JP3868086B2 - Method for producing synthetic resin hollow coil spring - Google Patents

Method for producing synthetic resin hollow coil spring Download PDF

Info

Publication number
JP3868086B2
JP3868086B2 JP33782397A JP33782397A JP3868086B2 JP 3868086 B2 JP3868086 B2 JP 3868086B2 JP 33782397 A JP33782397 A JP 33782397A JP 33782397 A JP33782397 A JP 33782397A JP 3868086 B2 JP3868086 B2 JP 3868086B2
Authority
JP
Japan
Prior art keywords
synthetic resin
semi
molding
rotary shaft
coil spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33782397A
Other languages
Japanese (ja)
Other versions
JPH11151750A (en
Inventor
昭夫 永吉
清治 永吉
Original Assignee
ユーシー産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユーシー産業株式会社 filed Critical ユーシー産業株式会社
Priority to JP33782397A priority Critical patent/JP3868086B2/en
Publication of JPH11151750A publication Critical patent/JPH11151750A/en
Application granted granted Critical
Publication of JP3868086B2 publication Critical patent/JP3868086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Springs (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コイルバネとして使用される合成樹脂製の中空コイルスプリングの製造方法に関するものである。
【0002】
【従来の技術】
従来から、コイルスプリングとしては金属製のものが広く使用されているが、金属製の螺旋状体は錆や腐食が生じ易いために、合成樹脂製のコイルスプリングが要望されるようになり、本願発明者等もその要望を満たすために、例えば、特公昭64−4900号公報に記載したような合成樹脂製螺旋状体の製造方法を開発した。この合成樹脂製螺旋状体の製造方法は、成形回転軸体の外周面に半溶融状態の断面円形の合成樹脂製線状素材を所望のピッチでもって螺旋状に巻き付けながら軸芯方向に移動させると共にその移動途上において硬化させることを特徴としている。
【0003】
【発明が解決しようとする課題】
しかしながら、成形用回転軸体に半溶融状態の合成樹脂製線状素材を巻き付けると、該合成樹脂製線状素材が巻付力により断面が偏平状に変形する虞れがあって均一な製品を製造することが困難であるばかりでなく、線状素材では太い素材を用いて大径のコイルスプリングを製造した場合、材料費が高騰して不経済であると共に重量が増加して取扱性に問題点が生じる。また、製品の軽量化を図ると共に大径のコイルスプリングを得るには、線状素材に替えて中空の半溶融樹脂パイプを押出し成形しながら成形用回転軸体に螺旋状に巻回することも考えられるが、半溶融樹脂パイプは大径になればなる程成形用回転軸体に巻き付けた時に断面が容易に偏平状に変形して製品化することができないという問題点がある。
【0004】
一方、成形用回転軸体に既製の硬質合成樹脂製管体を螺旋状に巻き付けた場合、上述したような断面が偏平になることなく大径のコイルスプリングを得ることができるが、既製の硬質合成樹脂製管体を成形用回転軸体に巻回すると、該合成樹脂製管体はその弾性復元力によって拡径しようとし、そのため、成形用回転軸体との間にスリップが生じて軸心方向に移動させることができなくなり、また、例え、成形用回転軸体の巻き付けた合成樹脂製管体を外部から押圧ローラによって成形用回転軸体に押し付けながら軸心方向に移動させても、成形用回転軸体から離脱させた際に、スプリングバックが生じて製品化をすることができなくなるという問題点があった。
【0005】
本発明はこのような問題点に鑑みてなされたもので、その目的とするところは断面中空のコイルスプリングを能率よく且つ確実に製造し得る合成樹脂製中空コイルスプリングの製造方法を提供するにある。
【0006】
【課題を解決るための手段】
上記目的を達成するために本発明の請求項1に係る合成樹脂製中空コイルスプリングの製造方法は、可撓性を有する既製の硬質合成樹脂製蛇腹管に成形ダイから押し出される半溶融状態の合成樹脂製パイプ体を被覆することによって半溶融合成樹脂被覆管体を形成し、この半溶融合成樹脂被覆管体を成形用回転軸体に連続的に供給して該成形用回転軸体の外周面に螺旋状に巻き付けると共に成形用回転軸体の回転に従って該成形用回転軸体の長さ方向に移動させながら半溶融合成樹脂被覆管体を硬化させることを特徴とするものである。
【0007】
【作用】
押出成形機の成形ダイから半溶融状態の合成樹脂製パイプ体を押し出す際に、該パイプ体内に内部が中空の既製の硬質合成樹脂製蛇腹管を挿入するように送り込んでこの硬質合成樹脂製蛇腹管を半溶融状態の合成樹脂製パイプ体によって被覆した半溶融合成樹脂被覆管体を形成しながら成形用回転軸体上に所定のピッチでもって螺旋状に巻き付ける。この時、半溶融合成樹脂被覆管体はその芯体として内装している既製の硬質合成樹脂製蛇腹管によって断面円形状を保持し且つ該硬質合成樹脂製蛇腹管を成形用回転軸上に沿って湾曲変形させながら螺旋状に巻き付けられて被覆部である半溶融状態の合成樹脂製パイプが未硬化の螺旋状体を形成していく。
【0008】
そして、成形用回転軸体の回転に従って被覆部が未硬化の螺旋状体は軸心方向に移動し、その移動中に被覆部の半溶融合成樹脂製パイプ体が硬化する。この硬化を該被覆部が成形用回転軸体に密接した状態で行わせることにより、硬化した螺旋状体の内周面が成形用回転軸体の回転によって縮径しようとして該成形用回転軸体の外周面に固定し、スリップが生じることなく成形用回転軸体の回転に従って軸心方向に円滑に移動すると共に後続する被覆部が未硬化の螺旋状体を成形用回転軸体上に確実に螺旋巻きさせることができるものである。
【0009】
こうして、成形用回転軸体上で被覆部が硬化した螺旋状体は成形用回転軸体から送り出されると、硬化した被覆部によって内部の既製硬質合成樹脂製蛇腹管がスプリングバックするのを阻止された一定径の中空コイルスプリングを得ることができるものである。
【0010】
【発明の実施の形態】
本発明の具体的な実施例を図面について説明すると、図1に示すように、成形用回転軸体1の後端部(基端部)の一側方に押出成形機2を配設し、この押出成形機2の成形ダイ3から一定径の断面円環形状の半溶融状態の合成樹脂製パイプ体4を押し出すと共に押出成形機2内に背面側から外径が上記半溶融合成樹脂製パイプ4の外径よりも小径で内径と同等若しくはやゝ大径の可撓性を有する既製の硬質合成樹脂製蛇腹管5よりなる中空管体を連続的に供給して成形ダイ3から押し出される半溶融合成樹脂製パイプ4内に挿入することによって既製の硬質合成樹脂製蛇腹管5を芯体とし、半溶融合成樹脂製パイプ4が芯体の被覆部となった半溶融合成樹脂被覆管体Aを形成しながら成形用回転軸体1に向かって供給する。
【0011】
この半溶融合成樹脂被覆管体Aの形成時において、成形ダイ3内でその半溶融合成樹脂製パイプ4内に硬質合成樹脂製蛇腹管5が挿入された時に、半溶融合成樹脂製パイプ4の内層部分が図2に示すように、長さ方向に連続凹凸状に屈曲した硬質合成樹脂製蛇腹管5の凹部内に充満した状態となる。即ち、半溶融合成樹脂製パイプ4の外周面は全長に亘って同一径であるがその厚みは既製の硬質合成樹脂製蛇腹管5の凹部では厚く、凸部では薄く被覆した状態となっている。
【0012】
この半溶融合成樹脂被覆管体Aを成形用回転軸体1に対して一側方から該成形用回転軸体1上にその芯体を形成している既製の硬質合成樹脂製蛇腹管5を湾曲させながら所定のピッチでもって螺旋状に巻き付けて被覆部が未硬化の中空螺旋状体A1を形成する。この際、芯体を形成している既製の硬質合成樹脂製中空管体は可撓性を有する蛇腹管からなるので、半溶融合成樹脂被覆管体Aを断面円環状に保持しながら成形用回転軸体1上に周方向に容易に湾曲して巻回させることができる。なお、成形用回転軸体1は後述するように、半溶融合成樹脂被覆管体Aを巻き取る方向に回転していると共に巻回した中空螺旋状体A1を軸心方向に移動させるように構成している。
【0013】
このように、半溶融合成樹脂被覆管体Aを成形用回転軸体1に螺旋状に巻回させて被覆部が未硬化の中空螺旋状体A1を形成していくと共に成形用回転軸体1の回転に従って該中空螺旋状体A1を成形用回転軸体1の軸心方向に前進移動させ、その移動中に中空螺旋状体A1の被覆部を形成している半溶融合成樹脂製パイプ4を硬化させると、螺旋状に湾曲した既製の硬質合成樹脂製蛇腹管5の外周面に該合成樹脂製パイプ4が一体的に固着した中空コイルスプリングA2が得られる。
【0014】
半溶融合成樹脂製パイプ4が硬化すると、芯体である既製の硬質合成樹脂製蛇腹管5がこの硬質合成樹脂製蛇腹管5を被覆している硬化した合成樹脂製パイプによって成形用回転軸体1の外周面に沿って一定径の螺旋巻きした状態で固定され、硬質合成樹脂製蛇腹管5の弾性復元力によって中空コイルスプリングA2全体を拡径させることはなく、被覆部が硬化した中空コイルスプリングA2の内周面が成形用回転軸体1上に密接した状態となる。
【0015】
従って、成形用回転軸体1の回転により中空コイルスプリングA2が成形用回転軸体1を締め付ける方向、即ち、縮径方向に引き付けられながら成形用回転軸体1と一体的に回転しながら成形用回転軸体1上を前進し、その前進によって被覆部が未硬化の後続する螺旋状体A1を引き寄せるので、この未硬化の螺旋状体A1を介して半溶融合成樹脂被覆管体Aを押出成形機2から引き出すようにしながら成形用回転軸体1上に連続的に螺旋巻きすることができる。なお、螺旋状体A1の被覆部を硬化させる際に、その硬化直後の螺旋状体、即ちコイルスプリングA2の内周面を成形用回転軸体1上に積極的に押接させる押圧ローラを成形用回転軸体1の外周方に配設しておいてもよい。
【0016】
こうして、成形用回転軸体1上で被覆部である半溶融合成樹脂製パイプ4を硬化させることによって芯体である既製の硬質合成樹脂製蛇腹管5が一定径でもって固定されてなる中空コイルスプリングA2を形成することができると共に該硬質合成樹脂製蛇腹管5の外周面に一体的に硬化した合成樹脂製パイプ4よりなる被覆樹脂によって硬質合成樹脂製蛇腹管5の可撓性がなくなり、所定のスプリング力を発揮するコイルスプリングA2が形成されるものであり、このコイルスプリングA2を成形用回転軸体1の前端から前方に送り出すと共に所望長さ送り出される毎にカッタ(図示せず)により切断してスプリングバックの生じる虞れのない所定長さの一定径の中空コイルスプリングを得るものである。
【0017】
なお、以上の実施例においては、半溶融合成樹脂製パイプ4内に挿入する既製の合成樹脂製管体として蛇腹管5を用いたが、蛇腹管でなくても図3に示すように、可撓性と保形性を備えた合成樹脂製中空管体5'であればよい。また、成形ダイ3から押し出される半溶融合成樹脂製パイプ4やこの半溶融合成樹脂製パイプ4内に挿入する既製の硬質合成樹脂製管体としては、硬質塩化ビニル、ポリエチレン、ポリプロピレン等の適宜な硬質合成樹脂からなるものであればよい。この場合、上述したように既製の硬質合成樹脂製蛇腹管5を用いると、該蛇腹管の連続凹凸状に屈曲した凹部内に半溶融合成樹脂製パイプ4の内層部分が充満した状態で硬化するので、硬質合成樹脂製蛇腹管5と半溶融合成樹脂製パイプ4とが互いに接着し難い合成樹脂からなるものであっても一体化した中空コイルスプリングA2を形成することができる。
【0018】
上記合成樹脂製中空コイルスプリングの製造装置としては図1に示すように、回転駆動機構を内蔵している機枠10に複数本の成形用回転軸11を仮想円柱上に一定間隔毎に配置することによって構成した上記成形用回転軸体1の基端(後端)を回転自在に支持させてなり、各成形用回転軸11は仮想円柱の軸心に対して同一方向に同一角度だけやゝしていてこれらの成形用回転軸11を同一方向に一斉回転させることにより成形用回転軸体1上に供給される上記半溶融合成樹脂被覆管体Aを所定の螺旋ピッチでもって巻回させると共に巻回した螺旋状体A1を成形用回転軸体1の軸心方向に移動させるように構成している。
【0019】
成形用回転軸体1を構成する各成形用回転軸11はその基端部が自在継手12を介して上記機枠10に径方向に移動自在に配設した軸受13に回転自在に支持されていると共に機枠内に配設している自在継手14を有する短軸15を介して駆動モータ16により同一方向に一斉に回転させられる噛合歯車の各歯車23に連結している。さらに、上記仮想円柱の軸心に支軸17を配設してこの支軸17の基端部を機枠10に支持させていると共に該支軸17の基端部と先端部とに螺子機構18を操作することによって前後方向に移動させられる摺動片19、20を被嵌してあり、各成形用回転軸11の基端軸受13と後部摺動片19とを連結杆21によって連結すると共に先端軸受部と前部摺動片20とを同じく連結杆22によって連結している。また、前部摺動片20は支軸17回りに回動、固定自在に構成されている。
【0020】
このように構成したので、上記螺子機構18を回動操作することによって前後摺動片19、20を支軸17上で前後移動させると、連結杆21、22を介して全ての成形用回転軸11が径方向に移動して成形用回転軸体1の径(上記仮想円柱)が大小に変化し、従って、製造すべき合成樹脂製中空コイルスプリングA2の径を変更することができる。また、前部摺動片20を支軸17回りに所望角度回動させると、各成形用回転軸11の基端側から先端側に向かう円周方向に傾斜角度が変化し、製造すべき合成樹脂製中空コイルスプリングA2の螺旋ピッチを変更することができる。
【0021】
なお、この製造装置によれば、直径が1メートル以上の合成樹脂製中空コイルスプリングを容易に製造することができる。この中空コイルスプリングはその径や強度、弾発力等に応じて上記半溶融合成樹脂製パイプ4及び硬質合成樹脂製蛇腹管5の径や肉厚を適宜変更すればよい。
【0022】
また、上記のような製造装置を用いることなく、例えば、一定径を有する軸体の周面に螺旋送り方向に回転する複数本の長尺ローラを周方向に所定間隔毎に配設してこれらの長尺ローラ上に上記半溶融合成樹脂被覆管体Aを螺旋巻きしてもよく、或いは、回転軸を軸心方向に移動させながらこの回転軸上に半溶融合成樹脂被覆管体Aを螺旋巻きすることによって中空コイルスプリングを形成してもよい。
【0023】
【発明の効果】
以上のように本発明の合成樹脂製中空コイルスプリングの製造方法によれば、可撓性を有する既製の硬質合成樹脂製蛇腹管に成形ダイから押し出される半溶融状態の合成樹脂製パイプ体を被覆することによって半溶融合成樹脂被覆管体を形成し、この半溶融合成樹脂被覆管体を成形用回転軸体に連続的に供給して該成形用回転軸体の外周面に螺旋状に巻き付けると共に成形用回転軸体の回転に従って該成形用回転軸体の長さ方向に移動させながら半溶融合成樹脂被覆管体を硬化させることを特徴とするものであるから、半溶融合成樹脂被覆管体を成形用回転軸体に螺旋巻き付ける際にその内部の既製の硬質合成樹脂製蛇腹管により確実に断面を円環状に保持された状態で精度のよく螺旋巻きすることができ、さらに、成形用回転軸体上を移動しながらこの硬質合成樹脂製蛇腹管を被覆している半溶融状態の合成樹脂製パイプを硬化させることによって、内部の上記既製硬質合成樹脂製蛇腹管がスプリングバックしようとするのを阻止した状態で一定径の合成樹脂製中空コイルスプリングとして固定することができるものである。
【0024】
このように、内部が中空の合成樹脂製コイルスプリングを精度よく製造することができると共に成形用回転軸体の径やこの径に応じて半溶融合成樹脂被覆管体を構成する既製の硬質合成樹脂製蛇腹管と半溶融合成樹脂製パイプとの径及び肉厚を変更することによって50cm以上の大径の合成樹脂製中空コイルスプリングを能率よく製造することができるものであり、しかも、コイルスプリングが中空であるから材料費の節減を図ることはできるのは勿論、軽量にして取扱いが容易となり、錆や腐食の生じない大径の合成樹脂製中空コイルスプリングとして種々の用途に使用することができるものである。
【0025】
また、上記可撓性を有する既製の硬質合成樹脂製管体は蛇腹管よりなるので、この硬質合成樹脂製蛇腹管を半溶融合成樹脂製パイプによって被覆してなる半溶融合成樹脂被覆管体の可撓性が良好となってその断面形状を保形した状態で成形用回転軸体に対する螺旋巻きが容易に且つ能率よく行えるものであり、その上、被覆している半溶融合成樹脂製パイプが硬化すると、この硬化した合成樹脂パイプと既製の硬質合成樹脂製蛇腹管とが一体化して該硬質合成樹脂製蛇腹管の可撓性が消され、所望のスプリング力を発揮する合成樹脂製中空コイルスプリングを得ることができる。
【図面の簡単な説明】
【図1】 合成樹脂製中空螺旋状体を製造している状態の簡略縦断側面図、
【図2】 半溶融合成樹脂被覆管体の一部の切欠斜視図、
【図3】 別な構造を有する半溶融合成樹脂被覆管体の一部の斜視図、
【図4】 得られた中空コイルスプリングの一部の側面図。
【符号の説明】
1 成形用回転軸体
2 押出成形機
3 成形ダイ
4 半溶融合成樹脂製パイプ
5 硬質合成樹脂製蛇腹管
A 半溶融合成樹脂被覆管体
A2 合成樹脂製中空コイルスプリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hollow coil spring made of synthetic resin used as a coil spring.
[0002]
[Prior art]
Conventionally, metal springs have been widely used as coil springs. However, since metal spiral bodies are prone to rust and corrosion, synthetic resin coil springs have come to be desired. In order to satisfy the demand, the inventors have also developed a method for producing a synthetic resin spiral body as described in, for example, Japanese Patent Publication No. 64-4900. In this method of manufacturing a synthetic resin helical body, a synthetic resin linear material having a circular cross section in a semi-molten state is wound around the outer peripheral surface of a molded rotating shaft body in the axial direction while being spirally wound at a desired pitch. In addition, it is characterized in that it is cured during its movement.
[0003]
[Problems to be solved by the invention]
However, when a synthetic resin linear material in a semi-molten state is wound around the rotating shaft for molding, the synthetic resin linear material may be deformed into a flat shape due to the winding force. Not only is it difficult to manufacture, but if a large diameter coil spring is manufactured using a thick wire material, the material cost will rise and it will be uneconomical, and the weight will increase and there will be a problem with handling. A point is created. In addition, in order to reduce the weight of the product and obtain a large-diameter coil spring, a hollow semi-molten resin pipe can be spirally wound around a molding rotary shaft while being extruded instead of a linear material. Although it is conceivable, the larger the diameter of the semi-molten resin pipe, there is a problem that the cross section easily deforms into a flat shape when it is wound around the rotating shaft body for molding and cannot be commercialized.
[0004]
On the other hand, when a ready-made hard synthetic resin tube is spirally wound around a rotating shaft for molding, a large-diameter coil spring can be obtained without flattening the cross section as described above. When the synthetic resin tube is wound around the rotating shaft body for molding, the synthetic resin tube body tries to expand its diameter by its elastic restoring force, and therefore slip occurs between the rotating shaft body for molding and the shaft center. Even if the synthetic resin tube wound around the molding rotating shaft is pressed from the outside against the molding rotating shaft by the pressing roller, it is molded even if it is moved in the axial direction. When it is detached from the rotary shaft body for use, there is a problem that a springback occurs and the product cannot be produced.
[0005]
The present invention has been made in view of such problems, and an object of the present invention is to provide a method for producing a hollow coil spring made of a synthetic resin capable of efficiently and reliably producing a coil spring having a hollow cross section. .
[0006]
[Means for solving the problems]
In order to achieve the above object, a synthetic resin hollow coil spring manufacturing method according to claim 1 of the present invention is a semi-molten synthetic material extruded from a molding die into a flexible ready-made rigid synthetic resin bellows tube. A semi-molten synthetic resin-coated tube body is formed by coating a resin pipe body, and the semi-molten synthetic resin-coated tube body is continuously supplied to the molding rotary shaft body to obtain an outer peripheral surface of the molding rotary shaft body. The semi-molten synthetic resin-coated tube is cured while being spirally wound and moved in the length direction of the molding rotary shaft according to the rotation of the molding rotary shaft.
[0007]
[Action]
When extruding a semi-molten synthetic resin pipe body from a molding die of an extruder, this hard synthetic resin bellows is fed into the pipe body so as to insert a ready-made hard synthetic resin bellows pipe having a hollow inside. the tube with a predetermined pitch in the molding rotary shaft on the body while forming a semi-molten synthetic resin cladding body coated with synthetic resin pipe in a semi-molten state wound helically. At this time, the semi-molten synthetic resin cladding body interior and along which the circular cross section of the holding and rigid synthetic resin bellows tube by hard synthetic resin bellows tube of ready-made to the molding rotary shaft on as its core The semi-molten synthetic resin pipe, which is a covering portion, is wound spirally while being bent and deformed to form an uncured spiral body.
[0008]
Then, the uncured helical body moves in the axial direction according to the rotation of the molding rotating shaft, and the semi-molten synthetic resin pipe body of the covering is cured during the movement. By causing the coating portion to be in close contact with the molding rotary shaft body, the inner peripheral surface of the cured spiral body attempts to reduce the diameter by the rotation of the molding rotary shaft body. It is fixed to the outer peripheral surface of the mold and smoothly moves in the axial direction according to the rotation of the molding rotary shaft body without slipping, and the uncovered spiral body is surely placed on the molding rotary shaft body. It can be spirally wound.
[0009]
Thus, when the helical body having the coating portion hardened on the molding rotary shaft body is fed out from the molding rotary shaft body, the hard coating portion prevents the internal hard synthetic resin bellows tube from springing back. A hollow coil spring having a certain diameter can be obtained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A specific embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, an extrusion molding machine 2 is disposed on one side of a rear end portion (base end portion) of a rotary shaft 1 for molding, A semi-molten synthetic resin pipe body 4 having an annular cross section having a constant diameter is extruded from the molding die 3 of the extrusion molding machine 2 and the outer diameter of the semi-molten synthetic resin pipe is from the back side into the extrusion molding machine 2. The hollow tube body made of a ready-made hard synthetic resin bellows tube 5 having a diameter smaller than the outer diameter of 4 and having a flexibility equal to or slightly larger than the inner diameter is continuously supplied and extruded from the molding die 3. A semi-molten synthetic resin-coated tube body in which the pre-made hard synthetic resin bellows tube 5 is inserted into the semi-molten synthetic resin pipe 4 and the semi-molten synthetic resin pipe 4 serves as a covering portion of the core body. While forming A, it is supplied toward the rotating shaft 1 for molding.
[0011]
At the time of forming the semi-molten synthetic resin-coated tube A, when the hard synthetic resin bellows tube 5 is inserted into the semi-molten synthetic resin pipe 4 in the molding die 3, the semi-molten synthetic resin pipe 4 As shown in FIG. 2, the inner layer portion is in a state of being filled in the concave portion of the hard synthetic resin bellows tube 5 bent in a continuous uneven shape in the length direction. That is, the outer peripheral surface of the semi-molten synthetic resin pipe 4 has the same diameter over its entire length, but its thickness is thick at the concave portion of the ready-made hard synthetic resin bellows tube 5 and thinly covered at the convex portion. .
[0012]
The semi-molten synthetic resin-coated tube body A is formed of a hard synthetic resin bellows tube 5 made of a hard resin, which has a core body formed on the molding rotary shaft 1 from one side with respect to the molding rotary shaft 1. A hollow spiral body A1 in which the covering portion is uncured is formed by being wound spirally at a predetermined pitch while being curved. At this time, since the ready-made hard synthetic resin hollow tube forming the core body is composed of a flexible bellows tube, the semi-molten synthetic resin-coated tube body A is formed while being held in an annular cross section. It can be easily bent and wound in the circumferential direction on the rotating shaft 1. The molding rotary shaft 1 is configured to rotate in the direction of winding the semi-molten synthetic resin-coated tube A and move the wound hollow spiral body A1 in the axial direction, as will be described later. is doing.
[0013]
In this way, the semi-molten synthetic resin-coated tube body A is spirally wound around the molding rotary shaft body 1 to form the hollow spiral body A1 whose coating portion is uncured and the molding rotary shaft body 1 The hollow helical body A1 is moved forward in the axial direction of the molding rotary shaft 1 in accordance with the rotation of the semi-molten synthetic resin pipe 4 forming the covering portion of the hollow helical body A1 during the movement. When cured, a hollow coil spring A2 is obtained in which the synthetic resin pipe 4 is integrally fixed to the outer peripheral surface of a ready-made hard synthetic resin bellows pipe 5 that is spirally curved.
[0014]
When the semi-molten synthetic resin pipe 4 is cured, the ready-made hard synthetic resin bellows pipe 5 which is the core is formed by the hardened synthetic resin pipe covering the hard synthetic resin bellows pipe 5 to form a rotating shaft. The hollow coil is fixed in a state of spiral winding with a constant diameter along the outer peripheral surface of 1 and does not expand the entire hollow coil spring A2 by the elastic restoring force of the hard synthetic resin bellows tube 5, and the covering portion is hardened. The inner circumferential surface of the spring A2 is in close contact with the molding rotary shaft 1.
[0015]
Therefore, the hollow coil spring A2 is rotated in the direction of tightening the molding rotary shaft 1 by the rotation of the molding rotary shaft 1, that is, while being integrally rotated with the molding rotary shaft 1 while being attracted in the diameter reducing direction. Since it advances on the rotating shaft 1 and draws the subsequent spiral body A1 whose coating portion is uncured by the advancement, the semi-molten synthetic resin-coated tube body A is extruded through the uncured spiral body A1. While being drawn out from the machine 2, it can be continuously spirally wound on the rotary shaft 1 for molding. When the covering portion of the spiral body A1 is cured, a pressing roller is formed that positively presses the spiral body immediately after the curing, that is, the inner peripheral surface of the coil spring A2 on the molding rotating shaft 1. You may arrange | position in the outer peripheral side of the rotary shaft body 1 for a use.
[0016]
In this way, a hollow coil in which the ready-made hard synthetic resin bellows tube 5 as the core is fixed with a constant diameter by curing the semi-molten synthetic resin pipe 4 as the covering portion on the rotating shaft 1 for molding. The spring A2 can be formed and the flexibility of the hard synthetic resin bellows tube 5 is lost by the coating resin made of the synthetic resin pipe 4 integrally cured on the outer peripheral surface of the hard synthetic resin bellows tube 5. A coil spring A2 that exhibits a predetermined spring force is formed. The coil spring A2 is fed forward from the front end of the molding rotary shaft 1 and is cut by a cutter (not shown) each time a desired length is fed. A hollow coil spring having a predetermined diameter and having a predetermined length that does not cause a spring back by being cut is obtained.
[0017]
In the above embodiment, the bellows tube 5 is used as a ready-made synthetic resin tube inserted into the semi-molten synthetic resin pipe 4, but it is possible to use a bellows tube as shown in FIG. Any synthetic resin hollow tube 5 ′ having flexibility and shape retention may be used. Also, as the semi-molten synthetic resin pipe 4 extruded from the molding die 3 and the ready-made rigid synthetic resin pipe body inserted into the semi-molten synthetic resin pipe 4, suitable materials such as hard vinyl chloride, polyethylene, and polypropylene are used. Any material made of hard synthetic resin may be used. In this case, as described above, when the ready-made hard synthetic resin bellows tube 5 is used, the inner layer portion of the semi-molten synthetic resin pipe 4 is cured in the concave portion bent into the continuous irregular shape of the bellows tube. Therefore, even if the hard synthetic resin bellows tube 5 and the semi-molten synthetic resin pipe 4 are made of a synthetic resin that is difficult to adhere to each other, an integrated hollow coil spring A2 can be formed.
[0018]
As shown in FIG. 1, the synthetic resin hollow coil spring manufacturing apparatus has a plurality of molding rotary shafts 11 arranged at regular intervals on a virtual cylinder in a machine frame 10 incorporating a rotation drive mechanism. The base end (rear end) of the molding rotary shaft 1 configured as described above is rotatably supported, and each molding rotary shaft 11 has the same angle and angle as to the axis of the virtual cylinder. The semi-molten synthetic resin-coated tube A supplied onto the molding rotary shaft 1 is wound at a predetermined helical pitch by rotating these molding rotary shafts 11 in the same direction at the same time. The wound helical body A1 is configured to move in the axial direction of the molding rotary shaft 1.
[0019]
Each of the molding rotary shafts 11 constituting the molding rotary shaft body 1 is rotatably supported by a bearing 13 whose base end portion is movably arranged in the radial direction on the machine frame 10 via a universal joint 12. In addition, it is connected to gears 23 of meshing gears that are simultaneously rotated in the same direction by a drive motor 16 through a short shaft 15 having a universal joint 14 disposed in the machine frame. Further, a support shaft 17 is arranged at the axis of the virtual cylinder so that the base end portion of the support shaft 17 is supported by the machine frame 10, and a screw mechanism is provided between the base end portion and the front end portion of the support shaft 17. Sliding pieces 19 and 20 that can be moved in the front-rear direction by operating 18 are fitted, and the base end bearing 13 of each molding rotary shaft 11 and the rear sliding piece 19 are connected by a connecting rod 21. At the same time, the tip bearing portion and the front sliding piece 20 are similarly connected by a connecting rod 22. The front sliding piece 20 is configured to be rotatable and fixed around the support shaft 17.
[0020]
With this configuration, when the front and rear sliding pieces 19 and 20 are moved back and forth on the support shaft 17 by rotating the screw mechanism 18, all the rotating shafts for molding are connected via the connecting rods 21 and 22. 11 moves in the radial direction to change the diameter of the molding rotary shaft 1 (the virtual cylinder) to be larger or smaller, and therefore the diameter of the synthetic resin hollow coil spring A2 to be manufactured can be changed. Further, when the front sliding piece 20 is rotated by a desired angle around the support shaft 17, the inclination angle changes in the circumferential direction from the proximal end side to the distal end side of each molding rotary shaft 11, and the composite to be manufactured The helical pitch of the resin hollow coil spring A2 can be changed.
[0021]
In addition, according to this manufacturing apparatus, a synthetic resin hollow coil spring having a diameter of 1 meter or more can be easily manufactured. The hollow coil spring may be appropriately changed in diameter and thickness of the semi-molten synthetic resin pipe 4 and the hard synthetic resin bellows pipe 5 according to its diameter, strength, elasticity, and the like.
[0022]
Further, without using the manufacturing apparatus as described above, for example, a plurality of long rollers that rotate in the spiral feed direction are arranged at predetermined intervals in the circumferential direction on the peripheral surface of a shaft body having a constant diameter. The semi-molten synthetic resin-coated tube A may be spirally wound on a long roller, or the semi-molten synthetic resin-coated tube A may be spirally wound on the rotating shaft while moving the rotating shaft in the axial direction. A hollow coil spring may be formed by winding.
[0023]
【The invention's effect】
As described above, according to the method for producing a hollow coil spring made of a synthetic resin of the present invention, a semi-molten synthetic resin pipe body extruded from a molding die is coated on a flexible hard synthetic resin bellows pipe having flexibility. To form a semi-molten synthetic resin-coated tube body, continuously supply the semi-molten synthetic resin-coated tube body to the molding rotary shaft body, and spirally wrap the outer peripheral surface of the molding rotary shaft body. Since the semi-molten synthetic resin-coated tube is cured while moving in the length direction of the molding rotary shaft according to the rotation of the molding rotary shaft, When spirally wound around a molding rotary shaft body, it can be spirally wound with high accuracy while the cross section is securely held in an annular shape by an already- made hard synthetic resin bellows tube , and further, the molding rotary shaft Move on the body While constant by curing the synthetic resin pipe semi-molten state covering the hard synthetic resin bellows tube, with the interior of the ready-made hard synthetic resin bellows tube is blocked from attempting to spring back It can be fixed as a synthetic resin hollow coil spring having a diameter.
[0024]
In this way, a synthetic resin coil spring having a hollow interior can be accurately manufactured, and the diameter of the rotary shaft body for molding and a ready-made hard synthetic resin constituting a semi-molten synthetic resin-coated tube according to the diameter By changing the diameter and wall thickness of the bellows tube and the semi-molten synthetic resin pipe, it is possible to efficiently produce a synthetic resin hollow coil spring having a large diameter of 50 cm or more. Since it is hollow, material costs can be saved, and it is lightweight and easy to handle, and can be used in various applications as a large-diameter synthetic resin hollow coil spring that does not cause rust or corrosion. Is.
[0025]
Further, since the above-described flexible hard synthetic resin tube body having flexibility is a bellows tube, a semi-molten synthetic resin-coated tube body obtained by coating this hard synthetic resin bellows tube with a semi-molten synthetic resin pipe. In a state where the flexibility is good and the cross-sectional shape is maintained, spiral winding around the rotary shaft for molding can be easily and efficiently performed. When hardened, the hardened synthetic resin pipe and the ready-made hard synthetic resin bellows tube are integrated so that the flexibility of the hard synthetic resin bellows tube disappears, and a synthetic resin hollow coil that exhibits the desired spring force A spring can be obtained.
[Brief description of the drawings]
FIG. 1 is a simplified vertical side view of a state where a synthetic resin hollow spiral body is manufactured,
FIG. 2 is a partially cutaway perspective view of a semi-molten synthetic resin-coated tube,
FIG. 3 is a perspective view of a part of a semi-molten synthetic resin-coated tube having another structure;
FIG. 4 is a side view of a part of the obtained hollow coil spring.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotary shaft body for shaping | molding 2 Extruder 3 Molding die 4 Semi-molten synthetic resin pipe 5 Hard synthetic resin bellows pipe A Semi-molten synthetic resin coated pipe body
A2 Synthetic resin hollow coil spring

Claims (1)

可撓性を有する既製の硬質合成樹脂製蛇腹管に成形ダイから押し出される半溶融状態の合成樹脂製パイプ体を被覆することによって半溶融合成樹脂被覆管体を形成し、この半溶融合成樹脂被覆管体を成形用回転軸体に連続的に供給して該成形用回転軸体の外周面に螺旋状に巻き付けると共に成形用回転軸体の回転に従って該成形用回転軸体の長さ方向に移動させながら半溶融合成樹脂被覆管体を硬化させることを特徴とする合成樹脂製中空コイルスプリングの製造方法。A semi-molten synthetic resin-coated tube body is formed by coating a semi-molten synthetic resin pipe body that is extruded from a molding die on a flexible hard synthetic resin bellows pipe that has flexibility. The tube body is continuously supplied to the molding rotary shaft body, spirally wound around the outer peripheral surface of the molding rotary shaft body, and moved in the length direction of the molding rotary shaft body according to the rotation of the molding rotary shaft body. A method for producing a synthetic resin hollow coil spring characterized by curing a semi-molten synthetic resin-coated tube body.
JP33782397A 1997-11-21 1997-11-21 Method for producing synthetic resin hollow coil spring Expired - Fee Related JP3868086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33782397A JP3868086B2 (en) 1997-11-21 1997-11-21 Method for producing synthetic resin hollow coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33782397A JP3868086B2 (en) 1997-11-21 1997-11-21 Method for producing synthetic resin hollow coil spring

Publications (2)

Publication Number Publication Date
JPH11151750A JPH11151750A (en) 1999-06-08
JP3868086B2 true JP3868086B2 (en) 2007-01-17

Family

ID=18312305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33782397A Expired - Fee Related JP3868086B2 (en) 1997-11-21 1997-11-21 Method for producing synthetic resin hollow coil spring

Country Status (1)

Country Link
JP (1) JP3868086B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045079B2 (en) * 2006-11-28 2012-10-10 住友電装株式会社 Electric wire holder
CN102205644A (en) * 2011-04-13 2011-10-05 苏芳 Method for producing plastic pipe fitting and special variable mould thereof
KR101293962B1 (en) * 2011-11-23 2013-08-08 기아자동차주식회사 Plastic composites spring for suspension, device and method for manufacturing the same
CN103057109B (en) * 2012-12-20 2015-11-04 昆山三多乐电子有限公司 Spring automatic curled device
CN104864027B (en) * 2015-04-20 2017-04-26 苏州经贸职业技术学院 Hydraulic type rigidity-changeable spiral spring

Also Published As

Publication number Publication date
JPH11151750A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
CA2594034C (en) Method and apparatus for extrusion of profiled helical tubes
US3706624A (en) Apparatus for making plastic hose
CN111620188B (en) Pipe winding device
US5738742A (en) Method for making angiographic catheters
JP3868086B2 (en) Method for producing synthetic resin hollow coil spring
US5972143A (en) Angiographic catheter with unitary body and tip sections and method for making same from a continuous feedstock
CN102059790A (en) Tubular member extrusion method and tubular member extrusion apparatus
EP0385479B1 (en) Apparatus for producing pipes with a helical rib
JP2925033B2 (en) Manufacturing method of pressure resistant synthetic resin pipe
JP2016005870A (en) Method and apparatus for producing synthetic resin hose
US2707017A (en) Method of making wire reinforced flexible hose
JP4617192B2 (en) Method for producing frustoconical cylindrical rubber having tapered portions on inner and outer surfaces
CN215203433U (en) Continuous winding solid wall pipe production equipment
JPS5813335B2 (en) Method for manufacturing a spiral tubular body provided with reinforcing ribs
JPH0523320Y2 (en)
KR20150056737A (en) Continuous composite pipe forming methods
JPS6159226B2 (en)
JPS6159227B2 (en)
JPH04237534A (en) Internal gear manufacturing device
US3974019A (en) Apparatus for manufacturing plastic pipes
JP4422859B2 (en) Synthetic resin molding extrusion method and hose molding method
JPH0572852B2 (en)
CA2073402C (en) Rigid/flexible tube
KR860000020Y1 (en) An apparatus for making plastic spiral tube by joing 2 extrudes
JP4367735B2 (en) Manufacturing method and apparatus for long endless toothed belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees