JP3865326B2 - High temperature regenerator - Google Patents

High temperature regenerator Download PDF

Info

Publication number
JP3865326B2
JP3865326B2 JP10969996A JP10969996A JP3865326B2 JP 3865326 B2 JP3865326 B2 JP 3865326B2 JP 10969996 A JP10969996 A JP 10969996A JP 10969996 A JP10969996 A JP 10969996A JP 3865326 B2 JP3865326 B2 JP 3865326B2
Authority
JP
Japan
Prior art keywords
tube
group
combustion
tube group
temperature regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10969996A
Other languages
Japanese (ja)
Other versions
JPH09296969A (en
Inventor
誠 中村
敦 設楽
仁志 鹿沼
秀俊 有馬
敏宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Tokyo Gas Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10969996A priority Critical patent/JP3865326B2/en
Priority to US08/848,117 priority patent/US5862679A/en
Priority to KR1019970016243A priority patent/KR100458890B1/en
Priority to CNB971132917A priority patent/CN1192194C/en
Priority to CNB02152288XA priority patent/CN1266434C/en
Publication of JPH09296969A publication Critical patent/JPH09296969A/en
Priority to US09/169,787 priority patent/US6145338A/en
Application granted granted Critical
Publication of JP3865326B2 publication Critical patent/JP3865326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Description

【0001】
【発明の属する技術分野】
この発明は吸収冷凍機の高温再生器の構造に関する。
【0002】
【従来の技術】
吸収冷凍機(吸収冷温水機などと呼ばれるものを含む)に設けられる高温再生器は、吸収冷凍機全体に占める割合が、重量、容量共に大きい。したがって吸収冷凍機全体をコンパクト化するには、この高温再生器のコンパクト化が必須である。また、高温再生器における環境面の問題として、燃焼時における低NOx化が必要である。
【0003】
そして、従来の高温再生器は、炉筒煙管方式あるいは炉筒液管方式が採用されるのが一般的であったが、これらの方式の高温再生器は炉筒としての燃焼室をなくすことができず、より以上のコンパクト化は行いにくいものであった。すなわち、コンパクト化を図ろうとすると低NOx化を害するものであり、コンパクト化と低NOx化は相反する命題とされていた。
【0004】
このような炉筒煙管方式あるいは炉筒液管方式の限界を打ち破るものとして、ガス焚きボイラにおいては、燃焼室を設けず平板燃焼面などを設ける炉筒レス管群方式が近年導入された。この炉筒レス管群方式では、平板燃焼面などの燃焼部からの燃焼火炎および燃焼ガスを直接に管群に導き、燃焼室を必要としない分だけ極端なコンパクト化が図れ低NOx化に成功している。
【0005】
【発明が解決しようとする課題】
しかしながら、前記炉筒レス管群方式では、平板燃焼面などの燃焼部からの燃焼火炎および燃焼ガスが管群の直近を通過する。このため、管群の管の外面が高温の火炎で覆われ、高温度化による腐食事故、液の結晶化などの不都合を生じるおそれがある。
【0006】
この発明は、以上の問題点を解決するためになされたもので、燃焼室がなく燃焼火炎および燃焼ガスが直近で通過する管群を有する炉筒レス管群方式において、高温度化に伴う不都合を防止できる高温再生器を提供することを目的とする。
【0007】
以上の目的を達成するために、請求項1の発明は、垂直方向の平板燃焼面などによる燃焼部からの燃焼火炎および燃焼ガスを水平方向に炉壁の中を通過させて煙突接続口から排出させるとともに、前記炉壁の位置に配置された二重構造の管壁の上面部および下面部に連通させた多数の垂直方向の管でなる垂直液管群ならびに前記管壁の中に希吸収液を通して加熱濃縮する吸収冷凍機の高温再生器において、
前記垂直液管群を、前記燃焼部に近い第一管群、前記燃焼部から前記第一管群より遠い第二管群、前記燃焼部から前記第二管群よも遠く前記煙突接続口の側に設けられて排ガス熱を回収する第三管群に区分し、前記希吸収液を前記第三管群に通して予熱した後に前記第一管群の下部に流入することにより、前記第一管群における前記希吸収液の流動を勢いづけることを特徴とする高温再生器である。
【0008】
請求項2の発明は、垂直方向の平板燃焼面などによる燃焼部からの燃焼火炎および燃焼ガスを水平方向に炉壁の中を通過させて煙突接続口から排出させるとともに、前記炉壁の位置に配置された二重構造の管壁の上面部および下面部に連通させた多数の垂直方向の管でなる垂直液管群ならびに前記管壁の中に希吸収液を通して加熱濃縮する吸収冷凍機の高温再生器において、
前記垂直管群のうち前記燃焼部に近い所定の管群を第一管群とし、前記燃焼部から前記第一管群より遠い所定の管群を第二管群とし、前記管壁の内部に前記第一管群と第二管群とを区分するセパレータを設け、ポンプにより加圧した前記希吸収液を主に前記第一管群の下部にのみ導入させる導入構造を設けることにより、前記第一管群における前記希吸収液の流動を勢いづけることを特徴とする高温再生器である。
【0009】
請求項3の発明は、前記導入構造は、前記導入のための希吸収液流入箱を前記第一管群が存在しない前記下面部の下部には位置させず、前記第一管群の下部にのみ位置させることを特徴とする請求項2記載の高温再生器である。
【0010】
請求項4の発明は、前記導入構造は、複数設けられる前記流入のための流入口を前記第一管群の各管の下部に対応して配置させ、前記流入口の内径を前記各管の内径よりも小さくすることを特徴とする請求項2記載の高温再生器である。
請求項5の発明は、前記流入口を前記各管の下部に向かって突出させることを特徴とする請求項4記載の高温再生器である。
【0011】
【発明の実施の形態】
以下、この発明の第一実施形態を、図1および図2において説明する。
高温再生器1に向かって取り込まれる燃料のガス3と空気5は、混合され点火されて燃焼を開始し、燃焼部である平板燃焼面7を通過し燃焼は促進される。この燃焼促進により、従来の炉筒煙管方式や炉筒液管方式に必要であった炉筒(燃焼室)は不要となり、コンパクト化が図れると同時に、低NOx化が達成できる。
【0012】
図1のように、燃焼部は、垂直方向の平板燃焼面7などによる燃焼部であり、燃焼部からの燃焼火炎および燃焼ガスを水平方向に炉壁の中を通過させて煙突接続口から排出させるものである。平板燃焼面7を通過した燃焼火炎および燃焼ガスは、多数の垂直液管群9(9A、9B、9C)の直近を通過することになる。これらの垂直液管群9は、多数の管11が垂直方向に配置され、内部を希吸収液が通る。各管11の上部および下部は、図1のように、管壁13の上面部13Aおよび下面部13Bに連通する。この管壁13は、燃焼火炎や燃焼ガスが通過する炉壁の位置に配置され、上面部13A、下面部13B、側面部13Cからなり、各部は二重構造となって内部を希吸収液が通る。
【0013】
前記垂直液管群9は、3つの管群9A,9B,9Cに区分される。すなわち、燃焼部に近い第一管群9A、平板燃焼面7からやや遠い第二管群9B、第二管群9Bよりもさらに遠い第三管群9Cに区分される。第三管群9Cは、煙突接続口15の側に設けられ、各管11にはフィン17が取り付けられて、温度がやや低くなって排ガスとなった燃焼ガスからも熱を回収できる構成となっている。
【0014】
これら第一、第二、第三管群9A,9B,9Cの区分は、管壁13の内部に設けられたセパレータ19によって行われ、これらセパレータ19により稀吸収液の流れが決められる。
【0015】
そして、高温再生器1に流入する稀吸収液は、高温再生器1の上流側に接続される図示しない熱交換器を通っており、この熱交換器の特性上、高温再生器1内部の沸騰開始温度よりも低くなっている。この温度の低い稀吸収液は、ポンプ圧を利用して、まず第三管群9Cの上部の流入部21から流入し、これら第三管群9Cを構成する各管11を通って下降する。この時、排ガス熱を回収し昇温する。そして、第三管群9Cを構成する各管11の下部において第一のセパレータ19aの働きによって、稀吸収液はバイパス管23に導かれ、第一管群9Aの下部へ流入する。この時、稀吸収液は沸騰開始点近傍まで昇温しているので、第一管群9Aにおいては直ちに沸騰し、沸騰によって流動が活発になり、この活発な流動により熱伝達係数が高くなる。高くなった熱伝達係数によって十分に加熱された稀吸収液は、さらに沸騰し、濃縮される。
【0016】
熱伝達係数が高くなることで、従来は高温度化によって不都合が生じやすい第一管群9Aにおいて、高温度化の防止が可能となる。流入した稀吸収液は第二のセパレータ19bの働きにより第二管群9Bには流入せず、第一管群9Aを上昇する。上昇した稀吸収液は第二管群9Bの上部に流入する。そして、第三のセパレータ19cの働きにより第三管群9Cには流入せず、下降して第二管群9Bの下部に至り、図示しない流出部から外部へ流出する。
【0017】
以下図2において、この実施形態の作用を説明する。
この図はデューリング線図を表すもので、うち(A)は比較例のもので、図5に示すように稀吸収液を第三管群9Cに通さずに第一管群9Aおよび第二管群9Bに順に通した場合のデューリング線図を表す。うち(B)は、この実施形態すなわち図1におけるデューリング線図を表す。なお、図5において図1と同一の部分については同一の番号を付す。
【0018】
つまり、図5のように希吸収液を第三管群9Cに通さずに直接第一管群9Aおよび第二管群9Bに通す場合には、図2(A)のように希吸収液は顕熱温度変化した後に沸騰が開始され潜熱温度変化する。これに対し図1の実施形態では、図2(B)のように希吸収液は、予め第三管群9Cに通す際に排ガス熱を回収して予熱されるので、沸騰開始点付近まで温度上昇する。その後、第一管群9Aにおいて直ちに沸騰を開始し、潜熱温度変化をしつつ第一管群9Aおよび第二管群9Bで加熱が行われる。
【0019】
このように、この実施形態では希吸収液を沸騰した状態で第一管群9Aにおける加熱が行われる。すなわち、第一管群9A全域での沸騰が可能となる。そして、沸騰によって希吸収液の流動が活発になり、この活発な流動により熱伝達係数が高くなる。したがって第一管群9Aでの局部加熱、特に従来例に比べ希吸収液が流入する第一管群9Aの下部における局部加熱を防止できる。このため第一管群9Aに生じやすいと思われる腐食事故や、液の結晶化を防止することができる。
【0020】
(第二実施形態)
以下、この発明の第二実施形態を図3において説明する。なお図1と同一の部分については同一の番号を付して説明を省略する。
この第二実施形態においては、稀吸収液を予め第三管群9Cに通すことなく直ちに第一管群9Aの下部から流入させる構成となっている。しかしながら、前記第一実施形態と同様に、予め第三管群9Cを通した後に第一管群9Aの下部から流入させることももちろん可能である。
【0021】
この第一管群9Aの下部からの流入は、図示しないポンプによるポンプ圧を利用する。ポンプ圧により送られてきた稀吸収液は、まず流入部25を介して稀吸収液流入箱27に導かれる。この流入箱27は、図中(C)(側面図)に示すように、第一管群9Aの下部にのみ位置する。そして、第一管群9Aが存在しない管壁13の下面部13Bの下部には位置していない。
【0022】
そして、流入箱27は流入口29を介して、管壁13の下面部13Bが有する二重構造の底面板に連通するが、この流入口29は複数が設けられ、第一管群9Aを構成する複数の各管11の下部に対応して位置する。また、この流入口29の内径は、第一管群9Aの各管11の内径よりも小さい。
【0023】
このように小さな径の流入口29からポンプ圧を利用して稀吸収液が勢い良く流通することで、稀吸収液は主に第一管群9Aの下部にのみ導入される。すなわち、稀吸収液は第一管群9Aの下部に連通する管壁13の下面部13Bへは流入しない。
【0024】
このようにして、勢い良く第一管群9Aの下部へ流入した希吸収液は、上部に達した後、管壁13の側面部13Cを通って勢い良く下降する。また、第一管群9Aの下部から勢い良く流入されることで、周囲の希吸収液すなわち第一管群9Aの下部に連通する管壁13の下面部13Bに存在する希吸収液が、巻き込まれて第一管群9Aへ流入する。さらには、第一管群9Aの内部では、加熱された希吸収液が上昇する。これらのことから、図3(C)に矢印で示すように、希吸収液として大きな流動を形成する。
【0025】
このような流動により、稀吸収液は滞留することがなく、したがって管壁13や管群9の一部のみに局部的な高温度化された部位が生じるのを防止できる。このように高温度化を防止することにより、たとえ前記流入を行うポンプが故障した場合にも、バーンアウトの発生を防止できる。
【0026】
(第三実施形態)
以上の第二実施形態において、稀吸収液流入口29を第一管群9Aの管11の下部に対応して位置させ、流入口29の径を第一管群9Aの各管11の内径よりも小さくした導入構造を採用することで、稀吸収液が第一管群9Aの下部に連通する管壁13へ流入することを規制した。
【0027】
さらに第三実施形態では、図4に示すように、この規制を行う流入口29をパイプなどのノズルによって形成し、第一管群9Aの管11の下部にむかって上方に突設させることができる。
【0028】
すなわち図に示すように、このパイプは、稀吸収液流入箱27から管壁13の下面部13Bが有する二重構造の底面板を貫通し、管壁13の下面部13B内部において、第一管群9Aの各管11の下部に向かって突設される。この突設により、ポンプ圧によって勢い良く流入する稀吸収液は、第一管群9Aの下部にのみ導入され、管壁13への流入は規制される。このことから、前記稀吸収液の全体としての流動の形成がより顕著になる。
【0029】
【発明の効果】
以上説明したように、請求項1の発明によれば、希吸収液を、第三管群に通して排ガス熱を回収して、予熱することより沸騰開始温度に達するか、または沸騰開始温度に十分に近い温度になった後に第一管群の下部から流入させて、第一管群における希吸収液の流動を勢い付けるとともに、沸騰によって希吸収液の流動を活発にできるため、熱伝達係数を高くでき管群や管壁などの局部的な高温度化が避けられ、この高温度化に伴う腐食事故や液の結晶化などの不都合を防止できる。
【0030】
また、さらに請求項2、3、4または5の発明では、希吸収液を第一管群の下部から流入させる際に、導入構造によって主に第一管群の下部にのみ導入し、流入した希吸収液は管壁の内部に設けたセパレータの働きにより第二管群側へ流入しないことから、第一管群における希吸収液の流動を勢いづけ、第一管群における上昇流を積極的に作り出して全体として希吸収液の流動をより活発にし、局部的な高温度化を防ぐことができる。
【図面の簡単な説明】
【図1】この発明の第一実施形態を示す高温再生器の要部を示すもので、
(A)は垂直断面正面図、(B)は水平断面図、(C)は垂直断面側面図である。
【図2】この実施形態の作用効果を示すデューリング曲線図であり、
(A)は比較例である図5の高温再生器におけるデューリング線図、(B)はこの実施形態を示す図1の高温再生器におけるデューリング線図である。
【図3】この発明の第二実施形態を示す高温再生器の要部を示すもので、
(A)は垂直断面正面図、(B)は水平断面図、(C)は垂直断面側面図である。
【図4】この発明の第三実施形態の要部を示す部分拡大縦断面図である。
【図5】この発明の比較例となる高温再生器の要部を示す図で、
(A)は垂直断面正面図、(B)は水平断面図、(C)は垂直断面側面図である。
【符号の説明】
1 高温再生器
3 ガス
5 空気
7 平板燃焼面
9 垂直液管群
9A 第一管群
9B 第二管群
9C 第三管群
13 管壁
17 フィン
19 セパレータ
23 バイパス管
27 稀吸収液流入箱
29 稀吸収液流入口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the structure of a high-temperature regenerator of an absorption refrigerator.
[0002]
[Prior art]
A high-temperature regenerator provided in an absorption refrigerator (including what is called an absorption chiller / heater) has a large proportion of both weight and capacity in the absorption refrigerator. Therefore, in order to make the entire absorption refrigerator compact, it is essential to make this high-temperature regenerator compact. Further, as an environmental problem in the high-temperature regenerator, it is necessary to reduce NOx during combustion.
[0003]
Conventional high-temperature regenerators generally adopt a furnace tube smoke tube method or a furnace tube liquid tube method, but these types of high-temperature regenerators can eliminate the combustion chamber as a furnace tube. It was impossible to make it more compact. In other words, attempts to reduce the size are harmful to the reduction in NOx, and the reduction in size and the reduction in NOx have been regarded as conflicting propositions.
[0004]
In order to overcome such limitations of the furnace tube smoke tube system or the furnace tube liquid tube system, in a gas-fired boiler, a furnace tube-less tube group system in which a combustion chamber is not provided but a flat combustion surface is provided has been recently introduced. In this tubeless tube group system, the combustion flame and combustion gas from the combustion section such as the flat plate combustion surface are directly guided to the tube group, and the extreme compactness is achieved by the amount that does not require a combustion chamber, and NOx reduction succeeds. is doing.
[0005]
[Problems to be solved by the invention]
However, in the tubeless tube group system, the combustion flame and combustion gas from the combustion section such as the flat plate combustion surface pass through the tube group. For this reason, the outer surface of the tube of the tube group is covered with a high-temperature flame, which may cause inconveniences such as a corrosion accident due to high temperature and crystallization of liquid.
[0006]
The present invention has been made in order to solve the above-described problems. In a tubeless tube group system having a tube group without a combustion chamber and through which a combustion flame and combustion gas pass most recently, there is a disadvantage associated with an increase in temperature. It aims at providing the high temperature regenerator which can prevent.
[0007]
In order to achieve the above object, the invention of claim 1 is characterized in that the combustion flame and combustion gas from the combustion section by a vertical flat plate combustion surface or the like passes through the furnace wall in the horizontal direction and is discharged from the chimney connection port. And a vertical liquid pipe group comprising a plurality of vertical pipes communicated with the upper surface portion and the lower surface portion of the double-structured tube wall disposed at the furnace wall, and a dilute absorbent in the tube wall. In the high-temperature regenerator of an absorption refrigerator that is heated and concentrated through
The vertical liquid pipe group, the first tube bank close to the combustion section, said from the combustion section first tubular distant second tube bank from the group, the second tube bank Home far the chimney from the combustion unit provided on the side of the connection port and divided into the third tube bank to recover flue gas heat and flows the dilute absorbent liquid in the lower portion of the first tube bank after preheated through the third tube bank that Thus, the high-temperature regenerator is characterized by energizing the flow of the diluted absorbent in the first tube group .
[0008]
According to the second aspect of the present invention, the combustion flame and the combustion gas from the combustion section due to a flat plate combustion surface in the vertical direction are passed through the furnace wall in the horizontal direction and discharged from the chimney connection port, and at the position of the furnace wall. A vertical liquid pipe group consisting of a number of vertical pipes communicating with the upper and lower parts of a double-walled pipe wall, and a high temperature of an absorption refrigerator that heats and concentrates the diluted absorbent through the pipe wall. In the regenerator,
Among the vertical tube groups, a predetermined tube group close to the combustion unit is a first tube group, a predetermined tube group far from the first tube group from the combustion unit is a second tube group, and inside the tube wall By providing a separator that separates the first tube group and the second tube group, and providing an introduction structure that introduces the diluted absorbent pressurized by a pump mainly only in the lower part of the first tube group, A high-temperature regenerator characterized by energizing the flow of the dilute absorbent in one tube group.
[0009]
The invention according to claim 3, wherein the introduction structure, the not positioned in the lower portion of the lower surface portion having no said first tube bank dilute absorbent liquid inlet box for the introduction, the bottom of said first tube bank The high-temperature regenerator according to claim 2, wherein the high-temperature regenerator is positioned only at the top.
[0010]
The invention of claim 4, wherein the introduction structure, the inlet for the inflow for plurality is arranged corresponding to the lower portion of each tube of the first tube bank, each tube inner diameter of the inlet The high-temperature regenerator according to claim 2, wherein the high-temperature regenerator is smaller than the inner diameter.
A fifth aspect of the present invention is the high temperature regenerator according to the fourth aspect, wherein the inflow port is projected toward a lower portion of each pipe.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described below with reference to FIGS.
The fuel gas 3 and air 5 taken toward the high-temperature regenerator 1 are mixed and ignited to start combustion, pass through the flat plate combustion surface 7 which is a combustion part, and combustion is promoted. This combustion promotion eliminates the need for the furnace tube (combustion chamber) required for the conventional furnace tube smoke tube system and furnace tube liquid tube system, and can achieve downsizing and achieve low NOx.
[0012]
As shown in FIG. 1, the combustion section is a combustion section formed by a vertical flat plate combustion surface 7 and the like, and the combustion flame and combustion gas from the combustion section are horizontally passed through the furnace wall and discharged from the chimney connection port. It is something to be made. The combustion flame and the combustion gas that have passed through the flat plate combustion surface 7 pass in the immediate vicinity of many vertical liquid tube groups 9 (9A, 9B, 9C). In these vertical liquid pipe groups 9, a large number of pipes 11 are arranged in the vertical direction, and a dilute absorbing liquid passes through the inside. The upper and lower portions of each tube 11 communicate with the upper surface portion 13A and the lower surface portion 13B of the tube wall 13 , as shown in FIG . The tube wall 13 is disposed at the position of the furnace wall through which the combustion flame and combustion gas pass, and is composed of an upper surface portion 13A, a lower surface portion 13B, and a side surface portion 13C. Pass through.
[0013]
The vertical liquid tube group 9 is divided into three tube groups 9A, 9B, and 9C. That is, it is divided into a first tube group 9A close to the combustion part, a second tube group 9B slightly far from the flat plate combustion surface 7, and a third tube group 9C farther than the second tube group 9B. The third tube group 9C is provided on the side of the chimney connection port 15, and fins 17 are attached to the respective tubes 11, so that the heat can be recovered from the combustion gas that has become slightly exhausted and becomes exhaust gas. ing.
[0014]
The division of the first, second, and third tube groups 9A, 9B, and 9C is performed by a separator 19 provided inside the tube wall 13, and the flow of the rare absorbent is determined by the separator 19.
[0015]
The rare absorbing liquid flowing into the high temperature regenerator 1 passes through a heat exchanger (not shown) connected to the upstream side of the high temperature regenerator 1. Due to the characteristics of this heat exchanger, boiling inside the high temperature regenerator 1 is performed. It is lower than the starting temperature. The rare absorbing liquid having a low temperature flows in from the inflow portion 21 at the upper part of the third tube group 9C using the pump pressure, and descends through the tubes 11 constituting the third tube group 9C. At this time, exhaust gas heat is recovered and the temperature is raised. The rare absorbent is guided to the bypass pipe 23 by the action of the first separator 19a at the lower part of each pipe 11 constituting the third pipe group 9C, and flows into the lower part of the first pipe group 9A. At this time, since the temperature of the rare absorbing liquid is raised to the vicinity of the boiling start point, it immediately boils in the first tube group 9A, and the flow becomes active due to the boiling, and the heat transfer coefficient increases due to this active flow. The dilute absorbent that has been sufficiently heated by the increased heat transfer coefficient is further boiled and concentrated.
[0016]
By increasing the heat transfer coefficient, it is possible to prevent the temperature from becoming higher in the first tube group 9A, which is likely to cause inconvenience due to the increase in temperature. The diluted absorbing liquid that has flowed in does not flow into the second pipe group 9B due to the action of the second separator 19b, and ascends the first pipe group 9A. The rising rare absorbing liquid flows into the upper part of the second tube group 9B. The third separator 19c does not flow into the third tube group 9C but descends to reach the lower portion of the second tube group 9B and flows out from an unillustrated outflow portion.
[0017]
The operation of this embodiment will be described below with reference to FIG.
This figure shows a Duhring diagram, of which (A) is a comparative example, as shown in FIG. 5, without passing the rare absorbent through the third tube group 9C, the first tube group 9A and the second tube group 9A. The dueling diagram in the case of passing through the tube group 9B in order is shown. Among these, (B) represents the Duling diagram in this embodiment, that is, FIG. 5 that are the same as those in FIG. 1 are denoted by the same reference numerals.
[0018]
That is, when the rare absorbent is passed directly through the first tube group 9A and the second tube group 9B without passing through the third tube group 9C as shown in FIG. 5, the rare absorbent is passed through as shown in FIG. After the sensible heat temperature changes, boiling starts and the latent heat temperature changes. In contrast the embodiment of FIG. 1, a dilute absorbent solution as shown in FIG. 2 (B), since it is preheated to recover exhaust gas heat when passed through a pre-Me third tube bank 9C, to near the boiling start point The temperature rises. Thereafter, boiling immediately starts in the first tube group 9A, and heating is performed in the first tube group 9A and the second tube group 9B while changing the latent heat temperature.
[0019]
Thus, in this embodiment, the heating in the first tube group 9A is performed in a state where the diluted absorbent is boiled. That is, boiling can be performed throughout the first tube group 9A. And the flow of a diluted absorption liquid becomes active by boiling, and a heat transfer coefficient becomes high by this active flow. Thus local heating in the first tube bank 9A, the local heating of definitive at the bottom of the first tube bank 9A to dilute absorbent liquid flows compared to the particular prior art can be prevented. For this reason, it is possible to prevent corrosion accidents that are likely to occur in the first tube group 9A and liquid crystallization.
[0020]
(Second embodiment)
A second embodiment of the present invention will be described below with reference to FIG. The same parts as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
In the second embodiment, the rare absorbent is immediately introduced from the lower portion of the first tube group 9A without passing through the third tube group 9C in advance. However, as in the first embodiment, it is of course possible to flow in from the lower portion of the first tube group 9A after passing through the third tube group 9C in advance.
[0021]
The inflow from the lower portion of the first tube group 9A uses pump pressure by a pump (not shown). The rare absorption liquid sent by the pump pressure is first guided to the rare absorption liquid inflow box 27 via the inflow portion 25. This inflow box 27 is located only in the lower part of the first tube group 9A as shown in FIG. And it is not located in the lower part of the lower surface part 13B of the pipe wall 13 in which the 9A of 1st pipe groups do not exist.
[0022]
The inflow box 27 communicates with the bottom surface plate of the double structure of the lower surface portion 13B of the tube wall 13 through the inflow port 29. A plurality of the inflow ports 29 are provided to form the first tube group 9A. It is located corresponding to the lower portion of each of the plurality of tubes 11. Further, the inner diameter of the inflow port 29 is smaller than the inner diameter of each pipe 11 of the first pipe group 9A.
[0023]
In this way, the rare absorbent is circulated vigorously from the small diameter inlet 29 using the pump pressure, so that the rare absorbent is mainly introduced only into the lower portion of the first tube group 9A. That is, the rare absorbing liquid does not flow into the lower surface portion 13B of the tube wall 13 communicating with the lower portion of the first tube group 9A.
[0024]
In this way, the diluted absorbent that has flowed into the lower portion of the first tube group 9A vigorously descends through the side surface portion 13C of the tube wall 13 after reaching the upper portion. Further, by vigorously flowing from the lower part of the first tube group 9A, the surrounding rare absorbent, that is, the rare absorbent present in the lower surface portion 13B of the tube wall 13 communicating with the lower part of the first tube group 9A is entrained. And flows into the first tube group 9A. Further, the heated diluted absorbent rises inside the first tube group 9A . From these things, as shown with the arrow in FIG.3 (C), a big flow is formed as a diluted absorption liquid.
[0025]
Due to such a flow, the rare absorbing liquid does not stay, and therefore, it is possible to prevent the occurrence of a locally elevated portion only in a part of the tube wall 13 or the tube group 9. By preventing the temperature from rising in this way, it is possible to prevent the occurrence of burnout even when the pump that performs the inflow fails.
[0026]
(Third embodiment)
In the second embodiment described above, the rare absorbent inlet 29 is positioned corresponding to the lower part of the pipe 11 of the first pipe group 9A, and the diameter of the inlet 29 is made larger than the inner diameter of each pipe 11 of the first pipe group 9A. By adopting a smaller introduction structure, the rare absorbing liquid is restricted from flowing into the tube wall 13 communicating with the lower portion of the first tube group 9A.
[0027]
Furthermore, in 3rd embodiment, as shown in FIG. 4, the inlet 29 which performs this regulation is formed by nozzles, such as a pipe, and it protrudes upwards toward the lower part of the pipe | tube 11 of 9 A of 1st pipe groups. it can.
[0028]
That is, as shown in the drawing, this pipe passes through the bottom plate of the double structure of the lower surface portion 13B of the tube wall 13 from the rare absorbent inflow box 27, and the first pipe is formed inside the lower surface portion 13B of the tube wall 13. It protrudes toward the lower part of each pipe | tube 11 of group 9A. Due to this protrusion, the rare absorbing liquid that flows in vigorously by the pump pressure is introduced only into the lower portion of the first tube group 9A, and the inflow to the tube wall 13 is restricted. From this, the formation of the flow of the rare absorbent as a whole becomes more remarkable.
[0029]
【The invention's effect】
As described above, according to the invention of claim 1 , the dilute absorbent is passed through the third tube group to recover the exhaust gas heat and preheated to reach the boiling start temperature or to the boiling start temperature. after becoming close enough temperature by flowing from the lower portion of the first tube bank, with attached flow of dilute absorbent solution in the first tube bank momentum, because as possible out actively the flow of dilute absorbent liquid by boiling, the heat transfer The coefficient can be increased, and local high temperatures such as the tube group and the pipe wall can be avoided, and inconveniences such as corrosion accidents and liquid crystallization caused by this high temperature can be prevented.
[0030]
Furthermore, in the invention of claim 2, 3, 4 or 5, when the rare absorbent is introduced from the lower part of the first pipe group, it is mainly introduced and introduced into the lower part of the first pipe group by the introduction structure . Since the rare absorbent does not flow into the second tube group due to the action of the separator provided inside the tube wall, it encourages the flow of the rare absorbent in the first tube group and positively promotes the upward flow in the first tube group. and the flow of dilute absorbent solution more active as a whole out making the can prevent high local temperatures of.
[Brief description of the drawings]
FIG. 1 shows a main part of a high-temperature regenerator showing a first embodiment of the present invention,
(A) is a vertical sectional front view, (B) is a horizontal sectional view, and (C) is a vertical sectional side view.
FIG. 2 is a drawing curve diagram showing the effect of this embodiment;
(A) is a Duhring diagram in the high-temperature regenerator of FIG. 5 as a comparative example, and (B) is a During diagram in the high-temperature regenerator of FIG. 1 showing this embodiment.
FIG. 3 shows a main part of a high-temperature regenerator showing a second embodiment of the present invention,
(A) is a vertical sectional front view, (B) is a horizontal sectional view, and (C) is a vertical sectional side view.
FIG. 4 is a partially enlarged longitudinal sectional view showing a main part of a third embodiment of the present invention.
FIG. 5 is a diagram showing a main part of a high temperature regenerator as a comparative example of the present invention;
(A) is a vertical sectional front view, (B) is a horizontal sectional view, and (C) is a vertical sectional side view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 3 Gas 5 Air 7 Flat plate combustion surface 9 Vertical liquid pipe group 9A 1st pipe group 9B 2nd pipe group 9C 3rd pipe group 13 Tube wall 17 Fin 19 Separator 23 Bypass pipe 27 Rare absorption liquid inflow box 29 Rare Absorption liquid inlet

Claims (5)

垂直方向の平板燃焼面などによる燃焼部からの燃焼火炎および燃焼ガスを水平方向に炉壁の中を通過させて煙突接続口から排出させるとともに、前記炉壁の位置に配置された二重構造の管壁の上面部および下面部に連通させた多数の垂直方向の管でなる垂直液管群ならびに前記管壁の中に希吸収液を通して加熱濃縮する吸収冷凍機の高温再生器において、
前記垂直液管群を、前記燃焼部に近い第一管群、前記燃焼部から前記第一管群より遠い第二管群、前記燃焼部から前記第二管群よも遠く前記煙突接続口の側に設けられて排ガス熱を回収する第三管群に区分し、前記希吸収液を前記第三管群に通して予熱した後に前記第一管群の下部から流入することにより、前記第一管群における前記希吸収液の流動を勢いづけることを特徴とする高温再生器。
Combustion flames and combustion gases from the combustion section, such as by a flat plate combustion surface in the vertical direction, are passed through the furnace wall in the horizontal direction and discharged from the chimney connection port, and a double structure arranged at the position of the furnace wall. In a high-temperature regenerator of an absorption refrigerating machine that heats and concentrates a dilute absorption liquid through the pipe wall through a vertical liquid pipe group consisting of a number of vertical pipes communicated with the upper and lower parts of the pipe wall ,
The vertical liquid pipe group, the first tube bank close to the combustion section, said from the combustion section first tubular distant second tube bank from the group, the second tube bank Home far the chimney from the combustion unit provided on the side of the connection port and divided into the third tube bank to recover flue gas heat flows from a lower portion of said first tube bank and said dilute absorbent liquid was preheated through the third tube bank that By virtue of the above , a high-temperature regenerator characterized by energizing the flow of the diluted absorbent in the first tube group .
垂直方向の平板燃焼面などによる燃焼部からの燃焼火炎および燃焼ガスを水平方向に炉壁の中を通過させて煙突接続口から排出させるとともに、前記炉壁の位置に配置された二重構造の管壁の上面部および下面部に連通させた多数の垂直方向の管でなる垂直液管群ならびに前記管壁の中に希吸収液を通して加熱濃縮する吸収冷凍機の高温再生器において、
前記垂直管群のうち前記燃焼部に近い所定の管群を第一管群とし、前記燃焼部から前記第一管群より遠い所定の管群を第二管群とし、前記管壁の内部に前記第一管群と第二管群とを区分するセパレータを設け、ポンプにより加圧した前記希吸収液を主に前記第一管群の下部にのみ導入させる導入構造を設けることにより、前記第一管群における前記希吸収液の流動を勢いづけることを特徴とする高温再生器。
Combustion flames and combustion gases from the combustion section, such as by a flat plate combustion surface in the vertical direction, are passed through the furnace wall in the horizontal direction and discharged from the chimney connection port, and a double structure arranged at the position of the furnace wall. In a high-temperature regenerator of an absorption refrigerating machine that heats and concentrates a dilute absorption liquid through the pipe wall through a vertical liquid pipe group consisting of a number of vertical pipes communicated with the upper and lower parts of the pipe wall,
Among the vertical tube groups, a predetermined tube group close to the combustion unit is a first tube group, a predetermined tube group far from the first tube group from the combustion unit is a second tube group, and inside the tube wall By providing a separator that separates the first tube group and the second tube group, and providing an introduction structure that introduces the diluted absorbent pressurized by a pump mainly only in the lower part of the first tube group, A high-temperature regenerator characterized by energizing the flow of the diluted absorbent in one tube group.
前記導入構造は、前記導入のための希吸収液流入箱を前記第一管群が存在しない前記下面部の下部には位置させず、前記第一管群の下部のみに位置させることを特徴とする請求項2記載の高温再生器。 The introduction structure, characterized by positioning only the dilute absorbent liquid without position the inflow box at the bottom of the lower surface portion having no said first tube bank, the lower portion of said first tube bank for the introduction The high-temperature regenerator according to claim 2. 前記導入構造は、複数設けられる前記導入のための流入口を前記第一管群の各管の下部に対応して位置させ、前記流入口の内径を前記各管の内径よりも小さくすることを特徴とする請求項2記載の高温再生器。 The introduction structure, the inlet for the introduction which is more disposed to a position corresponding to the bottom of each tube of the first tube group, the inner diameter of the inlet to be smaller than the inner diameter of each tube The high temperature regenerator according to claim 2. 前記流入口を前記各管の下部に向かって突出させることを特徴とする請求項4記載の高温再生器。High temperature generator according to claim 4, characterized in that protrude toward the inlet at the bottom of each tube.
JP10969996A 1996-04-30 1996-04-30 High temperature regenerator Expired - Fee Related JP3865326B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10969996A JP3865326B2 (en) 1996-04-30 1996-04-30 High temperature regenerator
US08/848,117 US5862679A (en) 1996-04-30 1997-04-28 High-temperature regenerator
KR1019970016243A KR100458890B1 (en) 1996-04-30 1997-04-29 High temperature regenerator
CNB971132917A CN1192194C (en) 1996-04-30 1997-04-30 High-temperature heat-storing device
CNB02152288XA CN1266434C (en) 1996-04-30 1997-04-30 High-temperature regenerator
US09/169,787 US6145338A (en) 1996-04-30 1998-10-09 High-temperature regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10969996A JP3865326B2 (en) 1996-04-30 1996-04-30 High temperature regenerator

Publications (2)

Publication Number Publication Date
JPH09296969A JPH09296969A (en) 1997-11-18
JP3865326B2 true JP3865326B2 (en) 2007-01-10

Family

ID=14516972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10969996A Expired - Fee Related JP3865326B2 (en) 1996-04-30 1996-04-30 High temperature regenerator

Country Status (1)

Country Link
JP (1) JP3865326B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436587B1 (en) * 2002-01-07 2004-06-19 엘지전선 주식회사 The Desorber For Absorption Chiller

Also Published As

Publication number Publication date
JPH09296969A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
JP3273795B2 (en) High temperature regenerator for absorption chiller / heater
EP0027055B1 (en) Hot-water boilers
USRE33082E (en) Combustion product condensing water heater
US5862679A (en) High-temperature regenerator
WO2002063231A1 (en) Spiral flow heat exchanger
JP3865326B2 (en) High temperature regenerator
NZ549446A (en) Looped system fuel-fired fluid heating/storage device
JP3600367B2 (en) Absorption chiller hot water regenerator
CN215002247U (en) Film wall hot water boiler
CN212806056U (en) Boiler
KR200330676Y1 (en) Stand type boiler
KR100409155B1 (en) Upper burning type condensing gas boiler
KR100406132B1 (en) Upper burning type condensing gas boiler
CN218480594U (en) Assembled gas steam boiler and heating system thereof
JP3670810B2 (en) High temperature regenerator
JP3670807B2 (en) High temperature regenerator
JP3754123B2 (en) Direct high temperature regenerator
RU2296919C2 (en) Hot-water water-tube boiler
KR100406133B1 (en) Upper burning type condensing gas boiler
KR100570292B1 (en) Pipe laying structure heat exchange pipe of boiler
KR100392595B1 (en) Condensing type Heat Exchanger of Gas Boiler
JP2735958B2 (en) Regenerator for absorption refrigerator
JP3865327B2 (en) Direct high temperature regenerator
JPS5846341Y2 (en) Solution heating boiler
JP3754108B2 (en) Absorption chiller / heater regenerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees