JP3867588B2 - Mounting device for solid-state imaging device in image reading apparatus - Google Patents

Mounting device for solid-state imaging device in image reading apparatus Download PDF

Info

Publication number
JP3867588B2
JP3867588B2 JP2002036978A JP2002036978A JP3867588B2 JP 3867588 B2 JP3867588 B2 JP 3867588B2 JP 2002036978 A JP2002036978 A JP 2002036978A JP 2002036978 A JP2002036978 A JP 2002036978A JP 3867588 B2 JP3867588 B2 JP 3867588B2
Authority
JP
Japan
Prior art keywords
solid
state imaging
imaging device
mounting member
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002036978A
Other languages
Japanese (ja)
Other versions
JP2003241052A (en
Inventor
雅彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2002036978A priority Critical patent/JP3867588B2/en
Publication of JP2003241052A publication Critical patent/JP2003241052A/en
Application granted granted Critical
Publication of JP3867588B2 publication Critical patent/JP3867588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明はデジタル方式の画像読取装置における固体撮像素子の取付装置に関する。
【0002】
【従来の技術】
複写機その他のデジタル方式の画像形成装置では、固体撮像素子、例えばCCDを使用して原稿画像を読み取る画像読取装置が使用されている。このような画像読取装置では、結像レンズと固体撮像素子との位置関係は、形成された画像の品質に大きく影響するため、ミクロンオーダーの精密な位置決めが求められている。
【0003】
結像レンズと固体撮像素子との位置決め方法としては、フレーム上に結像レンズと固体撮像素子とを仮組立てし、テスト用のサンプル画像を結像レンズを通して固体撮像素子上に投影し、固体撮像素子の出力をモニターで監視しながら、結像レンズと固体撮像素子との相対位置を調整する方法が一般的である。
【0004】
画像品質を維持するためには、位置調整後の固体撮像素子がフレーム上で移動しないように強固に固定することが求められ、しかも固定時に位置が変化しないことは勿論、経年変化によっても許容誤差範囲内にあることが必要である。
【0005】
このため、種々の固定手段が提案されている。例えば、結像レンズを取付けた第1の取付部材と固体撮像素子を取付けた第2の取付部材とをフレーム上にネジで固定する方法、前記第1の取付部材と第2の取付部材との間隔をネジとばね部材で調整しつつフレーム上に固定する方法、前記第1の取付部材と第2の取付部材との間隔を保ちながら両者の間を半田で固定する方法、固体撮像素子のパッケージ或いは固体撮像素子の樹脂部を接着剤で固定する方法などがある。
【0006】
【発明が解決しようとする課題】
上記した種々の固定手段のうち、接着剤で固定する方法は、接着面に樹脂が介在するため、剛性及び耐震性、並びに環境対策の面から不安があり、特に剛性及び耐震性が劣ることは、高速動作する画像読取装置への適用には十分でなく、剛性及び耐震性を高めるための何等かの対策が必要となる。
【0007】
また、半田で固定する方法は、取付部材が金属板であるときは錫メッキ等の表面処理が必要となり、コストを上昇させる結果となる。また、固定後に生じる半田収縮を見越した固定が必要で、固定作業の管理が困難となる。さらに、半田は鉛等の有害金属を含むものがあり、環境対策の面から不安がある。
【0008】
第1の取付部材と第2の取付部材との間隔をネジとばね部材で調整しつつフレーム上に固定する方法は、構造が複雑でコストを上昇させる結果となる他、重量が増加する等の不都合がある。
【0009】
最も構造が簡単で、出荷後の経年変化にも耐え信頼性の高い固定方法は、取付部材をネジで固定する方法であるが、この方法では、ネジを締め付けるとき、ネジと取付部材との間の摩擦力により取付部材がずれてしまうことで、数十ミクロンのずれが発生してしまう場合があるが、このずれを数ミクロンの許容誤差の範囲内に収めることが求められる。この発明は、この課題を解決することを目的とするものである。
【0010】
【課題を解決するための手段】
この発明は上記課題を解決するもので、請求項1の発明は、結像レンズと固体撮像素子とを備え、結像レンズを介して画像を固体撮像素子上に投影して画像信号に変換して出力する画像読取装置であって、固体撮像素子が取付られた第1の取付部材と、結像レンズと前記第1の取付部材とが取付られた第2の取付部材とを備え、前記第2の取付部材上に取付られた第1の取付部材は、固定手段を介して前記固体撮像素子を結像レンズの光軸方向に位置調整可能に取付られており、前記固定手段は、固定ネジ部材と、該固定ネジ部材と前記第2の取付部材との間に装着された弾性部材とを備え、前記固定手段を構成する弾性部材は、前記第2の取付部材に係合する爪部を備え、該爪部は前記結像レンズの光軸方向のバネ定数が前記固体撮像素子の画素配列方向のバネ定数よりも大きい形状であることを特徴とする画像読取装置における固体撮像素子の取付装置である。
【0011】
そして、前記固定手段は、前記第1の取付部材上の固体撮像素子の画素配列方向の両端部外側に対応する位置に、画素配列方向に沿って少なくとも2箇所配置するとよい。
【0013】
そして、前記弾性部材の爪部は、前記固体撮像素子の画素配列方向に対し垂直方向に配置するとよい。
【0014】
また、爪部の長さは、前記固体撮像素子が固定された第1の取付部材の板厚の120%以上200%未満とするとよい。
【0015】
【発明の実施の形態】
以下、この発明の実施の形態を説明する。
【0016】
図1は、この発明の実施の形態の画像読取装置における固体撮像素子の取付構造を示す分解斜視図、図2はその組立状態を示す斜視図である。
【0017】
ここでは、説明の都合上、後述する結像レンズLの光軸方向をX軸、固体撮像素子の画素配列方向をY軸、フレームに対する結像レンズLの光軸の高さの方向(X軸及びY軸に直交する方向)をZ軸方向とする。
【0018】
図1及び図2において、画像読取装置の内部のユニットであるレンズCCDユニット10はフレーム11の上に組立てられており、フレーム11の上にはフレーム11に対する高さ(Z軸方向)を調整できる調整基板12が、フレーム11に略平行に配置されている。
【0019】
調整基板12には、フレーム11上にねじ込み可能に配置された3本の高さ調整ネジ11aに対応する位置に高さ調整ネジ11aの頭部に嵌合する孔が形成されており、この孔と高さ調整ネジ11aの頭部とを嵌合させることで、調整基板12は高さ調整ネジ11aの上端近くに設けられた鍔(図示せず)により裏面側から支えられ、上下方向に移動可能に支持される。このほか、調整基板12は2組設けられている板バネ14を介在させたネジ13によりフレーム11に向けて下向きに付勢されている。この構成により、調整基板12のフレーム11からの高さは、高さ調整ネジ11aのフレーム11へのねじ込み量を加減することで調整することができる。
【0020】
固体撮像素子20は例えばCCDであり、撮像素子パッケージ21に収納された固体撮像素子20はソケット22に着脱可能に装着されている。ソケット22は基板23に半田付け等の手段で固定して取付けられている。
【0021】
第1の取付部材25は、断面が略L字状に形成されて第1取付面25aと、これに直角な第2取付面25bとを備えており、第1取付面25aには固体撮像素子のパッケージ21に対応する部分に開孔部25cが形成され、開孔部25cの固体撮像素子20の画素配列方向の両端外側にはそれぞれブラケット25dが形成され、基板23とブラケット25dとはネジ26で固定される。
【0022】
第1の取付部材25の第2取付面25bは、第1の取付部材25を後述する第2の取付部材27に取り付ける面であって、固体撮像素子20の画素配列方向(Y軸方向)の両端部外側に対応する位置には、後述する結像レンズLの光軸方向に平行に伸びた細長の2つの取付孔25eと、取付孔25eのそれぞれに接近して後述する板バネの爪部29aに係合する係合孔25gが形成されている。
【0023】
第2の取付部材27には、結像レンズLを保持したレンズ保持枠30が固定されており、また、第2の取付部材27には、第1の取付部材25の第2取付面25bを固定するネジ孔27eが2箇所形成されている。
【0024】
第1の取付部材25を第2の取付部材27に取り付ける固定手段は、図1及び図2に示すように、固定ネジ部材である固定ネジ28と弾性部材である板バネ29とから構成され、板バネ29には、図3、図4を参照すると明らかであるが、爪部29aが形成されている。
【0025】
第2の取付部材27は調整基板12の上に3本のネジ15で固定されるが、結像レンズLの光軸方向(X軸方向)に調整可能に構成されている。
【0026】
次に、固体撮像素子の取付及び調整手順について説明する。まず、撮像素子パッケージ21に収納された固体撮像素子20をソケット22に装着し、基板23に半田付け等の手段で固定する。第1の取付部材25の第1取付面25aに形成された開孔部25cに基板23上の撮像素子パッケージ21を嵌め、基板23と第1の取付部材25とをネジ26で固定する。
【0027】
結像レンズLを保持したレンズ保持枠30を第2の取付部材27に固定し、第2の取付部材27の位置を調整しながら、調整基板12に3本のネジ15で固定する。なお、第2の取付部材27を調整基板12に固定するときは、X軸方向のおよその位置を決定して固定すればよい。結像レンズLと固体撮像素子との取付位置の調整は、後述するように、第1の取付部材25を第2の取付部材27に取付けるときに精密に調整する。
【0028】
さらに、高さ調整ネジ11aのネジ込み量を調整して調整基板12のフレーム11からの高さを調整して固定する。
【0029】
第1の取付部材25の第2取付面25bを第2の取付部材27の取付位置に置き、固定ネジ28の下に板バネ29を介装し、板バネ29の爪部29aを係合孔25gに係合させた上で、固定ネジ28を取付孔25eを通し、第2の取付部材27に形成されたネジ孔27eにねじ込んで仮固定する。
【0030】
第1の取付部材25は結像レンズLの光軸に平行な方向(X軸方向)に移動可能で、また調整基板12はフレーム11に対して高さ方向(Z軸方向)に移動可能であり、その移動可能な範囲は、結像レンズLの共役長のばらつき、及びその他の部品の製造誤差を吸収するに十分な範囲であるものとする。
【0031】
次に、結像レンズLと固体撮像素子との取付位置の調整を行う。テスト用のサンプル画像を結像レンズLを通して固体撮像素子20上に投影し、固体撮像素子20からの出力信号を図示しないモニターで監視しながら、第1の取付部材25と結像レンズLと間隔、及び第2の取付部材27とフレーム11との間隔を調整し、モニター出力が目標の誤差範囲内に収まるように設定する。
【0032】
このとき、第1の取付部材25、即ち固体撮像素子20と結像レンズLとの間隔は、工具を使用して特に精密なミクロン単位での調整を行う。
【0033】
取付位置の調整が完了したときは、第2の取付部材27を調整基板12に固定するネジ15を本締付けして強固に固定する。次に、第1の取付部材25を第2の取付部材27の上に仮固定した固定ネジ28を本締付けして強固に固定する。
【0034】
この固定ネジ28の本締付けのとき、第1の取付部材25と第2の取付部材27との相対位置、即ち固体撮像素子20と結像レンズLとの相対位置がずれると、解像力の低下、部分的な倍率変化、像の歪みなどが生じ、画像品質を維持できなくなる。
【0035】
この対策として、この実施の形態では、第1の取付部材25の上の取付孔25eに固定ネジ28を差し込むとき、固定ネジ28の下側に板バネ29を介装し、固定ネジ28を締付けるとき固定ネジ28と第1の取付部材25とが摩擦接触して生じる摩擦力により第1の取付部材25がずれることを防止している。板バネ29の構成と作用、その寸法等については後で詳細に説明する。
【0036】
図3及び図4は、上記した固定ネジ28と板バネ29で構成された固定手段の構成と作用を説明する図で、図3は第1の取付部材25と第2の取付部材27とが固定ネジ28と板バネ29で固定された状態を横からみた説明図、図4は斜上方向からみた説明図である。
【0037】
図3及び図4では、固定ネジ28の締付けにより板バネ29は弾性変形し、板バネ29の中央部分は固体撮像素子20が取付られている第1の取付部材25に摩擦接触している。このため、固定ネジ28の締付けにより板バネ29を介して固体撮像素子20がずれてしまうおそれがある。
【0038】
板バネ29の中央部分が第1の取付部材25に摩擦接触していても、接触摩擦力が十分に大きく、且つ板バネ29が十分な剛性を有して締付け後も弾性変形しなければ、第1の取付部材25、即ち固体撮像素子20はずれないが、板バネ29の剛性が大き過ぎると締付強度が低下する等の不都合が発生するから、むやみに剛性を大きくすることはできない。板バネ29の板厚や、爪部の寸法などを適切な寸法にすることが必要となる。
【0039】
ここで、図4に示すような爪部を備えた板バネについて、締付けにより発生するずれ、即ち変形量について考察する。板バネの結像レンズLの光軸方向(X軸方向)に向かう変形量をδx、固体撮像素子の画素配列方向(Y軸方向)に向かう変形量をδyとすると、画素配列方向(Y軸方向)に向かう変形量δyは一般的に電気的に補正可能であるから多少の変形は問題にならない。固体撮像素子の有効画素の範囲は画像領域の外まで伸びて余裕があるのが一般的で、電気的な補正が可能である。
【0040】
板バネの結像レンズLの光軸方向(X軸方向)に向かう変形量δxはピント調整に関わるもので、電気的に変形量δxを補正することは困難である。そこで、変形量δxが変形量δyよりも小さくなる板バネの設計について考察する。
【0041】
図3、図4において、固定ネジ28の締付けにより板バネ29に加わる力をF1、板バネ29のY軸方向のバネ定数をEy、X軸方向のバネ定数をEx、Z軸方向のバネ定数をEz、固定ネジ28と板バネ29との間の摩擦係数をμ1、板バネ29と第1の取付部材25との間の摩擦係数、或いは板バネ29と第2の取付部材27との間の摩擦係数のいずれか小さい方の摩擦係数をμ2、板バネ29のZ軸方向の変形量をδzとすると、力の釣合い式から、変形量δyは以下の式(1)で表すことができる。
【0042】
δy=(μ1−μ2)*F1/Ey+μ2*δz*Ez/Ey・・・(1)
式(1)から、変形量δyはY軸方向のバネ定数をEyに反比例し、Z軸方向のバネ定数をEzに比例し、変形量δxはX軸方向のバネ定数をExに反比例し、Z軸方向のバネ定数をEzに比例することが分る。
【0043】
図4に示すように、板バネ29に光軸方向(X軸方向)に平行な方向にのみ爪部29aを設けるときは、Ex>Eyとなり、変形量はδx<δyとなるから、光軸方向のずれを抑えるのに適した板バネを得ることができる。
【0044】
また、爪部29aの長さHは、Z軸方向のバネ定数Ez及びZ軸方向の変形量δzに比例し、固定ネジ28が板バネ29に及ぼす力F1に反比例する。
【0045】
X軸方向の変形量δx及びY軸方向の変形量δyは、Z軸方向の変形量δz、Z軸方向のバネ定数Ez、固定ネジ28が板バネ29に及ぼす力F1に比例するから、爪部29aの長さHは変形量(ずれ量)に感度が高いと考えられ、板バネ29の設計に際して重要なパラメータである。
【0046】
爪部29aの長さHは、少なくとも固体撮像素子を取り付ける第1の取付部材25の板厚よりも大きくないと板バネ29のバネ性を持たなくなり、板バネ29としての意味をなさない。また、爪部29aの長さHが大き過ぎるとバネ定数Ezが大きくなり、X軸方向の変形量δx及びY軸方向の変形量δyも大きくなる。爪部29aの長さHの最適な範囲は、実験により確認したところでは、第1の取付部材25の板厚Tに対して、板厚Tの120%よりも大きく、200%よりも小さい範囲内とするのが適当である。
【0047】
また、変形量δyを式(1)よりも小さくするには、固定ネジ28と板バネ29との間の摩擦係数をμ1を小さくすればよい。
【0048】
以上この発明の実施の形態を説明したが、上記した実施の形態には、以下に記載する発明も含まれる。
【0049】
請求項に記載の弾性部材は、その摩擦係数が固体撮像素子を取り付ける第1の取付部材の摩擦係数よりも小さい材料で構成されることを特徴とする画像読取装置における固体撮像素子の取付装置。
【0050】
【発明の効果】
以上説明したとおり、この発明のデジタル方式の画像読取装置における固体撮像素子の取付装置は、固体撮像素子が取付られた第1の取付部材を結像レンズが取付られた第2の取付部材上に結像レンズの光軸方向に位置調整可能に固定するとき、固定手段を固定ネジ部材と弾性部材とで構成し、固定ネジ部材と第2の取付部材との間に弾性部材を装着するように構成したものであるから、簡単な構成で、固定ネジ部材の締め付け時に生じる第2の取付部材の位置のずれを大幅に低減することができる。
【0051】
そして、固定手段を構成する弾性部材に爪部を設け、その結像レンズの光軸方向のバネ定数が固体撮像素子の画素配列方向のバネ定数よりも大きい形状とする、固体撮像素子の画素配列方向に対し垂直方向に配置する、或いは爪部の板厚を第1の取付部材の板厚の120%以上200%未満とするなど、爪部の形状や配置、板厚などを適切に決定することにより、取付ネジの締め付けによる固体撮像素子の取り付け位置の誤差を十数ミクロン以下にまで抑えることが可能となる。
【図面の簡単な説明】
【図1】この発明の実施の形態の画像読取装置における固体撮像素子の取付構造を示す分解斜視図。
【図2】図1に示す固体撮像素子の取付構造の組立状態を示す斜視図。
【図3】図1に示す取付構造の固定手段の構成と作用を説明する図(その1)。
【図4】図1に示す取付構造の固定手段の構成と作用を説明する図(その2)。
【符号の説明】
10 レンズCCDユニット
11 フレーム
11a 高さ調整ネジ
12 調整基板
13 ネジ
14 板バネ
20 固体撮像素子
21 撮像素子パッケージ
22 ソケット
23 基板
25 第1の取付部材
25a 第1取付面
25b 第2取付面
25c 開孔部
25d ブラケット
25e 取付孔
25g 係合孔
26 ネジ
27 第2の取付部材
27e ネジ孔
28 固定ネジ(固定ネジ部材)
29 板バネ(弾性部材)
29a 爪部
30 レンズ保持枠
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mounting device for a solid-state imaging device in a digital image reading apparatus.
[0002]
[Prior art]
In a digital image forming apparatus such as a copying machine, an image reading apparatus that reads a document image using a solid-state imaging device, for example, a CCD is used. In such an image reading apparatus, since the positional relationship between the imaging lens and the solid-state imaging device greatly affects the quality of the formed image, precise positioning on the order of microns is required.
[0003]
As a method of positioning the imaging lens and the solid-state imaging device, the imaging lens and the solid-state imaging device are temporarily assembled on a frame, and a test sample image is projected onto the solid-state imaging device through the imaging lens, thereby solid-state imaging. A general method is to adjust the relative position between the imaging lens and the solid-state imaging device while monitoring the output of the device with a monitor.
[0004]
In order to maintain the image quality, the solid-state image sensor after position adjustment must be firmly fixed so that it does not move on the frame, and the position does not change when it is fixed. Must be within range.
[0005]
For this reason, various fixing means have been proposed. For example, a method of fixing a first mounting member to which an imaging lens is mounted and a second mounting member to which a solid-state imaging device is mounted on a frame with screws, the first mounting member and the second mounting member A method of fixing on the frame while adjusting the distance with a screw and a spring member, a method of fixing between the first mounting member and the second mounting member with solder while maintaining a distance between them, and a package of a solid-state imaging device Alternatively, there is a method of fixing the resin part of the solid-state imaging device with an adhesive.
[0006]
[Problems to be solved by the invention]
Among the various fixing means described above, the method of fixing with an adhesive has anxiety in terms of rigidity and earthquake resistance and environmental measures, because resin is present on the bonding surface, and in particular, the rigidity and earthquake resistance are inferior. However, it is not sufficient for application to an image reading apparatus that operates at high speed, and some measures are required to increase rigidity and earthquake resistance.
[0007]
Also, the method of fixing with solder requires a surface treatment such as tin plating when the mounting member is a metal plate, resulting in an increase in cost. In addition, fixing in anticipation of solder shrinkage occurring after fixing is necessary, and management of the fixing operation becomes difficult. Furthermore, some solders contain toxic metals such as lead, and there are concerns about environmental measures.
[0008]
The method of fixing the distance between the first mounting member and the second mounting member on the frame while adjusting the distance between the first mounting member and the second mounting member is complicated in structure and results in an increase in cost. There is an inconvenience.
[0009]
The simplest structure that can withstand long-term aging after shipment and is highly reliable is to fix the mounting member with a screw. In this method, when tightening the screw, the screw is attached between the screw and the mounting member. When the mounting member is displaced due to the frictional force, a displacement of several tens of microns may occur. However, it is required that the displacement is within an allowable error range of several microns. An object of the present invention is to solve this problem.
[0010]
[Means for Solving the Problems]
The present invention solves the above problems, and the invention of claim 1 includes an imaging lens and a solid-state imaging device, and projects an image on the solid-state imaging device via the imaging lens to convert it into an image signal. And a first mounting member to which a solid-state imaging device is mounted, and a second mounting member to which an imaging lens and the first mounting member are mounted, The first mounting member mounted on the second mounting member is mounted so that the position of the solid-state imaging device can be adjusted in the optical axis direction of the imaging lens via a fixing unit, and the fixing unit includes a fixing screw. And an elastic member mounted between the fixing screw member and the second mounting member, and the elastic member constituting the fixing means includes a claw portion that engages with the second mounting member. The claw portion has a spring constant in the optical axis direction of the imaging lens, the solid-state imaging device. A mounting device for a solid-state image sensor in the image reading apparatus characterized in that it is a shape larger than the spring constant of the pixel arrangement direction.
[0011]
And it is good to arrange | position the said fixing means at least two places along the pixel arrangement direction in the position corresponding to the both ends outer side of the pixel arrangement direction of the solid-state image sensor on the said 1st attachment member.
[0013]
And the nail | claw part of the said elastic member is good to arrange | position in the orthogonal | vertical direction with respect to the pixel array direction of the said solid-state image sensor.
[0014]
In addition, the length of the claw portion may be 120% or more and less than 200% of the plate thickness of the first mounting member to which the solid-state imaging element is fixed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0016]
FIG. 1 is an exploded perspective view showing a mounting structure of a solid-state imaging device in an image reading apparatus according to an embodiment of the present invention, and FIG. 2 is a perspective view showing an assembled state thereof.
[0017]
Here, for convenience of explanation, the optical axis direction of the imaging lens L described later is the X axis, the pixel arrangement direction of the solid-state imaging device is the Y axis, and the height direction of the optical axis of the imaging lens L with respect to the frame (X axis) And the direction perpendicular to the Y-axis) is taken as the Z-axis direction.
[0018]
1 and 2, a lens CCD unit 10 that is an internal unit of the image reading apparatus is assembled on a frame 11, and the height relative to the frame 11 (Z-axis direction) can be adjusted on the frame 11. The adjustment substrate 12 is disposed substantially parallel to the frame 11.
[0019]
The adjustment board 12 is formed with a hole that fits the head of the height adjustment screw 11a at a position corresponding to the three height adjustment screws 11a that are screwed on the frame 11. And the head of the height adjustment screw 11a are fitted together so that the adjustment substrate 12 is supported from the back side by a ridge (not shown) provided near the upper end of the height adjustment screw 11a and moves in the vertical direction. Supported as possible. In addition, the adjustment substrate 12 is urged downward toward the frame 11 by a screw 13 with two sets of leaf springs 14 interposed therebetween. With this configuration, the height of the adjustment substrate 12 from the frame 11 can be adjusted by adjusting the screwing amount of the height adjustment screw 11a into the frame 11.
[0020]
The solid-state image pickup device 20 is, for example, a CCD, and the solid-state image pickup device 20 housed in the image pickup device package 21 is detachably mounted on the socket 22. The socket 22 is fixedly attached to the substrate 23 by means such as soldering.
[0021]
The first mounting member 25 has a first mounting surface 25a having a substantially L-shaped cross section, and a second mounting surface 25b perpendicular to the first mounting surface 25a. The first mounting surface 25a has a solid-state imaging device. An opening 25c is formed in a portion corresponding to the package 21, brackets 25d are formed on both outer sides in the pixel array direction of the solid-state imaging device 20 of the opening 25c, and the substrate 23 and the bracket 25d are connected to the screw 26. It is fixed with.
[0022]
The second attachment surface 25b of the first attachment member 25 is a surface for attaching the first attachment member 25 to a second attachment member 27 described later, and is in the pixel arrangement direction (Y-axis direction) of the solid-state imaging device 20. At positions corresponding to the outer sides of both ends, there are two elongated attachment holes 25e extending in parallel to the optical axis direction of the imaging lens L, which will be described later, and a pawl portion of a leaf spring, which will be described later, approaching each of the attachment holes 25e. An engagement hole 25g that engages with 29a is formed.
[0023]
A lens holding frame 30 that holds the imaging lens L is fixed to the second mounting member 27, and the second mounting surface 25 b of the first mounting member 25 is attached to the second mounting member 27. Two screw holes 27e to be fixed are formed.
[0024]
As shown in FIGS. 1 and 2, the fixing means for attaching the first mounting member 25 to the second mounting member 27 includes a fixing screw 28 that is a fixing screw member and a leaf spring 29 that is an elastic member. As apparent from FIG. 3 and FIG. 4, the leaf spring 29 is formed with a claw portion 29a.
[0025]
The second mounting member 27 is fixed on the adjustment substrate 12 with three screws 15, but is configured to be adjustable in the optical axis direction (X-axis direction) of the imaging lens L.
[0026]
Next, a procedure for mounting and adjusting the solid-state imaging device will be described. First, the solid-state imaging device 20 housed in the imaging device package 21 is mounted on the socket 22 and fixed to the substrate 23 by means such as soldering. The image pickup device package 21 on the substrate 23 is fitted into the opening portion 25c formed in the first attachment surface 25a of the first attachment member 25, and the substrate 23 and the first attachment member 25 are fixed with screws 26.
[0027]
The lens holding frame 30 holding the imaging lens L is fixed to the second mounting member 27, and is fixed to the adjustment substrate 12 with the three screws 15 while adjusting the position of the second mounting member 27. Note that when the second mounting member 27 is fixed to the adjustment substrate 12, an approximate position in the X-axis direction may be determined and fixed. Adjustment of the attachment position of the imaging lens L and the solid-state imaging device is precisely adjusted when attaching the first attachment member 25 to the second attachment member 27, as will be described later.
[0028]
Further, the height of the adjustment board 12 from the frame 11 is adjusted and fixed by adjusting the screwing amount of the height adjustment screw 11a.
[0029]
The second mounting surface 25b of the first mounting member 25 is placed at the mounting position of the second mounting member 27, a leaf spring 29 is interposed under the fixing screw 28, and the claw portion 29a of the leaf spring 29 is engaged with the engagement hole. After engaging with 25g, the fixing screw 28 is passed through the mounting hole 25e, screwed into the screw hole 27e formed in the second mounting member 27, and temporarily fixed.
[0030]
The first mounting member 25 can move in a direction parallel to the optical axis of the imaging lens L (X-axis direction), and the adjustment substrate 12 can move in the height direction (Z-axis direction) with respect to the frame 11. The movable range is assumed to be a range sufficient to absorb variations in the conjugate length of the imaging lens L and manufacturing errors of other components.
[0031]
Next, the attachment position of the imaging lens L and the solid-state image sensor is adjusted. A test sample image is projected onto the solid-state imaging device 20 through the imaging lens L, and the output signal from the solid-state imaging device 20 is monitored by a monitor (not shown), while the first mounting member 25 and the imaging lens L are spaced from each other. The distance between the second mounting member 27 and the frame 11 is adjusted so that the monitor output is within the target error range.
[0032]
At this time, the first mounting member 25, that is, the distance between the solid-state imaging device 20 and the imaging lens L is adjusted with a particularly precise micron unit using a tool.
[0033]
When the adjustment of the attachment position is completed, the screw 15 for fixing the second attachment member 27 to the adjustment substrate 12 is finally tightened and firmly fixed. Next, the fixing screw 28 temporarily fixing the first mounting member 25 on the second mounting member 27 is finally tightened and firmly fixed.
[0034]
If the relative position between the first mounting member 25 and the second mounting member 27, that is, the relative position between the solid-state imaging device 20 and the imaging lens L is shifted during the final tightening of the fixing screw 28, the resolving power decreases. Partial magnification change, image distortion, etc. occur and image quality cannot be maintained.
[0035]
As a countermeasure, in this embodiment, when the fixing screw 28 is inserted into the mounting hole 25e on the first mounting member 25, a leaf spring 29 is interposed below the fixing screw 28, and the fixing screw 28 is tightened. When the fixing screw 28 and the first mounting member 25 are in frictional contact with each other, the first mounting member 25 is prevented from being displaced by frictional force. The configuration and operation of the leaf spring 29, its dimensions, etc. will be described in detail later.
[0036]
FIGS. 3 and 4 are views for explaining the configuration and operation of the fixing means constituted by the fixing screw 28 and the leaf spring 29. FIG. 3 shows the first mounting member 25 and the second mounting member 27. FIG. 4 is an explanatory view seen from the side of the state fixed by the fixing screw 28 and the leaf spring 29, and FIG. 4 is an explanatory view seen from the obliquely upward direction.
[0037]
3 and 4, the plate spring 29 is elastically deformed by tightening the fixing screw 28, and the central portion of the plate spring 29 is in frictional contact with the first attachment member 25 to which the solid-state imaging device 20 is attached. For this reason, the solid-state imaging device 20 may be displaced via the leaf spring 29 by tightening the fixing screw 28.
[0038]
Even if the central portion of the leaf spring 29 is in frictional contact with the first mounting member 25, the contact friction force is sufficiently large, and the leaf spring 29 has sufficient rigidity so that it does not elastically deform after tightening. Although the first mounting member 25, that is, the solid-state imaging device 20, does not come off, if the rigidity of the leaf spring 29 is too large, problems such as a decrease in tightening strength occur, and therefore the rigidity cannot be increased unnecessarily. It is necessary to make the plate thickness of the leaf spring 29, the size of the claw portion, and the like appropriate.
[0039]
Here, regarding the leaf spring provided with the claw portion as shown in FIG. 4, the displacement generated by tightening, that is, the deformation amount will be considered. If the deformation amount of the plate spring imaging lens L in the optical axis direction (X-axis direction) is δx and the deformation amount of the solid-state imaging device in the pixel arrangement direction (Y-axis direction) is δy, the pixel arrangement direction (Y-axis) The amount of deformation δy toward (direction) is generally electrically correctable, so that some deformation does not cause a problem. In general, the effective pixel range of the solid-state imaging device extends to the outside of the image area and has a margin, and electrical correction is possible.
[0040]
The deformation amount δx of the plate spring in the optical axis direction (X-axis direction) of the imaging lens L is related to focus adjustment, and it is difficult to electrically correct the deformation amount δx. Therefore, a design of a leaf spring in which the deformation amount δx is smaller than the deformation amount δy will be considered.
[0041]
3 and 4, the force applied to the leaf spring 29 by tightening the fixing screw 28 is F1, the spring constant in the Y-axis direction of the leaf spring 29 is Ey, the spring constant in the X-axis direction is Ex, and the spring constant in the Z-axis direction. Ez, the friction coefficient between the fixing screw 28 and the leaf spring 29 is μ1, the friction coefficient between the leaf spring 29 and the first mounting member 25, or between the leaf spring 29 and the second mounting member 27. Assuming that the smaller friction coefficient is μ2 and the deformation amount of the leaf spring 29 in the Z-axis direction is δz, the deformation amount δy can be expressed by the following equation (1) from the force balance equation. .
[0042]
δy = (μ1−μ2) * F1 / Ey + μ2 * δz * Ez / Ey (1)
From equation (1), the deformation amount δy is inversely proportional to the Y-axis spring constant Ey, the Z-axis direction spring constant is proportional to Ez, and the deformation amount δx is inversely proportional to the X-axis direction spring constant Ex. It can be seen that the spring constant in the Z-axis direction is proportional to Ez.
[0043]
As shown in FIG. 4, when the claw portion 29a is provided in the leaf spring 29 only in the direction parallel to the optical axis direction (X-axis direction), Ex> Ey and the deformation amount is δx <δy. A leaf spring suitable for suppressing the displacement of the direction can be obtained.
[0044]
The length H of the claw portion 29a is proportional to the spring constant Ez in the Z-axis direction and the deformation amount δz in the Z-axis direction, and inversely proportional to the force F1 exerted on the leaf spring 29 by the fixing screw 28.
[0045]
The deformation amount δx in the X-axis direction and the deformation amount δy in the Y-axis direction are proportional to the deformation amount δz in the Z-axis direction, the spring constant Ez in the Z-axis direction, and the force F1 that the fixing screw 28 exerts on the leaf spring 29. The length H of the portion 29a is considered to be highly sensitive to the deformation amount (deviation amount), and is an important parameter in designing the leaf spring 29.
[0046]
If the length H of the claw portion 29a is not at least larger than the plate thickness of the first mounting member 25 to which the solid-state imaging device is mounted, the leaf spring 29 has no spring property and does not make sense as the plate spring 29. If the length H of the claw portion 29a is too large, the spring constant Ez increases, and the deformation amount δx in the X-axis direction and the deformation amount δy in the Y-axis direction also increase. The optimum range of the length H of the claw portion 29a is a range that is larger than 120% and smaller than 200% of the plate thickness T with respect to the plate thickness T of the first mounting member 25, as confirmed by experiments. It is suitable to be inside.
[0047]
Further, in order to make the deformation amount δy smaller than the expression (1), the friction coefficient between the fixing screw 28 and the leaf spring 29 may be reduced by μ1.
[0048]
Although the embodiment of the present invention has been described above, the above-described embodiment includes the invention described below.
[0049]
The elastic member according to claim 1 is made of a material whose friction coefficient is smaller than that of the first mounting member to which the solid-state imaging element is attached. .
[0050]
【The invention's effect】
As described above, the solid-state image sensor mounting device in the digital image reading apparatus according to the present invention has the first mounting member to which the solid-state image sensor is mounted on the second mounting member to which the imaging lens is mounted. When fixing the imaging lens in the optical axis direction so that the position can be adjusted, the fixing means is composed of a fixing screw member and an elastic member, and the elastic member is mounted between the fixing screw member and the second mounting member. Since it is configured, it is possible to greatly reduce the displacement of the position of the second mounting member that occurs when the fixing screw member is tightened with a simple configuration.
[0051]
Then, a pixel arrangement of the solid-state image sensor, in which a claw portion is provided on the elastic member constituting the fixing means, and the spring constant in the optical axis direction of the imaging lens is larger than the spring constant in the pixel arrangement direction of the solid-state image sensor Appropriately determine the shape, arrangement, plate thickness, etc. of the claw portion, such as arranging in a direction perpendicular to the direction, or setting the plate thickness of the claw portion to 120% or more and less than 200% of the plate thickness of the first mounting member. As a result, it is possible to suppress an error in the mounting position of the solid-state imaging device due to tightening of the mounting screw to tens of microns or less.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a mounting structure of a solid-state image sensor in an image reading apparatus according to an embodiment of the present invention.
2 is a perspective view showing an assembled state of the mounting structure of the solid-state imaging device shown in FIG. 1;
3 is a diagram (part 1) for explaining the configuration and operation of a fixing means of the mounting structure shown in FIG. 1; FIG.
4 is a diagram (part 2) for explaining the configuration and operation of a fixing means of the mounting structure shown in FIG. 1; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Lens CCD unit 11 Frame 11a Height adjustment screw 12 Adjustment board 13 Screw 14 Leaf spring 20 Solid-state image sensor 21 Image sensor package 22 Socket 23 Substrate 25 First attachment member 25a First attachment surface 25b Second attachment surface 25c Opening Portion 25d bracket 25e mounting hole 25g engagement hole 26 screw 27 second mounting member 27e screw hole 28 fixing screw (fixing screw member)
29 Leaf spring (elastic member)
29a Claw 30 Lens holding frame

Claims (4)

結像レンズと固体撮像素子とを備え、結像レンズを介して画像を固体撮像素子上に投影して画像信号に変換して出力する画像読取装置であって、
固体撮像素子が取付られた第1の取付部材と、結像レンズと前記第1の取付部材とが取付られた第2の取付部材とを備え、前記第2の取付部材上に取付られた第1の取付部材は、固定手段を介して前記固体撮像素子を結像レンズの光軸方向に位置調整可能に取付られており、前記固定手段は、固定ネジ部材と、該固定ネジ部材と前記第2の取付部材との間に装着された弾性部材とを備え
前記固定手段を構成する弾性部材は、前記第2の取付部材に係合する爪部を備え、該爪部は前記結像レンズの光軸方向のバネ定数が前記固体撮像素子の画素配列方向のバネ定数よりも大きい形状であること
を特徴とする画像読取装置における固体撮像素子の取付装置。
An image reading apparatus that includes an imaging lens and a solid-state imaging device, projects an image on the solid-state imaging device via the imaging lens, converts the image into an image signal, and outputs the image signal .
A first mounting member to which a solid-state imaging element is mounted; a second mounting member to which an imaging lens and the first mounting member are mounted; and a second mounting member mounted on the second mounting member. 1 is attached to the solid-state imaging device via a fixing means so that the position of the solid-state imaging device can be adjusted in the optical axis direction of the imaging lens. The fixing means includes a fixing screw member, the fixing screw member, and the first fixing member. An elastic member mounted between the two attachment members ,
The elastic member constituting the fixing means includes a claw portion that engages with the second mounting member, and the claw portion has a spring constant in the optical axis direction of the imaging lens in the pixel arrangement direction of the solid-state imaging device. A mounting device for a solid-state imaging device in an image reading device, wherein the mounting device has a shape larger than a spring constant .
前記固定手段は、前記第1の取付部材上の固体撮像素子の画素配列方向の両端部外側に対応する位置に、画素配列方向に沿って少なくとも2箇所配置されていることを特徴とする請求項1に記載の画像読取装置における固体撮像素子の取付装置。The at least two fixing means are arranged along the pixel arrangement direction at positions corresponding to the outer sides of both ends in the pixel arrangement direction of the solid-state imaging device on the first mounting member. 2. A mounting device for a solid-state imaging device in the image reading apparatus according to 1 . 前記弾性部材の爪部は、前記固体撮像素子の画素配列方向に対し垂直方向に配置されていることを特徴とする請求項1に記載の画像読取装置における固体撮像素子の取付装置。The claw portions of the elastic member, the mounting device of the solid-state imaging device in the image reading apparatus according to claim 1, characterized in that it is arranged in a direction perpendicular to the pixel arrangement direction of the solid-state imaging device. 前記弾性部材の爪部の長さは、前記固体撮像素子が固定された第1の取付部材の板厚の120%以上200%未満であることを特徴とする請求項1に記載の画像読取装置における固体撮像素子の取付装置。 The length of the pawl portion of the elastic member, the image reading apparatus according to claim 1, wherein the solid-state imaging device is less than 120% to 200% of the thickness of the first mounting member secured The solid-state image sensor mounting apparatus in FIG.
JP2002036978A 2002-02-14 2002-02-14 Mounting device for solid-state imaging device in image reading apparatus Expired - Fee Related JP3867588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002036978A JP3867588B2 (en) 2002-02-14 2002-02-14 Mounting device for solid-state imaging device in image reading apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002036978A JP3867588B2 (en) 2002-02-14 2002-02-14 Mounting device for solid-state imaging device in image reading apparatus

Publications (2)

Publication Number Publication Date
JP2003241052A JP2003241052A (en) 2003-08-27
JP3867588B2 true JP3867588B2 (en) 2007-01-10

Family

ID=27778708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002036978A Expired - Fee Related JP3867588B2 (en) 2002-02-14 2002-02-14 Mounting device for solid-state imaging device in image reading apparatus

Country Status (1)

Country Link
JP (1) JP3867588B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8199369B2 (en) 2005-11-07 2012-06-12 Ricoh Company, Ltd. Optical device having fixture structure and used in image reading device and image forming device
JP4970905B2 (en) * 2005-11-07 2012-07-11 株式会社リコー Structure, optical device having the same, method for assembling the optical device, image reading device having the optical device, and image forming apparatus having the same
JP4554495B2 (en) * 2005-11-24 2010-09-29 株式会社リコー Image reading apparatus and image forming apparatus provided with image reading apparatus
CN101179641A (en) * 2006-11-06 2008-05-14 株式会社理光 Fixture structure, optical device, image reading device and image forming device
JP6695180B2 (en) * 2016-03-19 2020-05-20 日本電産コパル株式会社 Imaging device for moving body

Also Published As

Publication number Publication date
JP2003241052A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
TWI440894B (en) Anti-shake device for lens module
US8175453B2 (en) Imaging apparatus
US7663694B2 (en) Digital camera
TWI564490B (en) Lens drive
US8493503B2 (en) Imaging apparatus
WO2022033294A1 (en) Anti-shake photographing module and preparation method therefor
JP2009141844A (en) Photoelectric converting element unit and imaging apparatus
JP4552784B2 (en) Imaging element fixing structure, lens unit, and imaging apparatus
US6414299B1 (en) Method of mounting optical sensor package
JP3867588B2 (en) Mounting device for solid-state imaging device in image reading apparatus
JP2003283892A (en) Imaging apparatus
US10615206B2 (en) Image-sensor module
JP2017169175A (en) Imaging apparatus
EP2312828B1 (en) Imaging device
JP2006203706A (en) Imaging device fitting structure, plate material fitting structure and plate material fitting method
JP6702787B2 (en) Imaging device
US10863067B2 (en) Image pickup unit that allows optical adjustment
JP2007228463A (en) Camera module
JP6777422B2 (en) Imaging device
US9065989B2 (en) Image pickup apparatus having image pickup device
JP6147096B2 (en) Imaging device
JP3857848B2 (en) Position adjustment mechanism of solid-state image sensor
US20170318203A1 (en) Image pickup apparatus having image pickup function
JPS6120466A (en) Picture reading device
JPS5926325Y2 (en) Optical axis adjustment device for autofocus module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040927

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3867588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees