JP3865322B2 - Deflection yoke device - Google Patents

Deflection yoke device Download PDF

Info

Publication number
JP3865322B2
JP3865322B2 JP29606094A JP29606094A JP3865322B2 JP 3865322 B2 JP3865322 B2 JP 3865322B2 JP 29606094 A JP29606094 A JP 29606094A JP 29606094 A JP29606094 A JP 29606094A JP 3865322 B2 JP3865322 B2 JP 3865322B2
Authority
JP
Japan
Prior art keywords
deflection
deflection coil
longitudinal direction
crossover
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29606094A
Other languages
Japanese (ja)
Other versions
JPH08153477A (en
Inventor
保修 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP29606094A priority Critical patent/JP3865322B2/en
Publication of JPH08153477A publication Critical patent/JPH08153477A/en
Application granted granted Critical
Publication of JP3865322B2 publication Critical patent/JP3865322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Description

【0001】
【産業上の利用分野】
本発明はテレビジョン受像機およびハイビジョン受像機、ディスプレイモニターに主として使用される陰極線管に組み込まれる偏向ヨーク装置に関するものである。
【0002】
【従来の技術】
従来例として、水平偏向コイルおよび垂直偏向コイルとも鞍型コイルとした偏向ヨーク装置を図6に示す。1は水平偏向コイル、2は垂直偏向コイル、3はコア、4は水平偏向コイルと垂直偏向コイルの絶縁を保つための絶縁枠である。
この図でも明らかなように、偏向ヨーク装置の位置関係は、水平偏向コイル1の外側に垂直偏向コイル2が位置し、その垂直偏向コイル2の外側にコア3が位置するよう構成されている。
【0003】
また、このような従来の構成の中で使用される鞍型垂直偏向コイル16の斜視図を図7に示し、3面図を図8に示す。ここで17が長手方向部であり、18、19が渡り線部である。
図8より明らかなように、垂直偏向コイルは一対の長手方向部17a、17bと、これらの端部を連接する渡り線部18、19を基本構造としている。
【0004】
このような、偏向コイルの寸法は2つの要因で決定され、一つは陰極線管の表示装置としてみたときの重要特性であるコンバーゼンス特性、もう一つは消費電力を重要視した消費電力特性である。
【0005】
【発明が解決しようとする課題】
上記のような基本構造をした偏向ヨーク装置につき、以下、コンバーゼンス特性と消費電力特性を検討する。
まず、コンバーゼンス特性を図9に示した電磁偏向模式図を用いて説明する。この図において、偏向磁界は長さlの偏向コイルの長手方向部17により紙面の裏から表に向かってlの間一様に作られ、その外側ではゼロ、電子は速度vで矢印の方向から偏向磁界に直角に入射している。
【0006】
すなわち、電子ビームは電子銃より発射され、偏向コイルの長手方向部17に作られる偏向領域で偏向エネルギーを受け、円弧状に偏向される。ただし、電子ビームが偏向領域を抜け出すときには、抜け出す点の偏向角で直進する。そしてこの例の場合、その偏向角θで、そのまま直進を続け管面に衝突し、蛍光体の発光となり陰極線管に画像を得ることができる。また、この偏向角θを電子銃側に伸ばし、偏向してない電子ビームとの交点が偏向中心である。
【0007】
このような電磁偏向においては、偏向コイルの電線より発生する磁界で電子ビームの偏向に寄与する部分は偏向磁界を作り出している長手方向部17であり、渡り線部は電磁偏向には寄与せず、単に一対の長手方向部を連接するのみである。
一方、このような電磁偏向においては、種々の画面サイズに対応するためコンバーゼンス特性については、水平偏向コイルと垂直偏向コイルの偏向中心をずらしてその調整を行っている。
【0008】
例えば、垂直偏向コイルの偏向中心を電子銃寄りに移動し、水平偏向コイルを管面寄りに移動した場合を想定すると、図10に示すように、垂直偏向コイルの実質偏向角は見かけより小さくなり、水平偏向コイルの実質偏向角は見かけより大きくなる。
従って、図11に示す陰極線管画面のX軸上、Y軸上のコンバーゼンスは、まずYH を合わせるため、垂直偏向角が小さくなることは本来垂直磁界はバレル磁界であったのを弱くすることであり、次にXH を合わせるために、水平偏向角が大きくなることは本来水平磁界はピンクッション磁界であったのをより強くすることであり、水平偏向磁界、垂直偏向磁界とも、ピンクッション磁界傾向になるため、対角軸もピンクッション磁界となる。
【0009】
しかるに一方、高インチ、広角度偏向になるにつれ、対角はピンクッション磁界を必要とする。それは、次のように説明できる。
図9において偏向量Dは次式で示される。
【0010】
【数1】

Figure 0003865322
【0011】
ここで、 e :電子の電荷 m :電子の質量
Bz:磁束密度(Wb/m2) VO :電子ビームの加速電圧
すなわち、偏向量Dは偏向磁界の長さlと蛍光面までの距離Lが長い程優位に働くが、この距離Lにコンバーゼンスも関与する。
この結果を基に、横軸に偏向中心より蛍光面までの距離を取り、縦軸に対角軸のピンクッション−バレル磁界を取ると、図12のグラフを得る。
【0012】
この横軸を支配するものは、画面サイズであるし、また偏向角でもあり、したがって、次の関係がある。
まず、画面サイズが大きくなると、距離Lは長くなる。次に偏向角が広角になると、距離Lは短くなる。
以上より画面サイズが変わり、偏向中心より蛍光面までの距離が変われば、必然的に水平偏向磁界と垂直偏向磁界の偏向中心差も変えなければコンバーゼンスが最適でないことがわかる。そして、高インチ、広角度偏向になるにつれ、対角はピンクッション磁界を必要とすることがわかる。
【0013】
しかるに、この偏向中心を設定するのは、従来では偏向コイル長手方向部であった。
すなわち、陰極線管の画面サイズ、偏向角に応じて水平、垂直の偏向中心を変えて調整する必要があり、その偏向中心を変えるのは偏向コイル長手方向部であったため、結局、偏向コイル長手方向部の長さはコンバーゼンス特性より一定とはなり得なかったのである。
【0014】
次に、消費電力特性について検討する。
テレビジョン受像機の消費電力の低減を図るため、偏向感度を重視すると、偏向感度に最も影響のある磁束密度Bは次式で示される。
【0015】
【数2】
Figure 0003865322
【0016】
ここで、 n :偏向コイルの巻数 i :偏向電流
DY :コアの内径
したがって、コアの内径を小さくすることで、偏向感度は向上し、それはテレビジョン受像機の消費電力を低下させることができる。
但し、その前提となるのは、図13に示すように、コアの長さは垂直偏向コイルの長さ一杯に作り、また、水平偏向コイルは垂直偏向コイルの渡り線部も含めた垂直偏向コイルの全長部と絶縁を保つための距離を確保した長さと、水平偏向コイルの長手方向部と一致して作るのが一般的である。
【0017】
以上の説明の通り、偏向コイルのコンバーゼンス特性は、その陰極線管の種類により水平偏向コイルの偏向中心と垂直偏向コイルの偏向中心をずらして設定する必要があり、また、消費電力より設定する場合は、水平、垂直偏向コイルの長手方向部全部を使用した形状としなければならない。従って、所望する陰極線管の画面サイズに最適なコンバーゼンス特性と消費電力の低減は、従来の偏向ヨーク装置においては実現されなかった。
【0018】
上記のように従来の構成では、消費電力の低減を図るように、水平偏向コイルと垂直偏向コイルの位置関係を決定すると、偏向ヨーク装置のコンバーゼンス特性が、偏向中心によって決定されるので、偏向中心を決める偏向コイルの長手方向部の長さがコンバーゼンス特性を決めてしまうため、あらゆる画面サイズに対応することが不可能であった。
【0019】
本発明は上記のような問題点を解決するもので、消費電力の低減を図ると共に、必要とする画面サイズに最適なコンバーゼンス特性を得ることを目的とする。
【0020】
【課題を解決するための手段】
上記目的を達成するために本発明では、鞍型水平偏向コイルと鞍型垂直偏向コイルとコアを具備する偏向ヨーク装置において、前記水平偏向コイルもしくは前記垂直偏向コイルのうち少なくとも一方のコイルが、コイルの長手方向に対して垂直な方向に延びた管面側の渡り線部と電子銃側の渡り線部と、前記管面側の渡り線部と前記電子銃側の渡り線部との間に配設され前記長手方向に延びた略平行の一対の長手方向部と、からなる形状を有し、前記長手方向部において前記管面側の渡り線部から前記電子銃側の渡り線部に向けて一定部分を偏向磁界が発生する実効長部とし、その残余部分である前記実効長部と前記電子銃側の渡り線部との間の部分を偏向磁界が発生しない渡り線部とする偏向ヨーク装置とした。
【0021】
本発明の参考例では、水平偏向コイルもしくは垂直方向部偏向コイルのうち少なくとも一方のコイルの形状が、略平行な一対の長手方向部とこの長手方向部の3箇所で連接するように配設された渡り線部を有し、これら3箇所の渡り線部の内、中央の第3の渡り線部が前記長手方向部の向きと略同一方向に延びた長手方向部分と略垂直方向部分の両方向に構成された偏向ヨーク装置とした。
【0022】
【作用】
本発明では、コイルの長手方向に対して垂直な方向に延びた管面側の渡り線部と電子銃側の渡り線部と、前記管面側の渡り線部と前記電子銃側の渡り線部との間に配設され前記長手方向に延びた略平行の一対の長手方向部と、からなる形状を有し、前記長手方向部において前記管面側の渡り線部から前記電子銃側の渡り線部に向けて一定部分を偏向磁界が発生する実効長部とし、その残余部分である前記実効長部と前記電子銃側の渡り線部との間の部分を偏向磁界が発生しない渡り線部としたので、偏向コイルの偏向中心を決定する実効長部と消費電力を決定する長手方向部とを完全に分離して扱うことができるようになった。
従って、本発明を水平偏向コイルに用いた場合、例えば、水平偏向コイルよりも電子銃側に伸びた長い垂直偏向コイルを作る事が可能となり、所望するコンバーゼンス特性を得ることができる。又、本発明を垂直偏向コイルに用いた場合、垂直偏向コイルの長手方向部の長さよりも長いコアを用いることにより、所望の水平偏向コイルの位置にコアを配設することができ、所望のコンバーゼンス特性を得ることができると共に、偏向ヨークの消費電力低減も可能となる。
【0023】
また、参考例では、渡り線部の内、中央の第3の渡り線部が前記長手方向部の向きと略同一方向に延びた長手方向部分と略垂直方向部分の両方向に構成されたので、限られた間隙内で所望のコンバーゼンス特性及び消費電力低減の可能な渡り線部を設けることができるようになった。
【0024】
【実施例】
(実施例)
以下本発明の一実施例として,鞍型垂直偏向コイルについて、図面を参照しながら説明する。
図1に本発明の鞍型垂直偏向コイル2の斜視図を示す。また、図2(a)(b)(c)は、図1のコイルにおける左側面図、正面図及び平面図である。図1において、5は長手方向部、6,7は渡り線部である。渡り線部6は、コイルの長手方向に対して垂直な方向に延びた管面側の渡り線部であり、渡り線部7は、コイルの長手方向に対して垂直な方向に延びた電子銃側の渡り線部である。渡り線部7には、長手方向部5の向きと略同一の長手方向に延びた渡り線部8を設けた。
従って、長手方向部5は、管面側の渡り線部6と電子銃側の渡り線部7との間に配設され、長手方向に延びた略平行の一対の長手方向部である。
【0025】
このように構成された偏向コイルを使用する場合、電子ビームの偏向に寄与するコイルの実効長部は、図中 J で示す部分である。換言すればこの場合、長手方向部の全ては偏向磁界を発生させていない。即ち、前記長手方向部において前記管面側の渡り線部から前記電子銃側の渡り線部に向けて一定部分を偏向磁界が発生する実効長部とし、その残余部分である前記実効長部と前記電子銃側の渡り線部との間の部分を偏向磁界が発生しない渡り線部とした。偏向磁界を発生させる実効長Jと偏向コイルの形状である長手方向部5とが同一形状であるにもかかわらず、分離することができるものである。
【0026】
従って、図3に示すように、この垂直偏向コイルの偏向中心Oは、長手方向部5の中央ではなく、前記長手方向部において前記管面側の渡り線部から前記電子銃側の渡り線部に向けた一定部分、図中Jで示される部分の中央である。
このように本発明の偏向コイルにおいては、コイル長の如何に関わらず、偏向中心Oの位置を自由に設定することができるため、水平偏向消費電力に関与する垂直偏向コイルの長手方向部の長さは、水平偏向コイルの必要とする長さにより規定され、またコンバーゼンスに関与する偏向中心は、その長手方向部内で自由に設定できる。
【0027】
上記のように、偏向コイルの長手方向部中で自由に設定できる偏向中心点を有することを特徴とする鞍型垂直偏向コイルを用いて、これを水平偏向コイルに組み込んだ場合には、水平偏向コイルと垂直偏向コイルの偏向中心差は、水平偏向コイルの偏向中心に対して自由に設定されることになる。
従って、図13に示す方法で組み上げることができる。
【0028】
また、本発明を鞍型水平偏向コイルに使用した場合も同様で、水平偏向コイルの偏向中心が長手方向部の中心に位置する必要がなく、偏向コイルの実効長部を必要とする特性に合致するように選ぶことができ、長手方向部と実効長部を異なる寸法で設定することにより、水平偏向コイルを必要とする垂直偏向コイルの寸法に左右されずに設定できるのである。
【0029】
(参考例)
以下、参考例について、説明する。
図4において、9は鞍型水平偏向コイルで、一対の長手方向部10と該長手方向部を3箇所で連接するように配設された渡り線部11,12,13を設けた。図5は渡り線部の内、中央の第3の渡り線部13の説明図で、長手方向部10の向きと略同一方向に延びた長手方向部13 a と略垂直方向部13 b との両方向に設けられている。
【0030】
上記のような構成にしたので、第3の渡り線部13は、第1の渡り線部11、および第2の渡り線部12のようにその外部は空隙とならず、内側に陰極線管の硝子のコーン部14があり、また外側には垂直偏向コイル15が位置するため間隙となり、その第3の渡り線部を構成する間隙は非常に限られた部分となってしまう。
【0031】
すなわち、第3の渡り線部13の長手方向部13aの面積を多くとると、実効長部が短くなり、偏向コイルの消費電力低減に反することになる。また長手方向部と垂直方向部13bの面積を多くとると、それは垂直偏向コイルおよびコアの内径を広げることとなり、これもまた消費電力低減に反することになる。
したがって、この限られた間隙部に水平偏向コイルの渡り線部を作るためには、本発明のように、第3の渡り線部を2方向に分けて構成したものである。
【0032】
【発明の効果】
上記のように本発明は、コイルの長手方向に対して垂直な方向に延びた管面側の渡り線部と電子銃側の渡り線部と、前記管面側の渡り線部と前記電子銃側の渡り線部との間に配設され前記長手方向に延びた略平行の一対の長手方向部と、からなる形状を有し、前記長手方向部において前記管面側の渡り線部から前記電子銃側の渡り線部に向けて一定部分を偏向磁界が発生する実効長部とし、その残余部分である前記実効長部と前記電子銃側の渡り線部との間の部分を偏向磁界が発生しない渡り線部とした。
従って、偏向コイルの実効長部と長手方向部とを完全に分離して扱うことができ、所望のコンバーゼンス特性を得ることができると共に、偏向ヨークの消費電力低減も可能となり、陰極線管の画面サイズや偏向角に応じて偏向コイルを構成できるようになった。
【0033】
本発明の参考例も同様に第3の渡り線部を長手方向部の向きと略同一方向に延びた長手方向部分と略垂直方向部分の両方向に構成したので、上記本発明と同様の効果が得られるようになった。
【図面の簡単な説明】
【図1】 本発明の鞍型垂直方向部偏向コイルの一実施例を示す斜視図。
【図2】 (a)は同コイルの左側面図、(b)は正面図、(c)は平面図。
【図3】 偏向コイルの偏向コイル中心を決める実効長と長手方向部の説明図。
【図4】 参考例を示す平面図。
【図5】 参考例における第3の渡り線部の断面図。
【図6】 鞍型の偏向ヨーク装置の半截断面図。
【図7】 従来の垂直鞍型偏向コイルの斜視図。
【図8】 (a)は同コイルの左側面図、(b)は正面図、(c)は平面図。
【図9】 図8で示される垂直偏向コイルの電磁偏向説明図。
【図10】 垂直偏向コイルの偏向コイル中心を電子銃寄りに、水平偏向コイルを管面寄りに移動した場合の説明図。
【図11】 陰極線間画面のX軸、Y軸の説明図。
【図12】 横軸に偏向中心より傾向面までの距離Lを取り、縦軸に対角軸のピンクッション-バレル磁界を取ったグラフ。
【図13】 偏向コイルの組立順序を示す説明図。
【符号の説明】
1 水平偏向コイル
2 垂直偏向コイル
3 コア
5、5a、5b 長手方向部
6、7、8 渡り線部
10、10a、10b 長手方向部
11、12、13 渡り線部[0001]
[Industrial application fields]
The present invention relates to a deflection yoke device incorporated in a cathode ray tube mainly used for a television receiver, a high-vision receiver, and a display monitor.
[0002]
[Prior art]
As a conventional example, FIG. 6 shows a deflection yoke device in which a horizontal deflection coil and a vertical deflection coil are saddle type coils. Reference numeral 1 denotes a horizontal deflection coil, 2 denotes a vertical deflection coil, 3 denotes a core, and 4 denotes an insulating frame for maintaining insulation between the horizontal deflection coil and the vertical deflection coil.
As is clear from this figure, the positional relationship of the deflection yoke device is such that the vertical deflection coil 2 is located outside the horizontal deflection coil 1 and the core 3 is located outside the vertical deflection coil 2.
[0003]
Further, FIG. 7 shows a perspective view of a saddle type vertical deflection coil 16 used in such a conventional configuration, and FIG. Here, 17 is a longitudinal direction part, and 18 and 19 are crossover parts.
As is apparent from FIG. 8, the vertical deflection coil has a basic structure of a pair of longitudinal direction portions 17a and 17b and connecting wire portions 18 and 19 connecting these end portions.
[0004]
The dimensions of the deflection coil are determined by two factors. One is a convergence characteristic which is an important characteristic when viewed as a cathode ray tube display device, and the other is a power consumption characteristic in which power consumption is regarded as important. .
[0005]
[Problems to be solved by the invention]
With respect to the deflection yoke device having the above basic structure, the convergence characteristics and the power consumption characteristics will be examined below.
First, the convergence characteristics will be described with reference to the electromagnetic deflection schematic diagram shown in FIG. In this figure, the deflection magnetic field is uniformly generated by l in the longitudinal direction portion 17 of the deflection coil of length l from the back to the front of the paper, and is zero outside, and electrons are from the direction of the arrow at a velocity v. Incident at right angles to the deflection magnetic field.
[0006]
That is, the electron beam is emitted from the electron gun, receives deflection energy in a deflection region formed in the longitudinal direction portion 17 of the deflection coil, and is deflected in an arc shape. However, when the electron beam exits the deflection area, it goes straight at the deflection angle at the exit point. In the case of this example, at the deflection angle θ, the straight line is continued as it is and collides with the tube surface, and the phosphor emits light and an image can be obtained on the cathode ray tube. The deflection angle θ is extended to the electron gun side, and the intersection with the undeflected electron beam is the deflection center.
[0007]
In such electromagnetic deflection, the portion that contributes to the deflection of the electron beam in the magnetic field generated from the wire of the deflection coil is the longitudinal direction portion 17 that creates the deflection magnetic field, and the crossover portion does not contribute to the electromagnetic deflection. Only a pair of longitudinal sections are connected.
On the other hand, in such electromagnetic deflection, in order to cope with various screen sizes, the convergence characteristics are adjusted by shifting the deflection centers of the horizontal deflection coil and the vertical deflection coil.
[0008]
For example, assuming that the deflection center of the vertical deflection coil is moved closer to the electron gun and the horizontal deflection coil is moved closer to the tube surface, the actual deflection angle of the vertical deflection coil becomes smaller than apparent as shown in FIG. The substantial deflection angle of the horizontal deflection coil becomes larger than it appears.
Accordingly, the convergence on the X-axis and Y-axis of the cathode ray tube screen shown in FIG. 11 is first adjusted to match YH, so that the vertical deflection angle is reduced by weakening that the vertical magnetic field was originally a barrel magnetic field. In order to adjust XH next time, the horizontal deflection angle is increased to make the horizontal magnetic field originally a pincushion magnetic field stronger, and both the horizontal and vertical deflection magnetic fields tend to be pincushion magnetic fields. Therefore, the diagonal axis is also a pincushion magnetic field.
[0009]
However, diagonals require a pincushion magnetic field as high inches and wide angle deflections occur. It can be explained as follows.
In FIG. 9, the deflection amount D is expressed by the following equation.
[0010]
[Expression 1]
Figure 0003865322
[0011]
Where, e is the charge of the electron, m is the mass of the electron, Bz is the magnetic flux density (Wb / m 2 ), VO is the acceleration voltage of the electron beam, that is, the deflection amount D is the length l of the deflection magnetic field and the distance L to the phosphor screen. The longer it works, the better, but convergence is also involved in this distance L.
Based on this result, the distance from the deflection center to the phosphor screen is taken on the horizontal axis, and the pincushion-barrel magnetic field on the diagonal axis is taken on the vertical axis, whereby the graph of FIG. 12 is obtained.
[0012]
What controls the horizontal axis is the screen size and also the deflection angle, and therefore has the following relationship.
First, as the screen size increases, the distance L increases. Next, when the deflection angle becomes a wide angle, the distance L becomes shorter.
From the above, it can be seen that if the screen size changes and the distance from the deflection center to the phosphor screen changes, the convergence is not optimal unless the difference between the deflection centers of the horizontal and vertical deflection magnetic fields is changed. And it can be seen that the diagonal requires a pincushion magnetic field as it becomes high inch and wide angle deflection.
[0013]
However, the deflection center is conventionally set in the longitudinal direction portion of the deflection coil.
That is, it is necessary to adjust the horizontal and vertical deflection centers in accordance with the screen size and deflection angle of the cathode ray tube, and the deflection center is changed in the longitudinal direction of the deflection coil. The length of the portion could not be constant due to the convergence characteristics.
[0014]
Next, power consumption characteristics will be examined.
When the deflection sensitivity is emphasized in order to reduce the power consumption of the television receiver, the magnetic flux density B that most affects the deflection sensitivity is expressed by the following equation.
[0015]
[Expression 2]
Figure 0003865322
[0016]
Here, n: number of turns of deflection coil i: deflection current DY: inner diameter of core Therefore, by reducing the inner diameter of the core, the deflection sensitivity is improved, which can reduce the power consumption of the television receiver.
However, the premise is that, as shown in FIG. 13, the length of the core is made to the full length of the vertical deflection coil, and the horizontal deflection coil is a vertical deflection coil including the crossover portion of the vertical deflection coil. In general, it is made to coincide with the length that secures the distance for maintaining insulation from the full length portion of the wire and the longitudinal direction portion of the horizontal deflection coil.
[0017]
As described above, the convergence characteristic of the deflection coil needs to be set by shifting the deflection center of the horizontal deflection coil and the deflection center of the vertical deflection coil depending on the type of the cathode ray tube. The shape of the horizontal and vertical deflection coils must be entirely used. Therefore, the optimum convergence characteristic and the reduction in power consumption for the desired cathode ray tube screen size have not been realized in the conventional deflection yoke apparatus.
[0018]
As described above, in the conventional configuration, when the positional relationship between the horizontal deflection coil and the vertical deflection coil is determined so as to reduce power consumption, the convergence characteristic of the deflection yoke device is determined by the deflection center. Since the length of the longitudinal direction portion of the deflection coil that determines the value determines the convergence characteristic, it is impossible to cope with any screen size.
[0019]
SUMMARY OF THE INVENTION The present invention solves the above-described problems, and aims to reduce power consumption and obtain optimum convergence characteristics for a required screen size.
[0020]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in a deflection yoke apparatus comprising a vertical horizontal deflection coil, vertical vertical deflection coil and core, at least one of the horizontal deflection coil or the vertical deflection coil is a coil. Between the crossover portion on the tube surface side and the crossover wire portion on the electron gun side extending in a direction perpendicular to the longitudinal direction of the tube, and between the crossover portion on the tube surface side and the crossover portion on the electron gun side And a pair of substantially parallel longitudinal portions disposed in the longitudinal direction and extending from the crossover portion on the tube surface side toward the crossover portion on the electron gun side in the longitudinal direction portion. A deflection yoke in which a certain portion is an effective length portion that generates a deflection magnetic field, and a portion between the effective length portion that is the remaining portion and the crossover portion on the electron gun side is a crossover portion that does not generate a deflection magnetic field. The device.
[0021]
In the reference example of the present invention, the shape of at least one of the horizontal deflection coil or the vertical direction deflection coil is arranged so as to be connected to a pair of substantially parallel longitudinal direction portions at three locations of the longitudinal direction portions. There are crossover portions, and among these three crossover portions, the third crossover portion in the center extends in the same direction as the direction of the longitudinal portion and both the longitudinal direction portion and the substantially vertical direction portion. The deflection yoke device is configured as follows.
[0022]
[Action]
In the present invention, the crossover portion on the tube surface side and the crossover portion on the electron gun side extending in the direction perpendicular to the longitudinal direction of the coil, the crossover portion on the tube surface side, and the crossover wire on the electron gun side And a pair of substantially parallel longitudinal sections extending in the longitudinal direction, and extending from the crossover section on the tube surface side to the electron gun side in the longitudinal section. A fixed portion toward the connecting wire portion is an effective length portion that generates a deflection magnetic field, and a portion between the effective length portion that is the remaining portion and the connecting wire portion on the electron gun side is a connecting wire that does not generate a deflection magnetic field. Therefore, the effective length portion that determines the deflection center of the deflection coil and the longitudinal direction portion that determines the power consumption can be handled completely separately.
Therefore, when the present invention is used for a horizontal deflection coil, for example, it is possible to make a long vertical deflection coil extending to the electron gun side with respect to the horizontal deflection coil, and a desired convergence characteristic can be obtained. Further, when the present invention is used for a vertical deflection coil, by using a core longer than the length of the longitudinal direction portion of the vertical deflection coil, the core can be disposed at a desired horizontal deflection coil position. Convergence characteristics can be obtained, and power consumption of the deflection yoke can be reduced.
[0023]
Further, in the reference example, among the connecting wire portions, the third connecting wire portion at the center is configured in both the longitudinal direction portion and the substantially vertical direction portion extending in substantially the same direction as the direction of the longitudinal direction portion. It is now possible to provide a crossover portion capable of reducing desired convergence characteristics and power consumption within a limited gap.
[0024]
【Example】
(Example)
Hereinafter, a vertical vertical deflection coil will be described as an embodiment of the present invention with reference to the drawings.
FIG. 1 is a perspective view of a vertical vertical deflection coil 2 of the present invention. FIGS. 2A, 2B, and 2C are a left side view, a front view, and a plan view of the coil shown in FIG. In FIG. 1, 5 is a longitudinal direction part, and 6 and 7 are crossover parts. The crossover portion 6 is a crossover portion on the tube surface side extending in a direction perpendicular to the longitudinal direction of the coil, and the crossover portion 7 is an electron gun extending in a direction perpendicular to the longitudinal direction of the coil. This is the crossover section on the side. The crossover portion 7 is provided with a crossover portion 8 extending in the longitudinal direction substantially the same as the direction of the longitudinal portion 5.
Therefore, the longitudinal portion 5 is a pair of substantially parallel longitudinal portions disposed between the crossover portion 6 on the tube surface side and the crossover portion 7 on the electron gun side and extending in the longitudinal direction.
[0025]
When the deflection coil configured as described above is used, the effective length portion of the coil contributing to the deflection of the electron beam is a portion indicated by J in the drawing . In other words, in this case, all of the longitudinal direction portions do not generate a deflection magnetic field. That is, in the longitudinal direction portion, a certain portion from the crossover portion on the tube surface side toward the crossover portion on the electron gun side is an effective length portion that generates a deflection magnetic field, and the effective length portion that is a remaining portion thereof A portion between the crossover portion on the electron gun side is a crossover portion where no deflection magnetic field is generated. Although the effective length J for generating the deflection magnetic field and the longitudinal direction portion 5 which is the shape of the deflection coil have the same shape, they can be separated.
[0026]
Therefore, as shown in FIG. 3, the deflection center O of the vertical deflection coil is not the center of the longitudinal direction portion 5, but the crossover portion on the tube surface side in the longitudinal direction portion to the crossover portion on the electron gun side in the longitudinal direction portion. It is the center of the part indicated by J in the figure.
As described above, in the deflection coil of the present invention, the position of the deflection center O can be freely set regardless of the coil length, so that the length of the longitudinal direction portion of the vertical deflection coil involved in horizontal deflection power consumption is increased. The length is defined by the required length of the horizontal deflection coil, and the deflection center involved in the convergence can be freely set in the longitudinal direction portion.
[0027]
As described above, when a vertical vertical deflection coil having a deflection center point that can be freely set in the longitudinal direction portion of the deflection coil is incorporated into the horizontal deflection coil, the horizontal deflection The difference between the deflection centers of the coil and the vertical deflection coil is freely set with respect to the deflection center of the horizontal deflection coil.
Therefore, it can be assembled by the method shown in FIG.
[0028]
Similarly, when the present invention is used for a vertical horizontal deflection coil, the deflection center of the horizontal deflection coil does not need to be positioned at the center of the longitudinal direction portion, and matches the characteristics that require the effective length of the deflection coil. By setting the longitudinal direction portion and the effective length portion with different dimensions, the horizontal deflection coil can be set regardless of the size of the vertical deflection coil.
[0029]
(Reference example)
Hereinafter, reference examples will be described.
In FIG. 4, 9 is a saddle type horizontal deflection coil, which is provided with a pair of longitudinal direction portions 10 and connecting wire portions 11, 12, 13 arranged so as to connect the longitudinal direction portions at three locations. 5 of the crossover portion, in illustration of the central third of the crossover portion 13, the longitudinal portion 10 direction and the longitudinal portion 13 a substantially vertical portion 13 b extending substantially in the same direction It is provided in both directions.
[0030]
Since the third connecting wire portion 13 is configured as described above, the outside of the third connecting wire portion 13 is not a gap like the first connecting wire portion 11 and the second connecting wire portion 12, and the inside of the cathode ray tube is formed inside. Since there is a glass cone portion 14 and the vertical deflection coil 15 is located outside, a gap is formed, and the gap constituting the third crossover portion is a very limited portion.
[0031]
That is, if the area of the longitudinal direction part 13a of the 3rd crossover part 13 is taken large, an effective length part will become short and it will be contrary to the power consumption reduction of a deflection coil. Further, if the area of the longitudinal direction portion and the vertical direction portion 13b is increased, it increases the inner diameter of the vertical deflection coil and the core, which also goes against the reduction of power consumption.
Therefore, in order to make the crossover portion of the horizontal deflection coil in the limited gap portion, the third crossover portion is divided into two directions as in the present invention.
[0032]
【The invention's effect】
As described above, the present invention provides a crossover portion on the tube surface side, a crossover portion on the electron gun side that extends in a direction perpendicular to the longitudinal direction of the coil, a crossover portion on the tube surface side, and the electron gun. And a pair of substantially parallel longitudinal portions disposed in the longitudinal direction and disposed between the crossover portion on the side and extending from the crossover portion on the tube surface side in the longitudinal direction portion. A certain portion toward the crossover portion on the electron gun side is an effective length portion that generates a deflection magnetic field, and a portion between the effective length portion that is the remaining portion and the crossover portion on the electron gun side is a deflection magnetic field. It was set as the crossover part which does not occur.
Accordingly, the effective length portion and the longitudinal direction portion of the deflection coil can be handled completely separated, so that desired convergence characteristics can be obtained and the power consumption of the deflection yoke can be reduced, and the screen size of the cathode ray tube can be reduced. The deflection coil can be configured according to the deflection angle.
[0033]
Similarly, in the reference example of the present invention, the third crossover portion is configured in both the longitudinal direction portion and the substantially vertical direction portion extending substantially in the same direction as the direction of the longitudinal direction portion. It came to be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a vertical vertical direction deflection coil according to the present invention.
2A is a left side view of the coil, FIG. 2B is a front view, and FIG. 2C is a plan view.
FIG. 3 is an explanatory diagram of an effective length and a longitudinal direction portion that determine a deflection coil center of the deflection coil.
FIG. 4 is a plan view showing a reference example.
FIG. 5 is a cross-sectional view of a third crossover portion in a reference example.
FIG. 6 is a half-sectional view of a saddle type deflection yoke device.
FIG. 7 is a perspective view of a conventional vertical saddle type deflection coil.
8A is a left side view of the coil, FIG. 8B is a front view, and FIG. 8C is a plan view.
FIG. 9 is an explanatory diagram of electromagnetic deflection of the vertical deflection coil shown in FIG. 8;
FIG. 10 is an explanatory diagram when the deflection coil center of the vertical deflection coil is moved closer to the electron gun and the horizontal deflection coil is moved closer to the tube surface.
FIG. 11 is an explanatory diagram of an X axis and a Y axis of a screen between cathode lines.
FIG. 12 is a graph in which the horizontal axis represents the distance L from the deflection center to the trend surface, and the vertical axis represents the diagonal pincushion-barrel magnetic field.
FIG. 13 is an explanatory diagram showing an assembly sequence of a deflection coil.
[Explanation of symbols]
1 Horizontal deflection coil
2 Vertical deflection coil
3 core
5, 5a, 5b Longitudinal part
6, 7, 8 Crossover section
10, 10a, 10b Longitudinal part
11, 12, 13 Crossover section

Claims (1)

鞍型水平偏向コイルと鞍型垂直偏向コイルとコアを具備する偏向ヨーク装置において、前記水平偏向コイルもしくは前記垂直偏向コイルのうち少なくとも一方のコイルが、前記コイルの長手方向に対して垂直な方向に延びた管面側の渡り線部と電子銃側の渡り線部と、
前記管面側の渡り線部と前記電子銃側の渡り線部との間に配設され前記長手方向に延びた略平行の一対の長手方向部と、からなる形状を有し、
前記長手方向部において前記管面側の渡り線部から前記電子銃側の渡り線部に向けて一定部分を偏向磁界が発生する実効長部とし、その残余部分である前記実効長部と前記電子銃側の渡り線部との間の部分を偏向磁界が発生しない渡り線部とすることを特徴とする偏向ヨーク装置。
In a deflection yoke device comprising a vertical horizontal deflection coil, vertical vertical deflection coil, and core, at least one of the horizontal deflection coil and the vertical deflection coil is in a direction perpendicular to the longitudinal direction of the coil. A crossover portion on the tube surface side and a crossover portion on the electron gun side,
Having a shape composed of a pair of substantially parallel longitudinal direction portions arranged between the crossover portion on the tube surface side and the crossover portion on the electron gun side and extending in the longitudinal direction,
In the longitudinal direction portion, a fixed portion is an effective length portion that generates a deflection magnetic field from the crossover portion on the tube surface side toward the crossover portion on the electron gun side, and the effective length portion that is the remaining portion and the electron A deflection yoke device characterized in that a portion between the crossover portion on the gun side is a crossover portion that does not generate a deflection magnetic field .
JP29606094A 1994-11-30 1994-11-30 Deflection yoke device Expired - Fee Related JP3865322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29606094A JP3865322B2 (en) 1994-11-30 1994-11-30 Deflection yoke device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29606094A JP3865322B2 (en) 1994-11-30 1994-11-30 Deflection yoke device

Publications (2)

Publication Number Publication Date
JPH08153477A JPH08153477A (en) 1996-06-11
JP3865322B2 true JP3865322B2 (en) 2007-01-10

Family

ID=17828589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29606094A Expired - Fee Related JP3865322B2 (en) 1994-11-30 1994-11-30 Deflection yoke device

Country Status (1)

Country Link
JP (1) JP3865322B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355448B1 (en) * 1999-12-10 2002-10-11 엘지전자주식회사 Deflection Yoke of Broun tube
KR100355447B1 (en) * 1999-12-10 2002-10-11 엘지전자주식회사 deflection Yoke of Broun tube

Also Published As

Publication number Publication date
JPH08153477A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
US4415831A (en) Electromagnetic deflection type picture tube device
US5506469A (en) Display tube with deflection unit comprising field deflection coils of the semi-saddle type
US5049847A (en) Deflection yoke with auxiliary coils for stray line radiation suppression
KR910001417B1 (en) Device for displaying television and deflection unit thereof
CA1173486A (en) Combination of a monochrome cathode-ray tube and a deflection unit having a high resolution
US4233582A (en) Deflection yoke for use with wide angle deflection system
US4882521A (en) Deflection yoke for a color cathode ray tube
JPH0542776B2 (en)
JPH0471300B2 (en)
US4728915A (en) Deflection yoke for a color cathode ray tube
JP3865322B2 (en) Deflection yoke device
JPH0370337B2 (en)
US5258734A (en) Beam deflector for a cathode ray tube
JP3102868B2 (en) Combination of display tube and deflection unit to reduce vertical raster error
JPH02216738A (en) Deflection yoke
JP3502634B2 (en) Electron beam deflector for cathode ray tube
US6617777B2 (en) Electron gun for cathode ray tube
JPS5839000Y2 (en) deflection yaw
JP2619541B2 (en) Deflection yoke and cathode ray tube device equipped with the yoke
JPS62170133A (en) Deflecting yoke
JPH07192654A (en) Deflecting yoke and cathode-ray tube display device
JP4147136B2 (en) Magnetic device for correcting geometric defects in images for cathode ray tubes.
KR100814867B1 (en) Deflection apparatus for cathode ray tubes
JP3330160B2 (en) Display device
JP2753019B2 (en) Deflection device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

LAPS Cancellation because of no payment of annual fees