JP3866005B2 - Biogas treatment method - Google Patents

Biogas treatment method Download PDF

Info

Publication number
JP3866005B2
JP3866005B2 JP2000133683A JP2000133683A JP3866005B2 JP 3866005 B2 JP3866005 B2 JP 3866005B2 JP 2000133683 A JP2000133683 A JP 2000133683A JP 2000133683 A JP2000133683 A JP 2000133683A JP 3866005 B2 JP3866005 B2 JP 3866005B2
Authority
JP
Japan
Prior art keywords
biogas
carbon dioxide
catalyst
reaction
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000133683A
Other languages
Japanese (ja)
Other versions
JP2001316302A (en
Inventor
勝 市川
隆一郎 大西
秀明 伊藤
大器 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2000133683A priority Critical patent/JP3866005B2/en
Publication of JP2001316302A publication Critical patent/JP2001316302A/en
Application granted granted Critical
Publication of JP3866005B2 publication Critical patent/JP3866005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種有機性廃棄物を発酵処理することによって発生するか、またはそれらを含む埋立地で発生するバイオガスから芳香族化触媒を用いて芳香族化合物及び水素を併産製造するバイオガスの処理方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
最近、農水産物廃棄物や生ごみの発酵処理やこれらの埋立地等で発生するバイオガスを有効利用する方法が研究されている。バイオガスはメタンを主成分としており、このメタンを燃料ガスとして使用する方法が実用化されている。さらに、この他に、バイオガスを有効利用する方法が種々研究されている。
【0003】
従来、メタン等の低級炭化水素から芳香族化合物を得る方法が知られている(特開平11−60514号、特開平04−82841号、特開平10−272366号、特開平11−47606号)。これらの方法では、メタン等の低級炭化水素を、(1)Mo、亜鉛、Ga、Co、鉄、クロム、タングステン、希土類金属またはそれらの化合物で構成される群から選択される1種以上の触媒材料と、この触媒材料を担持するメタロシリケートとからなる触媒を使用して、この触媒の存在下、一酸化炭素及び/または二酸化炭素の共存下に低級炭化水素の芳香族化反応を行い、芳香族炭化水素を主成分とする芳香族化合物及び水素を製造する。
この際の一酸化炭素及び/または二酸化炭素の添加量は、反応に供給する全原料ガスにおける容量%として0.01〜30%としている。
【0004】
本発明は、上記した芳香族化反応を利用して、バイオガスの一層の有効利用を可能とするものであり、本発明者らは、メタンを主成分とするバイオガスの成分を適切に処理することによってバイオガスから穏和な温度・圧力の反応条件において高効率でベンゼン等の芳香族化合物及び水素の併産製造を可能にすることを見い出し本発明をするに至ったものである。
【0005】
すなわち、本発明のバイオガスの処理方法のうち第1の発明は、触媒の存在下で、容量%で40%以上のメタンと55%以下の二酸化炭素と総和で5%以下の硫化物、窒素、酸素、水素、一酸化炭素を含有するバイオガスを低級炭化水素源として芳香族化反応させて芳香族化合物及び水素を製造する際に、前記芳香族化反応に先立って、バイオガスから物理的及び/又は化学的操作によって前記硫化物を除去し、さらにその後、バイオガスに含まれる前記二酸化炭素濃度を0.01〜10容量%の範囲内に低下させる調整を行うことを特徴とする。
【0006】
第2の発明のバイオガスの処理方法は、第1の発明において、前記触媒が、亜鉛、Ga、Co、鉄またはそれらの化合物で構成される群から選択される1種以上と、クロム、タングステン、モリブデンまたはそれらの化合物で構成される群から選択される1種以上と、希土類金属またはその化合物で構成される群から選択される1種以上の少なくとも一つを含む触媒材料と、該触媒材料を担持するメタロシリケートとからなることを特徴とする。
【0008】
の発明のバイオガスの処理方法は、第1または第2の発明において、前記二酸化炭素の濃度調整を、物理的操作及び/又は化学的操作によって行うことを特徴とする。
【0009】
の発明のバイオガスの処理方法は、第1または第2の発明において、前記二酸化炭素の濃度調整を、天然ガス等の他の原料ガスでバイオガスを混合希釈することにより行うことを特徴とする。
【0010】
【発明の実施の形態】
本発明は、後述する触媒(触媒材料+担体)の存在下、バイオガスを反応させて芳香族炭化水素を主成分とする芳香族化合物及び水素を製造する技術分野に適用される。
バイオガスには、各種有機性廃棄物を嫌気性処理することによって発生するものや各種有機性廃棄物を含む埋立地で発生するものを用いることができる。
バイオガスは、容量%で少なくとも40%、好ましくは60%以上のメタンを含有し、同時に55%以下好ましくは35%以下の二酸化炭素と、場合によっては総和として好ましくは5%以下の硫化物、窒素、酸素、水素、一酸化炭素等を含有するものである。
【0011】
このバイオガスは、例えば酸化第二鉄等の触媒を用いた物理的及び/または化学的操作によって硫化水素等の硫化物を除去する。この硫化物は、一般にバイオガスに少量含まれているものであるが、本発明者らの研究により芳香族化反応に際し、反応の進行を阻害して反応効率を低下させる。したがって、この硫化物はできるだけ除去する。濃度としては100ppm以下にするのが望ましい。
硫化物の除去は、上記のように物理的、化学的操作によって行うことができ、上記乾式脱硫法の他に例えば、バイオガスを炭酸ソーダに流通させる、あるいは水洗するなどの、湿式脱硫法を例示することができる。ただし、本発明としては、特定の方法に限定されるものではなく、要は、効果的に硫化物の除去を行えることができるものであればよい。
【0012】
また、バイオガスは、発生源等によっても異なるものの相当程度の二酸化炭素を含んでいる。この二酸化炭素は、後述する芳香族化反応に際し、メタンの反応転化率を向上させ、さらに反応において芳香族化合物および水素の生成速度が経時的に著しく低下するのを防止する効果がある。この効果を十分に得るためには反応ガス全量において0.01容量%以上の濃度で二酸化炭素を含んでいるのが望ましい。一方、二酸化炭素の濃度が高すぎると、触媒構成金属成分の活性状態を維持できず、炭化水素のメタン転化率を著しく低下させるため、その濃度は10容量%以下が望ましい。また、同様の理由で下限を0.1容量%、上限を2容量%とするのが望ましい。
【0013】
反応に供されるバイオガス中に含まれる二酸化炭素は、上記のように所定の範囲内にあるのが望ましく、必要に応じて上記濃度で二酸化炭素が含まれるようにバイオガスの成分調整を行うのが望ましい。
その調整は、例えば圧力スイング吸着法のような物理吸着や膜分離法等の物理的操作によって行うことができる。また、例えば水酸化カリウム等の強アルカリ性の吸収剤を用いた炭酸ガス吸収法のような化学的操作によって二酸化炭素の濃度調整を行うことができ、さらには、天然ガス等の他の原料ガスと混合希釈することによって濃度調整することもできる。濃度調整はいずれの方法を採用してもよく、上記の方法に限定されるものでもない。また、複数の方法を採用することも可能である。
【0014】
上記したバイオガスを用いた芳香族化反応に際しては、上記したように、芳香族化触媒の存在化において行う。
該触媒としては、触媒材料を担体に担持させたものを用いる。本発明では、触媒の担体としてメタロシリケートを用いるのが望ましい。このメタロシリケートとしては多数の細孔を有する多孔質体が望ましい。例えばアルミノシリケートの場合、種々の組成から成るシリカ及びアルミナからなる多孔質担体であるモレキュラーシーブ5A(UTA)、フォジャサイト (NaY)及びNaX、ZSM−5、ZSM−11、ZSM−22、ZSM−48、β−HZSMやリン酸を主成分とするALPO−5、SAPO−5、VPI−5やMCM−22等の多孔質担体で5〜8Åのミクロ細孔やチャンネルを有するゼオライト担体を例示することができる。さらには、シリカを主成分とし一部アルミナを成分として含むメゾ細孔(10〜100Å)の筒状細孔(チャンネル)で特徴づけられるFSM−16やMCM−41などのメゾ細孔多孔質担体をシリコンアルコキサイド等を用いたCVD法によりメゾ細孔径を5〜8Åに調整した修飾メゾ細孔材などを例示できる。メタロシリケートとしてはアルミノシリケートやフェロシリケートの他に、シリカ及びチタニアから成るチタノシリケート等の多孔質担体であり細孔径が5〜8Åであるものを用いることが出来る。
また、例えばアミルノシリケートの場合のシリカとアルミナの含有比としては、通常入手し得る多孔質担体のシリカ/アルミナ比=1〜8000のものを用いることができるが、本発明の低級炭化水素の芳香族化反応を、実用的な低級炭化水素の転化率及び芳香族化合物への選択率で実施するためには、シリカ/アルミナ比は10〜100であることが好ましい。
【0015】
次に本発明の芳香族化触媒では、触媒材料として、亜鉛、Ga、Co、鉄またはそれらの化合物で構成される群から選択される1種以上と、クロム、タングステン、モリブデンまたはそれらの化合物で構成される群から選択される1種以上と、希土類金属またはその化合物で構成される群から選択される1種以上の少なくとも一つが含まれるものを用いることができる。
したがって、本願発明の触媒材料は、上記した群のいずれから選択したものであってもよく、また複数の群から選択するものであってもよい。また、選択される各群では上記のように1種または2種以上の材料を選択することができる。
なお、本発明では、上記した各材料のいずれを選択することも可能であり、選択される触媒材料が特に限定されるものではないが、望ましくはMo、Wまたはそれらの化合物の一種以上を重要な触媒材料として含むのが望ましい。
【0016】
上記触媒材料は、上記のメタロシリケートに担持させる際に、前駆体として用意することができる。前駆体の例としては、塩化物、臭化物等のハロゲン化物、硝酸塩、硫酸塩、リン酸塩等の鉱酸塩、炭酸塩、酢酸塩、蓚酸塩等のカルボン酸塩や金属カルボニル錯体やシクロペンタジエニル錯体等の有機金属塩等やヘテロポリ酸、複合錯塩や複合酸化物を用いることができる。
【0017】
上記により得られる本発明の触媒は、粉末状又はペレット状及びその他の形状のいずれの形状であってもよく、形状が特に限定されるものではない。
また、本発明で用いる触媒は、芳香族化合物を生成する誘導期を短縮するため、水素ガスやヒドラジン、金属水素化合物、例えばBH、NaH、AlH等による前処理を含む触媒活性化過程を施してもよい。
【0018】
本発明の反応処理は、通常は回分式あるいは流通式の反応形式で実施されるが、固定床、移動床又は流動化床等の流通式反応形式で実施することが好ましい。反応は、例えば触媒を固定床流通式反応装置の石英製反応管に充填し、反応温度300〜800℃、0.1〜10気圧で、バイオガスを重量時間空間速度(WHSV)0.1〜10で供給することによって行う。反応管流出物中には末反応のメタンの他に、水素、一酸化炭素、二酸化炭素及び芳香族化合物が存在しており、未反応のメタンや一酸化炭素、二酸化炭素は、芳香族化反応に再循環させることができる。
【0019】
上記反応により、ベンゼン、トルエン等の芳香族炭化水素を主成分とする芳香族化合物が得られる。なお、得られる芳香族化合物の種別や化合物の比率は原料によっても異なり、一律に規定されるものではない。また、この反応に伴って高純度の水素が得られる。
上記した芳香族化合物と水素とは、いずれか一方を有効に利用してもよく、両方を有効利用しても良く、本発明としては利用方法が限定されるものではない。また、その利用分野も特に限定されるものではない。
【0020】
【実施例】
(実施例1)
有機性廃棄物のメタン発酵処理により発生したバイオガスを回収し、酸化第二鉄触媒充填容器に流通させて、芳香族化反応に好ましくない硫化物等の微量成分ガスを除去した。その組成を表1に示した。なお、硫化物は、原料バイオガスには1000〜1500ppm含まれており、上記硫化物除去により分析可能濃度未満(1.25ppm未満)にまで濃度が低下した。
このガスに対し17.2倍量の容量の純メタンガスを混合させ、二酸化炭素濃度を2.0容量%にまで減少させた。また6重量%のモリブデンをメタロシリケート担体であるZSM−5に担持した触媒(以下、Mo(6%)/ZSM−5と略記する)を充填した触媒反応容器を用意した。該容器に、成分調整した上記バイオガスをSV=3,000ml/g−cat./hで供給して、容器内圧力3atm、温度720℃で芳香族化反応を行い、その反応結果を表2に示した。
表2から明らかなように、本発明の方法によれば、バイオガスから、芳香族化合物であるベンゼンおよび水素が効率よく製造されることが明らかになった。
【0021】
【表1】

Figure 0003866005
【0022】
【表2】
Figure 0003866005
【0023】
(実施例2)
この実施例2では、実施形態1と同様にバイオガスを原料として、実施例1と同様にして硫化物等の微量成分を除去した後、アルカリ吸収法によって二酸化炭素を除去した。具体的には、6mol/l濃度の水酸化カリウム水溶液を充填した500ml容積のガラス製三角フラスコ2個に、表3左欄(原料バイオガス)の組成のバイオガスを0.17l/minの供給流量で直列に流通させ、さらに純水を充填した500ml容積のガラス製三角フラスコを流通させて水洗した。この成分調整後のバイオガスの成分を表3右欄(調整バイオガス)に示す。
【0024】
このガスに対し、二酸化炭素濃度が2容量%となるように二酸化炭素ガスを混合させたものを、実施例1で説明したMo(6%)/ZSM−5を充填した触媒反応容器にSV=3,000ml/g−cat./hで供給して、容器内圧力3atm、温度720℃で芳香族反応をおこなった。その反応結果を表4に示す。表4から明らかなように、この実施例によって成分調整したバイオガスによってもベンゼンおよび水素を効率よく製造することができた。
【0025】
【表3】
Figure 0003866005
【0026】
【表4】
Figure 0003866005
【0027】
【発明の効果】
以上のように、この発明によれば、望ましくはバイオガス中の硫化物を除去し、さらに二酸化炭素濃度を適正に調整する工程を加えることで、有望なメタン源であるバイオガスを用いて、触媒の存在下、メタンから高純度の水素と同時にベンゼン等の高付加価値の芳香族化合物を併産することができ、バイオガスから石油化学工業において高付加価値製品であるベンゼン等の芳香族化合物と、次世代のエネルギー源として期待の高い水素とを同時に製造することができる。
さらに、本方法による水素製造法は、地球温暖化の環境問題の原因であるCOのプロセス排出量をゼロにし、また従来法の水素製造法に比ベ、プロセスエネルギー投入量を1/10以下にする地球環境保全に資する革新的製造法を提供できる。これにより生ゴミや畜産廃物等の環境有機資源の理想的なリサイクルを可能とする。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biogas produced by fermenting various organic wastes or producing an aromatic compound and hydrogen together using an aromatization catalyst from a biogas generated at a landfill containing them. It relates to the processing method.
[0002]
[Background Art and Problems to be Solved by the Invention]
Recently, methods for effectively utilizing biogas generated in agricultural and marine product waste and garbage fermentation treatment and landfills of these have been studied. Biogas is mainly composed of methane, and a method of using this methane as a fuel gas has been put into practical use. In addition to this, various methods for effectively using biogas have been studied.
[0003]
Conventionally, methods for obtaining aromatic compounds from lower hydrocarbons such as methane have been known (Japanese Patent Laid-Open Nos. 11-60514, 04-82841, 10-272366, and 11-47606). In these methods, one or more catalysts selected from the group consisting of (1) Mo, zinc, Ga, Co, iron, chromium, tungsten, rare earth metals or their compounds are used as lower hydrocarbons such as methane. Using a catalyst composed of a material and a metallosilicate supporting the catalyst material, a lower hydrocarbon aromatization reaction is carried out in the presence of carbon monoxide and / or carbon dioxide in the presence of the catalyst. Aromatic compounds mainly composed of aromatic hydrocarbons and hydrogen are produced.
At this time, the amount of carbon monoxide and / or carbon dioxide added is set to 0.01 to 30% as a volume% in the total raw material gas supplied to the reaction.
[0004]
The present invention enables further effective utilization of biogas by utilizing the aromatization reaction described above, and the present inventors appropriately treat biogas components mainly composed of methane. As a result, the present inventors have found that it is possible to produce co-production of aromatic compounds such as benzene and hydrogen with high efficiency under the reaction conditions of moderate temperature and pressure from biogas.
[0005]
That is, in the biogas treatment method of the present invention, the first invention is that in the presence of a catalyst , 40% or more by volume of methane, 55% or less of carbon dioxide, and 5% or less of sulfide, nitrogen in total. When an aromatic compound and hydrogen are produced by aromatizing a biogas containing oxygen, hydrogen and carbon monoxide as a lower hydrocarbon source , the biogas is physically separated from the biogas prior to the aromatization reaction. The sulfide is removed by a chemical operation, and thereafter, the carbon dioxide concentration contained in the biogas is adjusted to fall within a range of 0.01 to 10% by volume .
[0006]
The biogas treatment method according to a second aspect of the present invention is the biogas treatment method according to the first aspect, wherein the catalyst is one or more selected from the group consisting of zinc, Ga, Co, iron, or a compound thereof, and chromium, tungsten. And a catalyst material containing at least one selected from the group consisting of molybdenum or a compound thereof and at least one selected from the group consisting of a rare earth metal or a compound thereof, and the catalyst material It is characterized by comprising a metallosilicate supporting the above.
[0008]
The biogas treatment method of the third invention is characterized in that, in the first or second invention, the concentration adjustment of the carbon dioxide is performed by physical operation and / or chemical operation .
[0009]
A biogas treatment method according to a fourth invention is characterized in that, in the first or second invention, the concentration adjustment of the carbon dioxide is performed by mixing and diluting the biogas with another source gas such as natural gas. And
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is applied to a technical field in which an aromatic compound mainly composed of an aromatic hydrocarbon and hydrogen are produced by reacting biogas in the presence of a catalyst (catalyst material + support) described later.
As the biogas, one generated by anaerobic treatment of various organic wastes or one generated in a landfill containing various organic wastes can be used.
The biogas contains at least 40% by volume, preferably 60% or more methane, and at the same time 55% or less, preferably 35% or less carbon dioxide, and in some cases preferably 5% or less sulfide. It contains nitrogen, oxygen, hydrogen, carbon monoxide and the like.
[0011]
The biogas, for example remove sulfides such as hydrogen sulfide by physical and / or chemical operation using a catalyst such as ferric oxide. Although this sulfide is generally contained in a small amount in biogas, the progress of the reaction is inhibited and the reaction efficiency is lowered during the aromatization reaction by the inventors' research. Thus, the sulphide removed as much as possible. The concentration is desirably 100 ppm or less.
The removal of sulfides can be performed by physical and chemical operations as described above. In addition to the above-described dry desulfurization method, for example, a wet desulfurization method such as circulating biogas through sodium carbonate or washing with water is used. It can be illustrated. However, the present invention is not limited to a specific method, and what is essential is that it can effectively remove sulfides.
[0012]
Biogas also contains a considerable amount of carbon dioxide, although it varies depending on the generation source. This carbon dioxide has an effect of improving the reaction conversion rate of methane in the aromatization reaction described later, and further preventing the generation rate of the aromatic compound and hydrogen from being remarkably lowered in the reaction. In order to sufficiently obtain this effect, it is desirable that carbon dioxide is contained at a concentration of 0.01% by volume or more in the total amount of the reaction gas. On the other hand, if the concentration of carbon dioxide is too high, the active state of the catalyst constituent metal component cannot be maintained, and the methane conversion rate of hydrocarbons is remarkably reduced. Therefore, the concentration is desirably 10% by volume or less. For the same reason, it is desirable to set the lower limit to 0.1% by volume and the upper limit to 2% by volume.
[0013]
The carbon dioxide contained in the biogas subjected to the reaction is desirably within a predetermined range as described above, and the biogas components are adjusted as necessary so that carbon dioxide is contained at the above concentration. Is desirable.
The adjustment can be performed by physical operation such as physical adsorption such as pressure swing adsorption or membrane separation. Further, the concentration of carbon dioxide can be adjusted by a chemical operation such as a carbon dioxide absorption method using a strong alkaline absorbent such as potassium hydroxide, and further, with other source gas such as natural gas. The concentration can also be adjusted by mixing and diluting. Any method may be used for density adjustment, and the method is not limited to the above method. It is also possible to employ a plurality of methods.
[0014]
As described above, the aromatization reaction using the biogas is performed in the presence of an aromatization catalyst.
As the catalyst, a catalyst material supported on a carrier is used. In the present invention, it is desirable to use a metallosilicate as a catalyst support. As the metallosilicate, a porous body having a large number of pores is desirable. For example, in the case of aluminosilicate, molecular sieve 5A (UTA), faujasite (NaY) and NaX, ZX-5, ZSM-11, ZSM-22, ZSM, which are porous carriers made of silica and alumina having various compositions. -48, β-HZSM and phosphoric acid-based ALPO-5, SAPO-5, VPI-5, MCM-22 and other porous carriers such as zeolite carriers having 5 to 8 micropores and channels can do. Furthermore, mesoporous porous carriers such as FSM-16 and MCM-41 characterized by cylindrical pores (channels) having mesopores (10 to 100 mm) containing silica as a main component and partly alumina as a component. Examples thereof include a modified mesopore material having a mesopore diameter adjusted to 5 to 8 mm by a CVD method using silicon alkoxide or the like. As the metallosilicate, in addition to aluminosilicate and ferrosilicate, a porous carrier such as titanosilicate composed of silica and titania having a pore diameter of 5 to 8 mm can be used.
Further, for example, as the content ratio of silica and alumina in the case of amylosilicate, a commonly available porous carrier having a silica / alumina ratio of 1 to 8000 can be used. In order to carry out the aromatization reaction at a practical lower hydrocarbon conversion and selectivity to aromatic compounds, the silica / alumina ratio is preferably 10-100.
[0015]
Next, in the aromatization catalyst of the present invention, as a catalyst material, at least one selected from the group consisting of zinc, Ga, Co, iron or a compound thereof, and chromium, tungsten, molybdenum or a compound thereof. One containing at least one selected from the group consisting of one or more selected from the group consisting of rare earth metals or compounds thereof can be used.
Therefore, the catalyst material of the present invention may be selected from any of the above groups, or may be selected from a plurality of groups. In each selected group, one or more materials can be selected as described above.
In the present invention, any of the above-described materials can be selected, and the catalyst material to be selected is not particularly limited. However, it is desirable to select one or more of Mo, W, or a compound thereof. It is desirable to include it as a suitable catalyst material.
[0016]
The catalyst material can be prepared as a precursor when it is supported on the metallosilicate. Examples of precursors include halides such as chloride and bromide, mineral salts such as nitrate, sulfate and phosphate, carboxylates such as carbonate, acetate and oxalate, metal carbonyl complexes and cyclopenta An organic metal salt such as a dienyl complex, a heteropolyacid, a complex complex salt, or a complex oxide can be used.
[0017]
The catalyst of the present invention obtained as described above may be any of powder, pellets, and other shapes, and the shape is not particularly limited.
In addition, the catalyst used in the present invention has a catalyst activation process including pretreatment with hydrogen gas, hydrazine, a metal hydride compound such as BH 3 , NaH, AlH 3, etc. in order to shorten the induction period for producing an aromatic compound. You may give it.
[0018]
The reaction treatment of the present invention is usually carried out in a batch-type or flow-type reaction mode, but is preferably carried out in a flow-type reaction mode such as a fixed bed, a moving bed or a fluidized bed. In the reaction, for example, a catalyst is filled in a quartz reaction tube of a fixed bed flow type reactor, and a reaction temperature is 300 to 800 ° C., 0.1 to 10 atm, and biogas is added in a weight hour space velocity (WHSV) 0.1 to By feeding at 10. In the reaction tube effluent, hydrogen, carbon monoxide, carbon dioxide, and aromatic compounds are present in addition to end-reacted methane. Unreacted methane, carbon monoxide, and carbon dioxide are aromatized. Can be recycled.
[0019]
By the above reaction, an aromatic compound mainly containing an aromatic hydrocarbon such as benzene and toluene can be obtained. In addition, the kind of aromatic compound obtained and the ratio of a compound change with raw materials, and are not prescribed | regulated uniformly. In addition, high-purity hydrogen is obtained with this reaction.
Either one of the above-described aromatic compound and hydrogen may be used effectively, or both may be used effectively, and the method of use is not limited in the present invention. Moreover, the field of use is not particularly limited.
[0020]
【Example】
Example 1
The biogas generated by the methane fermentation treatment of the organic waste was recovered and passed through a ferric oxide catalyst-filled container to remove trace component gases such as sulfides that are not preferable for the aromatization reaction. The composition is shown in Table 1. In addition, 1000 to 1500 ppm of sulfide was contained in the raw material biogas, and the concentration was reduced to less than an analyzable concentration (less than 1.25 ppm) by removing the sulfide.
17.2 times the volume of pure methane gas was mixed with this gas to reduce the carbon dioxide concentration to 2.0% by volume. A catalyst reaction vessel filled with a catalyst (hereinafter abbreviated as Mo (6%) / ZSM-5) in which 6% by weight of molybdenum was supported on ZSM-5 as a metallosilicate carrier was prepared. In the container, the biogas whose component was adjusted was SV = 3,000 ml / g-cat. The aromatization reaction was performed at a pressure of 3 atm and a temperature of 720 ° C., and the reaction results are shown in Table 2.
As apparent from Table 2, according to the method of the present invention, it was revealed that benzene and hydrogen which are aromatic compounds are efficiently produced from biogas.
[0021]
[Table 1]
Figure 0003866005
[0022]
[Table 2]
Figure 0003866005
[0023]
(Example 2)
In Example 2, the biogas was used as a raw material in the same manner as in Embodiment 1, and trace components such as sulfides were removed in the same manner as in Example 1, and then carbon dioxide was removed by an alkali absorption method. Specifically, 0.17 l / min of biogas having the composition shown in the left column of Table 3 (raw material biogas) was supplied to two 500 ml glass Erlenmeyer flasks filled with 6 mol / l potassium hydroxide aqueous solution. A 500 ml glass Erlenmeyer flask filled with pure water was circulated in series at a flow rate and washed with water. The components of the biogas after this component adjustment are shown in the right column of Table 3 (adjusted biogas).
[0024]
A gas obtained by mixing carbon dioxide gas so that the carbon dioxide concentration becomes 2% by volume with respect to this gas was added to the catalyst reaction vessel filled with Mo (6%) / ZSM-5 described in Example 1 with SV = 3,000 ml / g-cat. / H, and an aromatic reaction was carried out at a container internal pressure of 3 atm and a temperature of 720 ° C. The reaction results are shown in Table 4. As is apparent from Table 4, benzene and hydrogen could be efficiently produced even with the biogas whose components were adjusted according to this example.
[0025]
[Table 3]
Figure 0003866005
[0026]
[Table 4]
Figure 0003866005
[0027]
【The invention's effect】
As described above, according to the present invention, it is desirable to remove the sulfide in the biogas and further add a step of appropriately adjusting the carbon dioxide concentration, thereby using the biogas that is a promising methane source, In the presence of a catalyst, benzene and other high-value-added aromatic compounds can be produced simultaneously with high-purity hydrogen from methane, and aromatic compounds such as benzene that are high-value-added products in the petrochemical industry from biogas And hydrogen, which is highly expected as a next-generation energy source, can be produced at the same time.
Furthermore, the hydrogen production method according to this method makes the process emissions of CO 2 , the cause of environmental problems of global warming, zero, and the process energy input is 1/10 or less compared to the conventional hydrogen production method. We can provide innovative manufacturing methods that contribute to global environmental conservation. This enables ideal recycling of environmental organic resources such as garbage and livestock waste.

Claims (4)

触媒の存在下で、容量%で40%以上のメタンと55%以下の二酸化炭素と総和で5%以下の硫化物、窒素、酸素、水素、一酸化炭素を含有するバイオガスを低級炭化水素源として芳香族化反応させて芳香族化合物及び水素を製造する際に、前記芳香族化反応に先立って、バイオガスから物理的及び/又は化学的操作によって硫化物を除去し、さらにその後、バイオガスに含まれる二酸化炭素濃度を0.01〜10容量%の範囲内に低下させる調整を行うことを特徴とするバイオガスの処理方法。In the presence of a catalyst, biogas containing 40% or more by volume of methane, 55% or less of carbon dioxide and 5% or less of sulfide, nitrogen, oxygen, hydrogen, carbon monoxide in total is a lower hydrocarbon source. When producing an aromatic compound and hydrogen by performing an aromatization reaction as described above, prior to the aromatization reaction, sulfides are removed from the biogas by physical and / or chemical operation, and then the biogas The biogas processing method characterized by performing the adjustment which reduces the carbon dioxide density | concentration contained in 0.01 to 10 volume% . 前記触媒は、亜鉛、Ga、Co、鉄またはそれらの化合物で構成される群から選択される1種以上と、クロム、タングステン、モリブデンまたはそれらの化合物で構成される群から選択される1種以上と、希土類金属またはその化合物で構成される群から選択される1種以上の少なくとも一つを含む触媒材料と、該触媒材料を担持するメタロシリケートとからなることを特徴とする請求項1記載のバイオガスの処理方法。The catalyst is one or more selected from the group consisting of zinc, Ga, Co, iron or a compound thereof, and one or more selected from the group consisting of chromium, tungsten, molybdenum or a compound thereof. 2. A catalyst material comprising at least one selected from the group consisting of rare earth metals or compounds thereof, and a metallosilicate supporting the catalyst material . Biogas processing method. 前記二酸化炭素の濃度調整は、物理的操作及び/又は化学的操作によって行うことを特徴とする請求項1または2に記載のバイオガスの処理方法。The biogas treatment method according to claim 1 or 2, wherein the carbon dioxide concentration is adjusted by physical operation and / or chemical operation . 前記二酸化炭素の濃度調整は、他の原料ガスでバイオガスを混合希釈することにより行うことを特徴とする請求項1または2に記載のバイオガスの処理方法。The biogas treatment method according to claim 1 or 2, wherein the carbon dioxide concentration is adjusted by mixing and diluting the biogas with another source gas .
JP2000133683A 2000-05-02 2000-05-02 Biogas treatment method Expired - Lifetime JP3866005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000133683A JP3866005B2 (en) 2000-05-02 2000-05-02 Biogas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000133683A JP3866005B2 (en) 2000-05-02 2000-05-02 Biogas treatment method

Publications (2)

Publication Number Publication Date
JP2001316302A JP2001316302A (en) 2001-11-13
JP3866005B2 true JP3866005B2 (en) 2007-01-10

Family

ID=18642119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000133683A Expired - Lifetime JP3866005B2 (en) 2000-05-02 2000-05-02 Biogas treatment method

Country Status (1)

Country Link
JP (1) JP3866005B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003264465A1 (en) * 2003-09-17 2005-04-11 Masaru Ichikawa Catalyst for aromatizing lower hydrocarbon and method for preparation thereof, and method for producing aromatic compound and hydrogen
JP2005089436A (en) * 2003-09-18 2005-04-07 Electric Power Dev Co Ltd Hybrid method for producing aromatic compound
JP2006016353A (en) * 2004-07-02 2006-01-19 Taisei Corp Method for producing aromatic compound and hydrogen from lower hydrocarbon
RU2448079C2 (en) * 2006-04-21 2012-04-20 Эксонмобил Кемикэл Пейтентс Инк. Method of converting methane
US20120168380A1 (en) * 2009-09-09 2012-07-05 Cls Industrial Purification, Llc Zeolytic sulfur guard
JP2014034598A (en) * 2012-08-07 2014-02-24 Bridgestone Corp Vulcanization accelerator, rubber composition, and tire
EP3438268B1 (en) * 2017-07-31 2020-04-01 ISF GmbH Use of iron hydroxide in biogas production as hydrogen sulphide additive for biomass

Also Published As

Publication number Publication date
JP2001316302A (en) 2001-11-13

Similar Documents

Publication Publication Date Title
JP3745885B2 (en) Method for producing aromatic compound using methane as raw material
Shi et al. Cyclohexane mild oxidation catalyzed by new titanosilicate with hollow structure
JP2000229939A (en) Production of epsilon-caprolactam
JPS6245539A (en) Manufacture of aromatic hydrocarbons from hydrocarbon supplyraw material
JP2003026613A (en) Method for producing aromatic hydrocarbon and hydrogen from lower hydrocarbon
WO2011054204A1 (en) Process for producing lower alkenes with methanol or dimethyl ether
JP5481996B2 (en) Aromatic hydrocarbon production method
JP2008266244A (en) Aromatic hydrocarbon production method
JP3866005B2 (en) Biogas treatment method
Obrzut et al. Reducing methane formation in methanol to olefins reaction on metal impregnated SAPO-34 molecular sieve
EA020997B1 (en) Method for producing benzene, toluene (and napthalene) from c-calkanes under local separate co-dosing of hydrogen
KR20150062248A (en) Storage method of activated catalysts for Fischer-Tropsch synthesis
CN109833904A (en) A kind of difunction catalyst, preparation method and the application in ethyl alcohol conversion reaction
CN111217656A (en) Catalyst for reaction of preparing 1, 3-butadiene from ethanol and preparation and application thereof
JP2001334151A (en) Catalyst useful for aromatizing lower hydrocarbon and method of producing aromatic compound and hydrogen using lower hydrocarbon as raw material
JPH1147606A (en) Catalyst for aromatizing lower hydrocarbon and production of aromatic compound using the same
JPH0528278B2 (en)
JP2005144360A (en) Catalyst molding for dehydrogenation-aromatization reaction of lower hydrocarbon and manufacturing method for the same
JP2008266245A (en) Aromatic hydrocarbon production method
CN105439916A (en) A thioether oxidizing method
Feng et al. Functional Catalyst Molecular Sieves in Green Chemical Applications
GB2474822A (en) Catalyst for aromatization of lower hydrocarbon, and process for production of aromatic compound
JP2008029949A (en) Catalyst for selective carbon chain-extension reaction, method for manufacturing the catalyst and method for producing hydrocarbons by using the same
WO2011118279A1 (en) Method of manufacture for aromatic compound
Dang et al. Reaction mechanism of one-step conversion of ethanol to 1, 3-butadiene over Zn-Y/BEA and superior catalysts screening

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061004

R150 Certificate of patent or registration of utility model

Ref document number: 3866005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term