7に伝えられる。 In the MIMO radio signal transmission apparatus according to the first embodiment, assuming that the radio response transmitter H cannot estimate the transfer response matrix H, such as FDD transmission, the transfer response matrix H estimated by the radio signal receiver 2 is assumed. To the wireless signal transmitting apparatus 1. For this purpose, the wireless signal receiving device 2 wirelessly transmits the information of the transmission response matrix H estimated by the transmission response matrix H estimation unit 2-2 to the wireless signal transmission device 1 by the modulation unit 2-4 and the transmission antenna 2-5. To do. The wireless signal transmission device 1 acquires the information of the transfer response matrix H by the reception antenna 1-6 and the demodulation unit 1-7. Thereafter, the acquired transmission response matrix H is transmitted to the transmission power control means 1-7.
送信電力制御手段1−8は、予め任意の伝達応答行列Hallに対する復調処理Wj(r1,r2,・・・rM;Hall)、並びに無線信号受信装置における各受信アンテナに接続される受信ブランチの熱雑音電力(n1 2)AVR,(n2 2)AVR,・・・(nM 2)AVRを既知とする。 The transmission power control means 1-8 is connected in advance to a demodulation process W j (r 1 , r 2 ,... R M ; H all ) for an arbitrary transfer response matrix H all and each receiving antenna in the radio signal receiving apparatus. It is assumed that the thermal noise power (n 1 2 ) AVR , (n 2 2 ) AVR ,... (N M 2 ) AVR of the received branch is known.
なお、送信電力制御手段1−8が復調処理Wj(r1,r2,・・・rM;Hall)を既知とする方法は、あらかじめ送信電力制御手段1−8に復調処理Wj(r1,r2,・・・rM;Hall)の伝達応答行列Hに対する関数形を登録するような方法が考えられる。 Note that the method in which the transmission power control means 1-8 makes the demodulation processing W j (r 1 , r 2 ,... R M ; H all ) known in advance is sent to the transmission power control means 1-8 in advance by the demodulation processing W j. A method of registering a function form for the transfer response matrix H of (r 1 , r 2 ,..., R M ; H all ) is conceivable.
また、送信電力制御手段1−8が前記雑音信号の平均電力(n1 2)AVR,(n2 2)AVR,・・・(nM 2)AVRを既知とする方法は、(NFi×所要帯域B×温度T×ボルツマン定数k)の値を送信電力制御手段1−8にあらかじめ登録するような方法がある。ここで、NFiは、無線信号受信装置2が備える受信ブランチiのNoise Figure(NF)である。 The transmission power control means 1-8 makes the average power (n 1 2 ) AVR , (n 2 2 ) AVR ,... (N M 2 ) AVR of the noise signal known as (NF i × There is a method in which the value of required band B × temperature T × Boltzmann constant k) is registered in advance in transmission power control means 1-8. Here, NF i is a noise figure (NF) of the reception branch i included in the wireless signal reception device 2.
なお、各受信ブランチの回路構成が同じ構成であれば、無線信号受信装置の各受信ブランチのNFi(=NF)を等しいものとし、各受信ブランチの雑音信号の平均電力(n1 2)AVR,(n2 2)AVR,・・・(nM 2)AVRを(NF×所要帯域B×温度T×ボルツマン定数k)として登録する方法もある。
また、無線信号送信装置のNFと無線信号受信装置のNFが等しいと仮定して、送信電力制御手段1−8に自無線信号送信装置1のNFを予め登録するような方法がある。
If the circuit configuration of each reception branch is the same, NF i (= NF) of each reception branch of the radio signal reception device is made equal, and the average power (n 1 2 ) AVR of the noise signal of each reception branch , (N 2 2 ) AVR ,... (N M 2 ) There is also a method of registering AVR as (NF × required bandwidth B × temperature T × Boltzmann constant k).
Further, there is a method in which the NF of the own radio signal transmitter 1 is registered in advance in the transmission power control means 1-8, assuming that the NF of the radio signal transmitter is equal to the NF of the radio signal receiver.
送信電力制御手段1−8は、通知された伝達応答行列Hに基づき、無線信号受信装置2の復調処理Wj(r1,r2,・・・,rM;H)を定める。そして、互いに独立であり分散が熱雑音電力(n1 2)AVR,(n2 2)AVR,・・・(nN 2)AVRに各々等しいガウス雑音変数n1,n2,・・・,nNを復調処理Wj(r1,r2,・・・,rM;H)に代入し、その絶対値の2乗のサンプル平均値|Wj(n1,n2,・・・nM;H)|2 AVRを計算する。 The transmission power control means 1-8 determines the demodulation processing W j (r 1 , r 2 ,..., R M ; H) of the radio signal receiving device 2 based on the notified transfer response matrix H. Then, independently of one another a is dispersed thermal noise power (n 1 2) AVR, ( n 2 2) AVR, ··· (n N 2) respectively equal to Gaussian noise variables n 1 in AVR, n 2, · · ·, n N is substituted into demodulation processing W j (r 1 , r 2 ,..., r M ; H), and the sample average value | W j (n 1 , n 2 ,. n M ; H) | 2 AVR is calculated.
サンプル平均値|Wj(n1,n2,・・・nM;H)|2 AVRは、数7から分かる通り、無線信号受信装置2における復調処理Wj(r1,r2,・・・,rM;H)後の無線信号tjに対する雑音電力を反映したものとなる。送信電力制御手段1−8は算出したサンプル平均値|Wj(n1,n2,・・・nM;H)|2 AVRに比例して、無線信号Tjに対する可変アンプ1−4−jの増幅度βjを定める。すなわち、 The sample average value | W j (n 1 , n 2 ,... N M ; H) | 2 AVR is, as can be seen from Equation 7, the demodulation processing W j (r 1 , r 2 ,. .., R M ; H) Reflects the noise power for the radio signal t j after. The transmission power control means 1-8 is a variable amplifier 1-4 for the radio signal T j in proportion to the calculated sample average value | W j (n 1 , n 2 ,... N M ; H) | 2 AVR. The amplification degree β j of j is determined. That is,
N個の周波数変換手段3−3−1〜3−3−NからのN個の出力信号は、可変アンプ1−4−1〜1−4−Nにより、数8に従った増幅度β1〜βNで増幅された後、送信アンテナ1−5−1〜1−5−Nから送信される。 The N output signals from the N frequency converting units 3-1-3 to 1-3 -N are amplified by the variable amplifier 1-4-1 to 1-4 -N and the amplification factor β 1 according to the equation (8). after being amplified by ~β N, it is transmitted from the transmitting antennas 1-5-1-1-5-N.
以上のように、可変アンプ1−4−1〜1−4−Nの増幅度β1〜βNを制御した場合の送信アンテナ1−5−1〜1−5−Nから送信される無線信号をTt=(t1 t,t2 t,・・・tN t)tとおくと、 As described above, the radio signal transmitted from the transmitting antenna 1-5-1-1-5-N in the case of controlling the amplification degree β 1 ~β N of the variable amplifier 1-4-1~1-4-N Where T t = (t 1 t , t 2 t ,... T N t ) t
このとき、無線信号受信装置2で受信する受信信号R=(r1,r2,・・・,rN)tは、下記のように表される。 At this time, the received signal R = (r 1 , r 2 ,..., R N ) t received by the wireless signal receiving device 2 is expressed as follows.
各復元信号tj 〜に対するSNRの平均値(SNRj)AVRは、
Each recovered signal t j average values of SNR for ~ (SNR j) AVR is
したがって、以上の可変アンプ1−4−1〜1−4−Nの増幅度β1〜βNを制御する送信電力制御により、送信アンテナ番号j、伝達応答行列Hによらず、復元信号Tt=(t1 t,t2 t,・・・tN t)tの各成分の平均SNRを一定値k2|tj|2 AVRにすることが可能である。よって、たとえば所要の無線信号品質に対する所要SNRとこのk2|tj|2 AVR以上に設定すれば、伝達応答行列Hによらず平均値(SNRj)AVRを所要SNR以上に保つことが可能である。以上の概念、並びに定性的なグラフを示した図4に示す。 Therefore, the transmission power control for controlling the amplification degree β 1 ~β N of more variable amplifier 1-4-1~1-4-N, transmission antenna number j, regardless of the transmission response matrix H, recovered signal T t = (T 1 t , t 2 t ,... T N t ) The average SNR of each component of t can be a constant value k 2 | t j | 2 AVR . Therefore, for example, if the required SNR for the required radio signal quality and this k 2 | t j | 2 AVR or higher are set, the average value (SNR j ) AVR can be kept higher than the required SNR regardless of the transfer response matrix H. It is. FIG. 4 shows the above concept and a qualitative graph.
図4では、図5,6と同様、無線信号送信装置1を基地局、無線信号受信装置2を移動局としている。基地局の送信電力を一定にした場合(図4におけるグラフ4−1)、移動局の位置によって移動局の|Wj(n1,n2,・・・nM;H)|2 AVRが変動する(図4におけるグラフ4−2)。 In FIG. 4, as in FIGS. 5 and 6, the radio signal transmitting apparatus 1 is a base station, and the radio signal receiving apparatus 2 is a mobile station. When the transmission power of the base station is constant (graph 4-1 in FIG. 4), | W j (n 1 , n 2 ,... N M ; H) | 2 AVR of the mobile station depends on the position of the mobile station. It fluctuates (graph 4-2 in FIG. 4).
このとき、移動局のチャネル間干渉キャンセラ後の平均SNRjは数4のようになるため、移動局の位置により平均SNRは変動する(図4におけるグラフ4−3)。しかしながら、本発明の送信電力制御を用いると移動局の|Wj(n1,n2,・・・nM;H)|2 AVRに基づいて、基地局の送信電力を数8のように制御するため、移動局の前記復調処理後の平均SNRjは数12のように移動局に位置によらずに一定に保つことが可能となる。 At this time, since the average SNR j after the inter-channel interference canceller of the mobile station is expressed by Equation 4, the average SNR varies depending on the position of the mobile station (graph 4-3 in FIG. 4). However, when the transmission power control of the present invention is used, the transmission power of the base station is expressed by Equation 8 based on | W j (n 1 , n 2 ,... N M ; H) | 2 AVR of the mobile station. In order to control, the average SNR j after the demodulation processing of the mobile station can be kept constant regardless of the position in the mobile station as shown in Equation 12.
したがって、実施例1に係るMIMO無線信号伝送装置によれば、MIMO伝送において、安定して無線通信サービスを提供することが可能となる。 Therefore, according to the MIMO radio signal transmission apparatus according to the first embodiment, it is possible to stably provide a radio communication service in MIMO transmission.
なお、|Wj(n1,n2,・・・nM;H)|2 AVRの具体的な値は、たとえば送信アンテナ数Nと受信アンテナ数Mが等しく、復調処理Wj(r1,r2,・・・,rM;H)が受信信号Rに対する伝達応答行列Hの逆行列H−1の乗算、すなわち、逆行列H−1の(i,j)成分をh′ ijとおくと Note that the specific value of | W j (n 1 , n 2 ,... N M ; H) | 2 AVR is, for example, equal to the number of transmitting antennas N and the number of receiving antennas M, and demodulation processing W j (r 1 , R 2 ,..., R M ; H) is the multiplication of the inverse matrix H −1 of the transfer response matrix H with respect to the received signal R, that is, the (i, j) component of the inverse matrix H −1 is represented as h ′ ij . If you leave
また、実施例1に係るMIMO無線信号伝送装置は、MIMO伝送にマルチキャリアシステムのOFDM(Othrogical Frequency Division Multiplexing)信号伝送方式を適用するMIMO−OFDM方式にも適用可能である。 The MIMO radio signal transmission apparatus according to the first embodiment is also applicable to a MIMO-OFDM scheme that applies an OFDM (Othological Frequency Division Multiplexing) signal transmission scheme of a multicarrier system to MIMO transmission.
OFDM信号伝送方式においては、マルチパス波の遅延時間がガードインターバル以内に入っていれば各サブキャリアを独立に復調することができる。すなわち、各サブキャリアの伝送を独立に扱うことが可能である。このような場合、各サブキャリア内で上記と全く同様の数8〜数12が成立する。 In the OFDM signal transmission method, each subcarrier can be demodulated independently if the delay time of the multipath wave is within the guard interval. That is, it is possible to handle the transmission of each subcarrier independently. In such a case, the same equations 8 to 12 are established in each subcarrier.
したがって、MIMO−OFDM方式に実施例1に係るMIMO無線信号伝送装置を適用すれば、あるサブキャリア成分においては、全送信アンテナに対するサブキャリア成分の平均SNRを一定にすることが可能である。 Therefore, if the MIMO radio signal transmission apparatus according to the first embodiment is applied to the MIMO-OFDM scheme, the average SNR of subcarrier components for all transmission antennas can be made constant for a certain subcarrier component.
また、数12における|Wj(n1,n2,・・・nM;H)|2 AVRの値に対する可変アンプの増幅度を決定する比例定数k2を全サブキャリアにおいて一定とすると、全送信アンテナに対する全サブキャリア成分、すなわち全変調シンボルに対して、平均SNRを一定にすることが可能である。 Further, if the constant of proportionality k 2 that determines the amplification factor of the variable amplifier with respect to the value of | W j (n 1 , n 2 ,... N M ; H) | 2 AVR in Equation 12 is constant in all subcarriers, It is possible to make the average SNR constant for all subcarrier components for all transmit antennas, ie, all modulation symbols.
したがって、MIMO−OFDM方式に、実施例1に係るMIMO無線信号伝送装置を適用することにより、安定して無線通信サービスを提供することが可能となる。 Therefore, by applying the MIMO radio signal transmission apparatus according to the first embodiment to the MIMO-OFDM scheme, it becomes possible to provide a wireless communication service stably.
実施例2は、第2の発明に係るMIMO無線信号伝送装置の実施例である。 Example 2 is an example of the MIMO radio signal transmission apparatus according to the second invention.
実施例2に係るMIMO無線信号伝送装置は、実施例1に係るMIMO無線信号伝送装置において、無線信号送信装置1が行っていた|Wj(n1,n2,・・・nM;H)|2 AVRの算出を、無線信号受信装置2が行い、算出した|Wj(n1,n2,・・・nM;H)|2 AVRを無線信号送信装置1に通知することによって、無線信号送信装置1は通知してもらった|Wj(n1,n2,・・・nM;H)|2 AVRに基づき送信電力制御を行うことを特徴としている。 The MIMO radio signal transmission apparatus according to the second embodiment is the | W j (n 1 , n 2 ,..., N M ; H performed by the radio signal transmission apparatus 1 in the MIMO radio signal transmission apparatus according to the first embodiment. ) | 2 AVR is calculated by the wireless signal receiver 2, and the calculated | W j (n 1 , n 2 ,... N M ; H) | 2 AVR is notified to the wireless signal transmitter 1. a radio signal transmitting device 1 notifies to ask the | W j (n 1, n 2, ··· n M; H) | is characterized by performing the second transmission power control based on the AVR.
実施例2に係るMIMO無線信号伝送装置が備える無線信号送信装置と無線信号受信装置のブロック構成は、実施例1に係るMIMO無線信号伝送装置が備える無線信号送信装置と無線信号受信装置のブロック構成と全く同一である。|Wj (n1,n2,・・・nM;H)|2 AVRの算出機能は、無線信号受信装置2における伝達応答行列H推定手段2−3が担う。 The block configuration of the radio signal transmitting apparatus and the radio signal receiving apparatus included in the MIMO radio signal transmission apparatus according to the second embodiment is the block configuration of the radio signal transmitting apparatus and the radio signal receiving apparatus included in the MIMO radio signal transmission apparatus according to the first embodiment. Is exactly the same. | W j (n 1 , n 2 ,... N M ; H) | 2 AVR is calculated by the transfer response matrix H estimator 2-3 in the radio signal receiver 2.
伝達応答行列H推定手段2−3は、あらかじめ任意の伝達応答行列Hallに対する復調処理Wj(r1,r2,・・・rM;Hall)、並びに無線信号受信装置における各受信アンテナに接続される受信ブランチの熱雑音電力(n1 2)AVR,(n2 2)AVR,・・・(nM 2)AVRを既知とする。 The transfer response matrix H estimation means 2-3 preliminarily performs demodulation processing W j (r 1 , r 2 ,... R M ; H all ) on an arbitrary transfer response matrix H all and each reception antenna in the radio signal receiving apparatus. It is assumed that the thermal noise power (n 1 2 ) AVR , (n 2 2 ) AVR ,... (N M 2 ) AVR of the receiving branch connected to is known.
なお、伝達応答行列H推定手段2−3が復調処理Wj(r1,r2,・・・rM;Hall)を既知とする方法はあらかじめ伝達応答行列H推定手段2−3に復調処理Wj(r1,r2,・・・rM;Hall)の伝達応答行列Hに対する関数形を登録するような方法が考えられる。 Note that the method in which the transfer response matrix H estimation means 2-3 knows the demodulation processing W j (r 1 , r 2 ,... R M ; H all ) is demodulated in advance by the transfer response matrix H estimation means 2-3. A method of registering a function form for the transfer response matrix H of the processing W j (r 1 , r 2 ,... R M ; H all ) is conceivable.
また、伝達応答行列H推定手段2−3が雑音信号の平均電力(n1 2)AVR,(n2 2)AVR,・・・(nN 2)AVRを既知とする方法は、実施例1の場合と同様である。 In addition, the method in which the transfer response matrix H estimation unit 2-3 makes the average power (n 1 2 ) AVR , (n 2 2 ) AVR ,... ( N N 2 ) AVR of the noise signal known is described in the first embodiment. It is the same as the case of.
伝達応答行列H推定手段2−3は、実施例1の場合と同様に伝達応答行列Hを推定する。その後、推定した伝達応答行列H、復調処理Wj(r1,r2,・・・rM;Hall)、雑音信号の平均電力(n1 2)AVR,(n2 2)AVR,・・・(nN 2)AVRを用いて、実施例1の無線信号送信装置1の送信電力制御手段1−7が|Wj(n1,n2,・・・nM;H)|2 AVRを算出した方法と全く同様の方法により、|Wj(n1,n2,・・・nM;H)|2 AVRを算出する。その後、|Wj(n1,n2,・・・nM;H)|2 AVRの情報を変調手段2−5と送信アンテナにより、無線信号送信装置1に通知する。 The transfer response matrix H estimation means 2-3 estimates the transfer response matrix H as in the case of the first embodiment. Then, the estimated transfer response matrix H, demodulation processing W j (r 1 , r 2 ,... R M ; H all ), average power (n 1 2 ) AVR , (n 2 2 ) AVR,. .. (n N 2 ) Using AVR , the transmission power control means 1-7 of the wireless signal transmission apparatus 1 of the first embodiment is | W j (n 1 , n 2 ,... N M ; H) | 2 by exactly the same manner as calculating the AVR, | W j (n 1 , n 2, ··· n M; H) | calculates the 2 AVR. Thereafter, the information of | W j (n 1 , n 2 ,... N M ; H) | 2 AVR is notified to the wireless signal transmission device 1 by the modulation means 2-5 and the transmission antenna.
無線信号送信装置1は、通知された|Wj(n1,n2,・・・nM;H)|2 AVRの情報を受信アンテナ1−6と復調手段1−7により取得する。復調手段1−7は取得した該|Wj(n1,n2,・・・nM;H)|2 AVRの情報を送信電力制御手段1−8はの情報を伝える。 The wireless signal transmission device 1 acquires the notified | W j (n 1 , n 2 ,... N M ; H) | 2 AVR information by the reception antenna 1-6 and the demodulation unit 1-7. The demodulating means 1-7 transmits the acquired | W j (n 1 , n 2 ,... N M ; H) | 2 AVR information, and the transmission power control means 1-8 transmits the information.
送信電力制御手段1−8は、取得した|Wj(n1,n2,・・・nM;H)|2 AVRの値に基づいて、実施例1の場合と全く同様に、可変アンプ1−4−1〜1−4−Nの増幅度β1〜βNを数8のように設定する。 The transmission power control means 1-8 uses the variable amplifier based on the obtained | W j (n 1 , n 2 ,... N M ; H) | 2 AVR , just as in the first embodiment. 1-4-1~1-4-N to set an amplification factor β 1 ~β N of as having 8.
その他のブロック、無線信号送信装置1における伝達応答行列H推定用パイロット信号生成手段1−1、信号多重手段1−2−1〜1−2−N、周波数変換手段1−3−1〜1−3−N、可変アンプ1−4−1〜1−4−N、送信アンテナ1−5−1〜1−5−N、並びに無線信号受信装置2における受信アンテナ2−1−1〜2−1−M、周波数変換手段2−2−1〜2−2−M、MIMOチャネル復調手段2−4は、実施例1の場合と全く同様の動作をする。 Other blocks, transmission response matrix H estimation pilot signal generation means 1-1, signal multiplexing means 1-2-1 to 1-2-N, frequency conversion means 1-3-1 to 1- 1 in radio signal transmission apparatus 1 3-N, variable amplifiers 1-4-1 to 1-4-N, transmitting antennas 1-5-1 to 1-5-N, and receiving antennas 2-1-1 to 2-1 in the radio signal receiving apparatus 2 -M, frequency conversion means 2-2-1 to 2-2M, and MIMO channel demodulation means 2-4 operate in exactly the same way as in the first embodiment.
実施例2に係るMIMO無線信号伝送装置では、|Wj(n1,n2,・・・nM;H)|2 AVRを算出する機能を無線信号受信信号2が行うため、|Wj(n1,n2,・・・nM;H)|2 AVRの算出を無線信号送信信号1が行う実施例1に係るMIMO無線信号伝送装置よりも無線信号送信装置のハードウェア構成を軽減することができる。 In the MIMO radio signal transmission apparatus according to the second embodiment, | W j (n 1 , n 2 ,... N M ; H) | 2 AVR is calculated by the radio signal reception signal 2, and thus | W j (N 1 , n 2 ,... N M ; H) | 2 The hardware configuration of the radio signal transmission device is reduced compared to the MIMO radio signal transmission device according to the first embodiment in which the radio signal transmission signal 1 calculates AVR. can do.
したがって、たとえば、無線信号送信装置1が移動局、無線信号受信装置2が基地局のような無線通信システムでは、実施例2により移動局側のハードウェア負担を軽減することが可能となる。 Therefore, for example, in a wireless communication system in which the wireless signal transmission device 1 is a mobile station and the wireless signal reception device 2 is a base station, the hardware load on the mobile station side can be reduced by the second embodiment.
実施例3に係るMIMO無線信号伝送装置は、実施例1に係るMIMO無線信号伝送装置において、TDD伝送を前提とし、無線信号送信装置1が無線信号受信装置2から通知してもらっていた伝達応答行列Hを、無線信号受信装置2から各受信アンテナ2−1−1〜2−1−Mから伝達応答行列H推定用パイロット信号を送信してもらうことによって、無線信号送信装置1自身が伝達応答行列Hを推定することを特徴としている。 The MIMO wireless signal transmission apparatus according to the third embodiment is based on the TDD transmission in the MIMO wireless signal transmission apparatus according to the first embodiment, and the transfer response matrix received from the wireless signal receiving apparatus 2 by the wireless signal transmitting apparatus 1 H is transmitted from each of the reception antennas 2-1-1 to 2-1 -M from the wireless signal receiving device 2 so that the pilot signal for estimating the transmission response matrix H is transmitted, so that the wireless signal transmitting device 1 itself transmits the transmission response matrix. It is characterized by estimating H.
無線信号送信装置が行う送信電力制御方法において必要な伝達応答行列Hは、無線信号送信装置1から無線信号受信装置2方向の伝達応答行列Hであるが、無線信号送信装置1−1が推定できる伝達応答行列Hは、無線信号受信装置2から無線信号送信装置1方向の伝達応答行列Hである。 The transmission response matrix H required in the transmission power control method performed by the wireless signal transmission device is the transmission response matrix H in the direction from the wireless signal transmission device 1 to the wireless signal reception device 2, but can be estimated by the wireless signal transmission device 1-1. The transfer response matrix H is a transfer response matrix H in the direction from the radio signal receiver 2 to the radio signal transmitter 1.
しかしながら、TDD伝送であれば、無線信号送信装置1から無線信号受信装置1方向、無線信号受信装置2から無線信号送信装置1方向とも同じ周波数を用いるため、無線信号受信装置2から無線信号送信装置1方向の伝達応答行列Hと無線信号送信装置1から無線信号受信装置2方向の伝達応答行列Hが等しくなる。 However, in the case of TDD transmission, since the same frequency is used in the direction from the radio signal transmission device 1 to the radio signal reception device 1 and from the radio signal reception device 2 to the radio signal transmission device 1, the radio signal transmission device 2 to the radio signal transmission device. The transmission response matrix H in one direction and the transmission response matrix H in the direction from the radio signal transmitting apparatus 1 to the radio signal receiving apparatus 2 are equal.
したがって、無線信号送信装置1でも、無線信号送信装置が行う送信電力制御方法において必要な無線信号送信装置1から無線信号受信装置2方向の伝達応答行列Hを推定することが可能となる。 Therefore, the wireless signal transmission device 1 can also estimate the transmission response matrix H in the direction of the wireless signal reception device 2 from the wireless signal transmission device 1 necessary in the transmission power control method performed by the wireless signal transmission device.
実施例3に係るMIMO無線信号伝送装置が備える無線信号送信装置3、無線信号受信装置4を図2に示す。 FIG. 2 shows a radio signal transmission device 3 and a radio signal reception device 4 included in the MIMO radio signal transmission device according to the third embodiment.
無線信号送信装置3は、
図1における無線信号送信装置1における経路伝達応答行列H推定用パイロット信号生成手段1−1、信号多重手段1−2−1〜1−2−N、周波数変換手段1−3−1〜1−3−N、可変アンプ1−3−1〜1−3−N、送信電力制御手段1−7と全く同一の、
・ 伝達応答行列H推定用パイロット信号生成手段3−1、
・ N個の信号多重手段3−2−1〜3−2−N、
・ N個の周波数変換手段3−3−1〜3−3−N、
・ N個の可変アンプ3−4−1〜3−4−N、
・ 送信電力制御手段3−7、
を具備する。
The wireless signal transmission device 3
Pilot signal generation means 1-1 for path transfer response matrix H estimation, signal multiplexing means 1-2-1 to 1-2-N, frequency conversion means 1-3-1- 3-N, variable amplifier 1-3-1 to 1-3-N, exactly the same as transmission power control means 1-7,
A pilot signal generating means 3-1, for estimating a transfer response matrix H,
N signal multiplexing means 3-2-1 to 2-3-2-N,
N frequency converting means 3-3-1 to 3-3-3,
・ N variable amplifiers 3-4-1 to 3-4-N,
Transmission power control means 3-7,
It comprises.
さらに、前記伝達応答行列Hを推定するために、
・ 後述する無線信号受信装置4から送信される伝達応答行列H推定用パイロット信号を受信し、また、前記無線信号Tを送信するためのN個の送受信アンテナ3−6−1〜3−6−N、・ 受信した伝達応答行列H推定用パイロット信号から伝達応答行列Hを推定する伝達応答行列H推定手段3−7、
・ 送受信アンテナ3−6−1〜3−6−Nの接続先を可変アンプ3−4−1〜3−4−Nと伝達応答行列H推定手段3−7に時分割に切り替えるN個のTDDスイッチ3−5−1〜3−5−N、
を具備する。
Further, in order to estimate the transfer response matrix H,
· N transmission / reception antennas 3-6-1 to 3-6 for receiving a transmission response matrix H estimation pilot signal transmitted from a radio signal receiver 4, which will be described later, and for transmitting the radio signal T N, Transfer response matrix H estimation means 3-7 for estimating the transfer response matrix H from the received transfer response matrix H estimation pilot signal,
N TDDs that switch the connection destinations of the transmission / reception antennas 3-6-1 to 3-6-N to the variable amplifiers 3-4-1 to 3-4-N and the transfer response matrix H estimation unit 3-7 in a time division manner Switches 3-5-1 to 3-5-N,
It comprises.
一方、無線信号受信装置4は、図1における無線信号受信装置2における周波数変換手段2−2−1〜2−2−M、伝達応答行列H推定手段2−3、MIMOチャネル復調手段2−4と全く同じ同一の、
・ 周波数変換手段4−3−1〜4−3−N
・ 伝達応答行列H推定手段4−4
・ MIMOチャネル復調手段4−5
を具備する。
On the other hand, the radio signal receiving apparatus 4 includes frequency conversion means 2-2-1 to 2-2M, transfer response matrix H estimating means 2-3, and MIMO channel demodulating means 2-4 in the radio signal receiving apparatus 2 in FIG. Exactly the same,
・ Frequency conversion means 4-3-1 to 4-3-N
Transfer response matrix H estimation means 4-4
MIMO channel demodulation means 4-5
It comprises.
また、無線信号送信装置3が伝達応答行列Hを推定できるよう、
・ 伝達応答行列H推定用パイロット信号を生成する伝達応答行列H推定用パイロット信号生成手段4−6、
・ 伝達応答行列H推定用パイロット信号を送信し、また前記無線信号Tを受信するためのM個の送受信アンテナ4−1−1〜4−1−M、
・ 送受信アンテナ4−1−1〜4−1−Mの接続先をMIMOチャネル復調手段4−5と伝達応答行列H推定用パイロット信号生成手段4−6に時分割に切り替えるM個のTDDスイッチ4−2−1〜4−2−M、
を具備する。
Further, so that the wireless signal transmission device 3 can estimate the transfer response matrix H,
A transfer response matrix H estimation pilot signal generating means 4-6 for generating a transfer response matrix H estimation pilot signal;
M transmission / reception antennas 4-1-1 to 4-1 -M for transmitting a transmission response matrix H estimation pilot signal and receiving the radio signal T;
The M TDD switches 4 that switch the connection destinations of the transmission / reception antennas 4-1-1 to 4-1-M to the MIMO channel demodulation unit 4-5 and the transmission response matrix H estimation pilot signal generation unit 4-6 in a time division manner. 2-1 to 4-2M,
It comprises.
なお、無線信号送信装置3における伝達応答行列H推定手段3−7、無線信号受信装置4における伝達応答行列H推定用パイロット信号生成手段4−6は、無線信号受信装置4における伝達応答行列H推定手段4−4、無線信号送信装置3における経路伝達応答行列H推定用パイロット信号生成手段3−1と各々全く同じ機能を有する。 Note that the transmission response matrix H estimation means 3-7 in the wireless signal transmission apparatus 3 and the transmission response matrix H estimation pilot signal generation means 4-6 in the wireless signal reception apparatus 4 are estimated in the transmission response matrix H in the wireless signal reception apparatus 4. Means 4-4 and the path transmission response matrix H estimation pilot signal generation means 3-1 in the radio signal transmitting apparatus 3 have the same functions.
無線信号受信装置4において、伝達応答行列H推定用パイロット信号生成手段4−6において伝達応答行列H推定用パイロット信号を生成し、生成された伝達応答行列H推定用パイロット信号を前記送受信アンテナ4−2−1〜4−2−Mから送信する。なお、伝達応答行列H推定用パイロット信号の信号パターンは実施例1で言及したパターンと全く同一のパターンを用いればよい。 In the radio signal receiving apparatus 4, a transmission response matrix H estimation pilot signal is generated in the transmission response matrix H estimation pilot signal generation means 4-6, and the generated transmission response matrix H estimation pilot signal is transmitted to the transmission / reception antenna 4- Send from 2-1 to 4-2-M. The signal pattern of the transfer response matrix H estimation pilot signal may be exactly the same as the pattern mentioned in the first embodiment.
無線信号送信装置3は、送受信アンテナ3−6−1〜3−6−Nから伝達応答行列H推定用パイロット信号を受信することにより、伝達応答行列H推定手段3−7で伝達応答行列Hが推定できる。伝達応答行列H推定手段3−7は推定した伝達応答行列Hを前記送信電力制御手段3−8に伝える。 The wireless signal transmission device 3 receives the transmission response matrix H estimation pilot signal from the transmission / reception antennas 3-6-1 to 3-6-N, so that the transmission response matrix H estimation means 3-7 generates the transmission response matrix H. Can be estimated. The transmission response matrix H estimation unit 3-7 transmits the estimated transmission response matrix H to the transmission power control unit 3-8.
送信電力制御手段3−8は、伝達応答行列Hが伝えられた後は、実施例1の場合と全く同様にして、可変アンプ1−4−1〜1−4−Nの増幅度β1〜βNを制御する。 After the transmission response matrix H is transmitted, the transmission power control means 3-8 performs the same as in the first embodiment, and the amplification degrees β 1 to 1 of the variable amplifiers 1-4-1 to 1-4-N. β N is controlled.
無線信号送信装置3におけるTDDスイッチ3−5−1〜3−5−Nは、無線信号送信装置4が無線信号Tと伝達応答行列H推定用パイロット信号を送信する場合は、送受信アンテナ3−6−1〜3−6−Nと可変アンプ3−4−1〜3−4−Nを接続し、無線信号受信装置2から送信される伝達応答行列H推定用パイロット信号を受信する時は送受信アンテナ3−6−1〜3−6−Nと伝達応答行列H推定手段3−7を接続する。 The TDD switches 3-5-1 to 3-5 -N in the radio signal transmission device 3 transmit and receive antennas 3-6 when the radio signal transmission device 4 transmits the radio signal T and the pilot signal for estimating the transfer response matrix H. -1 to 3-6-N and variable amplifiers 3-4-1 to 3-4-N are connected, and when receiving a transmission response matrix H estimation pilot signal transmitted from the radio signal receiver 2, a transmission / reception antenna 3-6-1 to 3-6-N and transfer response matrix H estimation means 3-7 are connected.
無線信号受信装置4におけるTDDスイッチ4−2−1〜4−2−Mは、無線信号送信装置3が送信する無線信号Tと伝達応答行列H推定用パイロット信号を受信する場合は、送受信アンテナ4−1−1〜4−1−MとMIMOチャネル復調手段4−5を接続し、伝達応答行列H推定用パイロット信号を送信する場合は、送受信アンテナ4−1−1〜4−1−Mと伝達応答行列H推定用パイロット信号生成手段を接続する。 The TDD switches 4-2-1 to 4-2 -M in the radio signal receiver 4 receive and transmit the radio signal T and the transmission response matrix H estimation pilot signal transmitted by the radio signal transmitter 3. When transmitting the transmission response matrix H estimation pilot signal by connecting the 1-1-1 to 4-1-M and the MIMO channel demodulating means 4-5, A transmission signal matrix H estimation pilot signal generating means is connected.
その他のブロック、無線信号送信装置3における伝達応答行列H推定用パイロット信号生成手段3−1、信号多重手段3−2−1〜3−2−N、周波数変換手段3−3−1〜3−3−N、可変アンプ3−4−1〜3−4−N、送信電力制御手段3−8、並びに無線信号受信装置4における周波数変換手段4−2−1〜4−2−M、MIMOチャネル復調手段4−5は、実施例1の無線信号送信装置1における伝達応答行列H推定用パイロット信号生成手段1−1、信号多重手段1−2−1〜1−2−N、周波数変換手段1−3−1〜1−3−N、可変アンプ1−4−1〜1−4−N、送信電力制御手段1−7、並びに無線信号受信装置2における周波数変換手段2−2−1〜2−2−M、MIMOチャネル復調手段2−5と全く同様の動作をする。 Other blocks, transfer response matrix H estimation pilot signal generation means 3-1, signal multiplexing means 3-2-1 to 2-3-2-N, frequency conversion means 3-3-1 to 3- 3-N, variable amplifier 3-4-1 to 3-4-N, transmission power control means 3-8, frequency conversion means 4-2-1 to 4-2-M in radio signal receiving apparatus 4, MIMO channel The demodulating means 4-5 includes a transmission response matrix H estimation pilot signal generating means 1-1, signal multiplexing means 1-2-1 to 1-2-N, and frequency converting means 1 in the wireless signal transmitting apparatus 1 of the first embodiment. -3-1 to 1-3-N, variable amplifiers 1-4-1 to 1-4-N, transmission power control means 1-7, and frequency conversion means 2-2-1 to 2 in the radio signal receiving apparatus 2 -2-M, exactly the same operation as MIMO channel demodulation means 2-5 That.
実施例3に係るMIMO無線信号伝送装置は、無線信号送信装置自身が伝達応答行列Hを推定するため、無線信号受信装置から推定した伝達応答行列Hを通知してもらう実施例1に係るMIMO無線信号伝送装置と比較して、無線信号送信装置はより瞬時に実際の伝搬の伝達応答行列Hを取得することができる。 The MIMO radio signal transmission apparatus according to the third embodiment has the MIMO radio signal transmission apparatus according to the first embodiment that receives the estimated transmission response matrix H from the radio signal receiving apparatus because the radio signal transmission apparatus itself estimates the transmission response matrix H. Compared with the signal transmission device, the wireless signal transmission device can obtain the transfer response matrix H of actual propagation more instantaneously.
したがって、実施例3に係るMIMO無線信号伝送装置では、送信電力をより最近の伝達応答行列Hを用いて制御できるため、伝達応答行列Hの変動に対して平均値(SNRj)AVRを一定にする制御がより高精度に行うことが可能となる。 Therefore, in the MIMO radio signal transmission apparatus according to the third embodiment, the transmission power can be controlled using the more recent transfer response matrix H, so that the average value (SNR j ) AVR is kept constant with respect to the fluctuation of the transfer response matrix H. It is possible to perform control with higher accuracy.
以上説明したように、実施例1〜実施例3に係るMIMO無線信号伝送装置によれば、MIMO伝送において、無線信号送信装置が無線信号受信装置側の復調処理後の雑音電力|Wj(n1,n2,・・・nM;H)|2 AVRを取得し、雑音電力|Wj (n1,n2,・・・nM;H)|2 AVRに比例して送信アンテナjの無線信号tjの電力を増幅するため、伝達応答行列Hによらず、無線信号受信装置側の復調処理後の平均SNRjを一定に保つことが可能である。したがって、実施例1〜実施例3に係るMIMO無線信号伝送装置によれば、受信電力に基づいて送信電力値を制御する従来の送信電力制御では受信SNRを一定に保つことができないような、移動無線通信でのMIMO伝送においても、安定した無線通信サービスを提供することが可能となる。 As described above, according to the MIMO radio signal transmission apparatuses according to the first to third embodiments, in MIMO transmission, the noise power | W j (n 1 , n 2 ,... N M ; H) | 2 AVR is acquired, and the transmission power j is proportional to the noise power | W j (n 1 , n 2 ,... N M ; H) | 2 AVR. to amplify the power of the radio signal t j, regardless of the transmission response matrix H, it is possible to keep the average SNR j after demodulation processing of the radio signal receiving apparatus constant. Therefore, according to the MIMO radio signal transmission apparatus according to the first to third embodiments, the movement that the reception SNR cannot be kept constant by the conventional transmission power control that controls the transmission power value based on the reception power is not possible. A stable wireless communication service can be provided also in MIMO transmission by wireless communication.
また、実施例1、実施例2、実施例3の違いは、無線信号送信装置による無線信号受信装置側の復調処理後の雑音電力|Wj(n1,n2,・・・nM;H)|2 AVRの取得の方法にある。 Further, the difference between the first embodiment, the second embodiment, and the third embodiment is that noise power after demodulation processing on the wireless signal receiving device side by the wireless signal transmitting device | W j (n 1 , n 2 ,... N M ; H) | 2 AVR is in the method of acquisition.
実施例1に係るMIMO無線信号伝送装置は、無線信号受信装置から推定した伝達応答行列Hを通知してもらうことにより、通知してもらった伝達応答行列Hを基に雑音電力|Wj(n1,n2,・・・nM;H)|2 AVRを算出する。 The MIMO wireless signal transmission apparatus according to the first embodiment is notified of the estimated transmission response matrix H from the wireless signal receiving apparatus, and thus the noise power | W j (n 1 , n 2 ,... N M ; H) | 2 AVR is calculated.
一方、実施例2に係るMIMO無線信号伝送装置は、無線信号受信装置側が雑音電力|Wj(n1,n2,・・・nM;H)|2 AVRを算出し、算出した雑音電力|Wj(n1,n2,・・・nM;H)|2 AVRを無線信号装置装置に通知する。したがって、雑音電力|Wj(n1,n2,・・・nM;H)|2 AVRを算出する機能を無線信号送信装置から削除できるため、実施例1に係るMIMO無線信号伝送装置よりも無線信号送信装置のハードウェア構成を軽減することが可能となる。よって、実施例2に係るMIMO無線信号伝送装置によれば、無線信号送信装置が移動局、無線信号受信装置が基地局となるような無線通信システムで移動局側のハードウェア構成を軽減できる。 On the other hand, in the MIMO radio signal transmission apparatus according to the second embodiment, the radio signal receiving apparatus calculates noise power | W j (n 1 , n 2 ,... N M ; H) | 2 AVR, and calculates the calculated noise power. | W j (n 1 , n 2 ,... N M ; H) | 2 AVR is notified to the radio signal apparatus. Therefore, since the function of calculating the noise power | W j (n 1 , n 2 ,... N M ; H) | 2 AVR can be deleted from the radio signal transmission apparatus, the MIMO radio signal transmission apparatus according to the first embodiment. In addition, it is possible to reduce the hardware configuration of the wireless signal transmission device. Therefore, according to the MIMO radio signal transmission apparatus according to the second embodiment, the hardware configuration on the mobile station side can be reduced in a radio communication system in which the radio signal transmission apparatus is a mobile station and the radio signal reception apparatus is a base station.
一方、実施例3に係るMIMO無線信号伝送装置は、TDD伝送を前提として、無線信号送信装置自身が伝達応答行列Hを推定し、推定した伝達応答行列Hに基づいて雑音電力|Wj(n1,n2,・・・nM;H)|2 AVRを算出している。したがって、実施例1に係るMIMO無線信号伝送装置と比較すると、無線信号送信装置が実際の伝搬環境の伝達応答行列Hをより瞬時に取得できるため、伝達応答行列Hの変動に対して平均値(SNRj)AVRを一定にする制御をより高精度に行うことが可能となる。 On the other hand, in the MIMO radio signal transmission apparatus according to the third embodiment, on the premise of TDD transmission, the radio signal transmission apparatus itself estimates the transfer response matrix H, and based on the estimated transfer response matrix H, the noise power | W j (n 1 , n 2 ,... N M ; H) | 2 AVR is calculated. Therefore, compared with the MIMO radio signal transmission apparatus according to the first embodiment, the radio signal transmission apparatus can acquire the transfer response matrix H of the actual propagation environment more instantaneously. SNR j ) Control to make AVR constant can be performed with higher accuracy.
1 無線信号送信装置
1−1 伝達応答行列H推定用パイロット信号生成手段
1−2−1〜1−2−N 信号多重手段
1−3−1〜1−3−N 周波数変換手段
1−4−1〜1−4−N 可変アンプ
1−5−1〜1−5−N 送信アンテナ
1−6 受信アンテナ
1−7 受信信号復調手段
1−8 送信電力制御手段
2 無線信号受信装置
2−1−1〜2−1−M 受信アンテナ
2−2−1〜2−2−M 周波数変換手段
2−3 伝達応答行列H推定手段
2−4 MIMOチャネル復調手段
2−5 変調手段
2−6 送信アンテナ
3 無線信号送信装置
3−1 伝達応答行列H推定用パイロット信号生成手段
3−2−1〜3−2−N 信号多重手段
3−3−1〜3−3−N 周波数変換手段
3−4−1〜3−4−N 可変アンプ
3−5−1〜3−5−N TDDスイッチ
3−6−1〜3−6−N 送受信アンテナ
3−7 伝達応答行列H推定手段
3−8 送信電力制御手段
4 無線信号受信装置4−1−1〜4−1−M 送受信アンテナ
4−2−1〜4−2−M TDDスイッチ
4−3−1〜4−3−M 周波数変換手段
4−4 伝達応答行列H推定手段
4−5 MIMOチャネル復調手段
4−6 伝達応答行列H推定用パイロット信号生成手段
DESCRIPTION OF SYMBOLS 1 Radio signal transmitter 1-1 Pilot signal production | generation means 1-2-1 to 1-2-N for transfer response matrix H estimation Signal multiplexing means 1-3-1 to 1-3-N Frequency conversion means 1-4 1-1-4-N variable amplifier 1-5-1 to 1-5-N transmitting antenna 1-6 receiving antenna 1-7 received signal demodulating means 1-8 transmission power control means 2 radio signal receiving apparatus 2-1 1-2-1-M Receiving antenna 2-2-1 to 2-2-2M Frequency converting means 2-3 Transfer response matrix H estimating means 2-4 MIMO channel demodulating means 2-5 Modulating means 2-6 Transmitting antenna 3 Radio signal transmission device 3-1 Transmission response matrix H estimation pilot signal generation means 3-2-1 to 2-3-2-N Signal multiplexing means 3-3-1 to 3-3-N Frequency conversion means 3-4-1 3-4-N Variable amplifier 3-5-1 to 3-5-N TDD switch 3-6 -1 to 3-6-N transmission / reception antenna 3-7 transmission response matrix H estimation means 3-8 transmission power control means 4 radio signal reception device 4-1-1 to 4-1-M transmission / reception antenna 4-2-1 4-2M TDD switch 4-3-1 to 4-3-M Frequency converting means 4-4 Transfer response matrix H estimating means 4-5 MIMO channel demodulating means 4-6 Pilot signal generating means for estimating transfer response matrix H
Claims (3)
M(M≧1)個の受信アンテナを具備し、前記N個の送信アンテナと前記M個の受信アンテナとの組み合わせであるN×M個の無線経路の伝達応答行列H(Hの(i,j)成分hijは送信アンテナjと受信アンテナi間との伝達応答)が推定可能であり、M個の受信信号R(R=(r1,r2,・・・,rM)t、tは転置ベクトル、rjのjは受信アンテナ番号)に前記推定した伝達応答行列Hを基に定まる復調処理Wj(r1,r2,・・・,rM;H)(1≦j≦N)を施すことによって元の無線信号tj(tj=Wj(r1,r2,…rM;H))を復元する無線信号受信装置と、
を備えるN×MのMIMO無線信号伝送装置において、
前記無線信号受信装置は、前記推定した伝達応答行列Hを前記無線信号送信装置に定常的に通知する手段を具備し、
前記無線信号送信装置は、
前記無線信号受信装置における任意の伝達応答行列Hallに対する前記復調処理Wj(r1,r2,・・・rM;Hall)と前記無線信号受信装置における各受信アンテナに接続される受信ブランチの熱雑音電力とを既知とする手段と、
前記通知された伝達応答行列Hと前記既知とした復調処理Wj(r1,r2,・・・rM;H)と前記既知とした熱雑音電力とを用いて前記無線信号受信装置における前記復調処理Wj(r1,r2,・・・,rM;H)後の雑音電力ajを算出し、前記算出した雑音電力ajに比例して前記送信アンテナj番目の送信電力を制御する手段と、
を具備する、
ことを特徴とするMIMO無線信号伝送装置。 N (N ≧ 2) transmission antennas, and using the same frequency from the N transmission antennas, radio signals T (T = (t 1 , t 2 ,..., T N ) t , t Is a transposed vector, i of ti is a transmitting antenna number),
M (M ≧ 1) receive antennas, and N × M radio path transfer response matrices H (H, (i, N), which are combinations of the N transmit antennas and the M receive antennas. j) The component h ij can estimate the transmission response between the transmitting antenna j and the receiving antenna i), and M received signals R (R = (r 1 , r 2 ,..., r M ) t , t is a transposed vector, j of r j is a receiving antenna number), and demodulation processing W j (r 1 , r 2 ,..., r M ; H) (1 ≦ j) determined based on the estimated transfer response matrix H ≦ N) to restore the original radio signal t j (t j = W j (r 1 , r 2 ,... R M ; H)),
In an N × M MIMO radio signal transmission apparatus comprising:
The wireless signal receiving device comprises means for constantly notifying the estimated transmission response matrix H to the wireless signal transmitting device;
The radio signal transmitting device is:
The demodulation processing Wj (r 1 , r 2 ,... R M ; H all ) for an arbitrary transfer response matrix H all in the radio signal receiving apparatus and a receiving branch connected to each receiving antenna in the radio signal receiving apparatus Means for making known the thermal noise power of
In the radio signal receiving apparatus, the notified transfer response matrix H, the known demodulation process W j (r 1 , r 2 ,... R M ; H) and the known thermal noise power are used. The noise power a j after the demodulation processing W j (r 1 , r 2 ,..., R M ; H) is calculated, and the j-th transmission power of the transmission antenna is proportional to the calculated noise power a j. Means for controlling
Comprising
A MIMO radio signal transmission apparatus characterized by the above.
M(M≧1)個の受信アンテナを具備し、前記N個の送信アンテナと前記M個の受信アンテナとの組み合わせであるN×M個の無線経路の伝達応答行列H(Hの(i,j)成分hijは送信アンテナjと受信アンテナi間との伝達応答)が推定可能であり、M個の受信信号R(R=(r1,r2,・・・,rM)t、tは転置ベクトル、rjのjは受信アンテナ番号)に前記推定した伝達応答行列Hを基に定まる復調処理Wj(r1,r2,・・・,rM;H)(1≦j≦N)を施すことによって元の無線信号tj(tj=Wj(r1,r2,…rM;H))を復元する無線信号受信装置と、
を備えるN×MのMIMO無線信号伝送装置において、
前記無線信号受信装置は、
前記推定した任意の伝達応答行列Hallに対する前記復調処理Wj(r1,r2,・・・rM;Hall)と各受信アンテナに接続される受信ブランチの熱雑音電力とを既知とする手段と、
前記推定した伝達応答行列Hと前記既知とした復調処理Wj(r1,r2,・・・rM,Hall)と前記既知とした熱雑音電力とを用いて前記無線信号受信装置における前記復調処理Wj(r1,r2,・・・,rM;H)後の雑音電力ajを算出し、前記算出した雑音電力ajを前記無線信号送信装置に定常的に通知する手段と、
を具備し、
前記無線信号送信装置は、前記通知された雑音電力ajに比例して前記送信アンテナj番目の送信電力を制御する手段を具備する、
ことを特徴とするMIMO無線信号伝送装置。 N (N ≧ 2) transmission antennas, and using the same frequency from the N transmission antennas, radio signals T (T = (t 1 , t 2 ,..., T N ) t , t Is a transposed vector, i of ti is a transmitting antenna number),
M (M ≧ 1) receive antennas, and N × M radio path transfer response matrices H (H, (i, N), which are combinations of the N transmit antennas and the M receive antennas. j) The component h ij can estimate the transmission response between the transmitting antenna j and the receiving antenna i), and M received signals R (R = (r 1 , r 2 ,..., r M ) t , t is a transposed vector, j of r j is a receiving antenna number), and demodulation processing W j (r 1 , r 2 ,..., r M ; H) (1 ≦ j) determined based on the estimated transfer response matrix H ≦ N) to restore the original radio signal t j (t j = W j (r 1 , r 2 ,... R M ; H)),
In an N × M MIMO radio signal transmission apparatus comprising:
The radio signal receiving device is:
The demodulation processing W j (r 1 , r 2 ,... R M ; H all ) for the estimated arbitrary transfer response matrix H all and the thermal noise power of the reception branch connected to each reception antenna are known. Means to
In the radio signal receiving apparatus, the estimated transfer response matrix H, the known demodulation process W j (r 1 , r 2 ,... R M , H all ) and the known thermal noise power are used. The noise power a j after the demodulation processing W j (r 1 , r 2 ,..., R M ; H) is calculated, and the calculated noise power a j is steadily notified to the radio signal transmitting apparatus. Means,
Comprising
The radio signal transmission device includes means for controlling the j-th transmission power of the transmission antenna in proportion to the notified noise power a j .
A MIMO radio signal transmission apparatus characterized by the above.
M(M≧1)個の受信アンテナを具備し、前記N個の送信アンテナと前記M個の受信アンテナとの組み合わせであるN×M個の無線経路の伝達応答行列H(Hの(i,j)成分hijは送信アンテナjと受信アンテナi間との伝達応答)が推定可能であり、M個の受信信号R(R=(r1,r2,・・・,rM)t、tは転置ベクトル、rjのjは受信アンテナ番号)に前記推定した伝達応答行列Hを基に定まる復調処理Wj(r1,r2,・・・,rM;H)(1≦j≦N)を施すことによって元の無線信号tj(tj=Wj(r1,r2,…rM;H))を復元する無線信号受信装置と、
を備えるN×MのMIMO無線信号伝送装置において、
前記無線信号受信装置は、パイロット信号を定常的に送信する手段を具備し、
前記無線信号送信装置は、
前記パイロット信号を受信することによって前記伝達応答行列Hを推定し、任意の伝達応答行列Hallに対する前記無線信号受信装置の前記復調処理Wj(r1,r2,・・・rM;Hall)と前記無線信号受信装置における各受信アンテナに接続される受信ブランチの熱雑音電力とを既知とする手段と、
前記推定した伝達応答行列Hと前記既知とした復調処理Wj(r1,r2,・・・rM;Hall)と前記既知とした熱雑音電力とを用いて前記無線信号受信装置における前記復調処理Wj(r1,r2,・・・,rM;H)後の雑音電力ajを算出し、前記算出した雑音電力ajに比例して前記送信アンテナj番目の送信電力を制御する手段と、
を具備する、
ことを特徴とするMIMO無線信号伝送装置。 N (N ≧ 2) transmission antennas, and using the same frequency from the N transmission antennas, radio signals T (T = (t 1 , t 2 ,..., T N ) t , t Is a transposed vector, i of ti is a transmitting antenna number), and a radio signal transmitting apparatus that transmits the TDD method,
M (M ≧ 1) receive antennas, and N × M radio path transfer response matrices H (H, (i, N), which are combinations of the N transmit antennas and the M receive antennas. j) The component h ij can estimate the transmission response between the transmitting antenna j and the receiving antenna i), and M received signals R (R = (r 1 , r 2 ,..., r M ) t , t is a transposed vector, j of r j is a receiving antenna number), and demodulation processing W j (r 1 , r 2 ,..., r M ; H) (1 ≦ j) determined based on the estimated transfer response matrix H ≦ N) to restore the original radio signal t j (t j = W j (r 1 , r 2 ,... R M ; H)),
In an N × M MIMO radio signal transmission apparatus comprising:
The radio signal receiving device comprises means for constantly transmitting a pilot signal,
The radio signal transmitting device is:
The transmission response matrix H is estimated by receiving the pilot signal, and the demodulation processing W j (r 1 , r 2 ,... R M ; H of the radio signal reception apparatus for an arbitrary transmission response matrix H all all ) and the thermal noise power of the receiving branch connected to each receiving antenna in the radio signal receiving device;
In the radio signal receiving apparatus, the estimated transfer response matrix H, the known demodulation processing W j (r 1 , r 2 ,... R M ; H all ) and the known thermal noise power are used. The noise power a j after the demodulation processing W j (r 1 , r 2 ,..., R M ; H) is calculated, and the j-th transmission power of the transmission antenna is proportional to the calculated noise power a j. Means for controlling
Comprising
A MIMO radio signal transmission apparatus characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003318354A JP3869402B2 (en) | 2003-09-10 | 2003-09-10 | MIMO radio signal transmission device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003318354A JP3869402B2 (en) | 2003-09-10 | 2003-09-10 | MIMO radio signal transmission device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005086655A JP2005086655A (en) | 2005-03-31 |
JP3869402B2 true JP3869402B2 (en) | 2007-01-17 |
Family
ID=34417654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003318354A Expired - Fee Related JP3869402B2 (en) | 2003-09-10 | 2003-09-10 | MIMO radio signal transmission device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3869402B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5013743B2 (en) * | 2005-05-10 | 2012-08-29 | 日本放送協会 | MIMO receiver |
US7526036B2 (en) * | 2006-04-20 | 2009-04-28 | Mitsubishi Electric Research Laboratories, Inc. | System and method for transmitting signals in cooperative base station multi-user mimo networks |
JP2010288120A (en) * | 2009-06-12 | 2010-12-24 | Nec Access Technica Ltd | Communication apparatus, radio communication system, communication method, and communication program |
JP6330172B2 (en) * | 2014-02-07 | 2018-05-30 | 株式会社国際電気通信基礎技術研究所 | Wireless communication system and wireless communication apparatus |
-
2003
- 2003-09-10 JP JP2003318354A patent/JP3869402B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005086655A (en) | 2005-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10523284B2 (en) | Transmission method and transmission apparatus | |
JP5667144B2 (en) | MIMO communication system having variable slot structure | |
JP5432316B2 (en) | Single carrier frequency division multiple access system based on MIMO beamforming | |
JP4490368B2 (en) | Wireless communication apparatus, wireless communication system, and wireless communication method | |
US8693575B2 (en) | Wireless precoding methods | |
CN101167323B (en) | System and method for channel estimation in a delay diversity wireless communication system | |
KR20090085046A (en) | Mobile assisted downlink beamforming with antenna weight feedback | |
JP2007517440A (en) | Calibration method to realize reciprocity of two-way communication channel | |
US9660714B2 (en) | Two-way relay apparatus and method thereof | |
US8971425B2 (en) | Method for relaying of relay having multiple antenna in wireless communication system | |
JP2008035497A (en) | Method and device for reporting channel state information, system for controlling transfer, computer program, and signal | |
JP3869402B2 (en) | MIMO radio signal transmission device | |
KR100957342B1 (en) | System and method for relay in a communication system | |
WO2022062810A1 (en) | Station, ap, channel state information feedback method, beam forming method, and storage medium | |
CN102082634B (en) | Method, device and system for correcting communication information errors | |
KR20140046707A (en) | Method for muti antenna relay transmission/reception for ofdm system | |
KR101722520B1 (en) | Analog self interference cancellation system in ofdm-based wireless communication system | |
WO2001024403A1 (en) | Communication terminal and radio communication method | |
EP2882154A1 (en) | Transmitter method for transmitting radio frequency signals from multiple antenna elements, receiver method, transmitter apparatus, receiver apparatus and network node thereof | |
US20190305832A1 (en) | Wireless telecommunications system and transmission protocol for use with same | |
KR101501482B1 (en) | Method of rate-aware two-way relay communication for OFMD systems | |
KR100983797B1 (en) | Apparatus and method for controlling transmission signal in multiple input single output system | |
Kumar et al. | BLUE‐Based Channel Estimation Technique for Amplify and Forward Wireless Relay Networks | |
Soriano-Equigua et al. | Overhead reduction in coordinated beamforming for multiuser MIMO-OFDM systems with limited feedforward |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050721 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060630 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061010 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061012 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101020 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101020 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111020 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111020 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131020 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |