JP3865161B2 - Metallized polyester film - Google Patents

Metallized polyester film Download PDF

Info

Publication number
JP3865161B2
JP3865161B2 JP21990497A JP21990497A JP3865161B2 JP 3865161 B2 JP3865161 B2 JP 3865161B2 JP 21990497 A JP21990497 A JP 21990497A JP 21990497 A JP21990497 A JP 21990497A JP 3865161 B2 JP3865161 B2 JP 3865161B2
Authority
JP
Japan
Prior art keywords
film
capacitor
polyester film
metallized
metallized polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21990497A
Other languages
Japanese (ja)
Other versions
JPH1154362A (en
Inventor
範夫 田中
研司 畑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP21990497A priority Critical patent/JP3865161B2/en
Publication of JPH1154362A publication Critical patent/JPH1154362A/en
Application granted granted Critical
Publication of JP3865161B2 publication Critical patent/JP3865161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属化ポリエステルフィルムコンデンサに用いられるコンデンサ用金属化ポリエステルフィルムに関する。
【0002】
【従来の技術】
コンデンサ用金属化ポリエステルフィルムは、例えば特公昭57−154823号公報に記載されているように、ベースとなるポリエステルフィルムにアルミニウム、亜鉛、若しくは亜鉛とアルミニウムの合金を片面または両面に真空蒸着して作られる。また、真空蒸着の際には、マージンと呼ばれる非蒸着部を作成し、金属化ポリエステルフィルムの端に非蒸着部を備えている。
【0003】
金属化ポリエステルフィルムは、コンデンサに加工すると、自己回復性、良好な絶縁特性を示し、また小型化が可能な点からコンデンサに広く使用されている。
【0004】
【発明が解決しようとする課題】
金属化ポリエステルコンデンサは、一般に次のような工程で生産される。リール状に巻き上げられた金属化フィルムを、素子巻し、それをプレスする。このプレス体にメタリコンを施した後、リード線を付け、油含浸槽内に浸漬して油を含浸させ、ケースに入れて検査工程に送る。このうちのプレス工程では、ヒートプレスと呼ばれる90〜150℃に加熱された熱板に10〜100kg/cm2 の圧力で素子巻されたコンデンサ用蒸着フィルムを1〜15分間程度挟む方法が従来より一般的に行われている。
【0005】
しかし、近年ではコンデンサの生産効率をより追求し、コールドプレスと呼ばれる常温で500〜1500kg/cm2 の圧力で0.1〜2秒間程度の瞬間的なプレス方法が採用されつつある。このようなコールドプレス方式ではプレス時間が短いため、コンデンサ用金属化ポリエステルフィルムの密着性が悪く、プレスされたコンデンサ素子の形態保持力が弱く十分な容量が出ない、高い圧力でプレスされるためコンデンサ用蒸着フィルムがダメージを受け、コンデンサとしての絶縁特性が悪い等の問題が時々発生する。
【0006】
本発明の課題は、かかる問題を改善し、コールドプレスにおいても、コンデンサ素子の形態保持力が十分で且つコンデンサでの絶縁特性が良好なコンデンサ用金属化ポリエステルフィルムを提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、コールドプレスにおいてもコンデンサ素子の形態保持力が十分で、且つ、コンデンサでの絶縁特性が良好なコンデンサ用金属化ポリエステルフィルムについて検討した結果、コンデンサ用金属化ポリエステルフィルムの長手方向の伸びと強度を適正に選択することで、コンデンサ素子の形態保持力、コンデンサでの絶縁特性が良好な金属化フィルムが得られることを見出し、本発明に到達した。
【0008】
すなわち、本発明に係るコンデンサ用金属化ポリエステルフィルムは、ポリエステルフィルムの片面若しくは両面に、金属蒸着を施したコンデンサ用蒸着フィルムであって、30%の伸びを得るときの強度(F30)が13〜24kg/mm2 の範囲にあることを特徴とするものからなる。
【0009】
【発明の実施の形態】
本発明のコンデンサ用金属化ポリエステルフィルムに用いる蒸着金属は、導電性を有するものであれば特に限定されるものではないが、通常、フィルムコンデンサに使用されるアルミニウム、亜鉛、銅、金、銀、錫、またはこれらの合金が好ましく、特にアルミニウムは他の金属に比べ同一抵抗値でも厚みが薄く、自己回復性が良好である点から一層好ましい。
【0010】
ベースフィルムであるポリエステルフィルムの種類も特に限定はされないが、フィルムを30%伸ばした時の応力F30値が13〜24kg/mm2 の範囲に限定されることが必要である。F30値が13kg/mm2 未満では、コンデンサ素子の形態保持力は良好であるが、コンデンサでの絶縁特性が低下し好ましくない。24kg/mm2 を超えると、コンデンサでの絶縁特性は良好だが、コンデンサ素子の形態保持力が不足となり、コンデンサの容量が出ない。
【0011】
更に、示差走査熱量計で測定されたコンデンサ用金属化ポリエステルフィルムのガラス転移にまつわる吸熱ピーク(Tg)が85〜105℃で、吸熱量(Uw)が0.2〜0.8mj/mgを示す場合、コンデンサの絶縁性は一層好ましいものとなる。
【0012】
また、コンデンサ用金属化ポリエステルフィルムの滑り値がフィルム幅当たり3〜15g/mmであると、コンデンサの絶縁特性、コンデンサ素子の形態保持力は極めて良好である。滑り値は、金属化ポリエステルフィルムの持つ静電気とベースフィルムの表面粗さ(中心線平均表面粗さRa)とで決められるが、滑り値をフィルム幅当たり3〜15g/mmとするには、Raを20〜40nmとし、好ましくはリール表層で測定した表面電位を20〜40Vとすることで得られる。
【0013】
次に、本発明のコンデンサ用金属化ポリエステルフィルムの製造方法について説明する。
まずベースとなるポリエステルチップを溶融し、フィルムの表面粗さを所望の粗さ状態に形成する外粒を含むチップを溶融した溶融液を、濃度が均一になるように十分攪拌する。この溶融したゲル状の液をキャスティングロールと呼ばれる冷却ロール上に厚さが均一になるように押し出し、キャスティングロールより引き出した厚いフィルム(シート)を二軸延伸により配向せしめる。延伸方法としては同時二軸延伸、逐次二軸延伸などを用いることができる。延伸の倍率を適度に調整することでフィルム長手方向のF30値が13〜24kg/mm2 のポリエステルフィルムが得られる。
【0014】
このポリエステルフィルム上に真空蒸着法にて電極となる金属を設ける。尚、真空蒸着時にオイルマージン法、あるいはテープマージン法にてマージンと呼ばれる非蒸着部分を設ける。
【0015】
示差走査熱量計による所望のTg及びUwについては、上述のベースフィルム製造中の温度条件にても得られるが、一定期間の加熱処理等によっても目的の値に調節することが可能である。一定期間の加熱処理は蒸着の前後いずれでも可能であるが、特に蒸着後の蒸着フィルムの一定期間の加熱処理はその後の加熱工程が無いことからTg及びUwの調整が容易である。
【0016】
蒸着フィルムを一定の幅にスリットしたリール状のフィルムの滑り値は、上述のベースフィルムに加える外粒の大きさと量で決定される中心線平均表面粗さRaによって決められるが、さらに蒸着フィルムをリール状にスリットする直前に電圧を印加し静電気を付与することによっても調整することが可能である。
【0017】
【作用】
本発明では、ベースとなるポリエステルフィルムのF30値、Ra、Tg、及びUwを適度に調整し、蒸着品リール状態の表面電位を適当な値とすることで、コールドプレスの際に金属化ポリエステルフィルムが受けるダメージを最小限にとどめ、コンデンサの絶縁抵抗と素子の形態保持性の両立を可能にしたものである。
【0018】
[物性の測定方法ならびに効果の測定方法]
(1)フィルム長手方向の強度(F30
フィルムを10mm幅に切断し、長手方向に100mmの長さで引張強度試験機(島津製作所社製:IM−100)を用いて測定した。フィルムの厚さをtmmとし、引張速度100mm/minで測定し、フィルムの長さが130%となったときの強力W130 から次式によってF30を算出した。
30=W130 /(t×10mm)
【0019】
(2)ガラス転移にまつわる吸熱ピーク(Tg)及び吸熱量(Uw)
SEIKOinstruments社製DSC(示差走査熱量計:ROC220)を用いて測定した。測定は試料5mgをDSCにセットし、−50℃まで冷却し、その後40℃/minの速度で170℃まで昇温したときの等速昇温に必要な熱量の変化を測定し、コンデンサ用金属化ポリエステルフィルムでの熱量変化を調べた。ガラス転移にまつわる吸熱ピーク(Tg)及び吸熱量(Uw)は、図1に示すようなDSCで得られる等速熱量変化の変極点のピーク温度をTgとし、変極開始点温度から変極終了温度までの熱量をUwとした。図1において、特性Aは、等速昇温に必要な熱量を示しており、途中のC部で変化している。また、特性Bは、サンプルフィルムが受けている熱量の変化を示しており、DSCでフィルムの吸発熱の際のエネルギ量(UW)を測定したものである。このエネルギ量の+側は発熱、−側は吸熱を示している。そして、特性Bの変化量(図の斜線部Dの面積)を熱量Uwとして求めた。
【0020】
(3)中心線平均表面粗さ(Ra)
小坂製作所製表面粗さ計(ET−30HK)を用い測定した。測定はフィルムの長手方向に10000倍、幅方向に200倍で測定し、平均粗さ(SRa)を測定した。
【0021】
(4)滑り値
リール状に巻き取られたコンデンサ用金属化フィルムの外径を170mmとしたときに、リールから金属化フィルムを約1m巻き戻し、図2に示すように金属化フィルム11を約50cmを弛ませた状態でリール12にフィルムを重ね、フィルムの先端にプッシュプルゲージ((株)イマダ社製DPS−2)13を付け、該プッシュプルゲージ13を引っ張った。この状態でフィルムリール上ですべり始めた荷重をすべり値とした。尚、リール上でフィルムを引っ張る際の方向は図2に示すように水平方向とした。
【0022】
(5)リール表層の表面電位
リール状に巻き取られたコンデンサ用金属化フィルムを、皆藤製作所製素子巻機KHW−2HCにて約70回転/分の速度でφ9mmの巻芯に巻き取りながら表面電位計を用いて測定した。表面電位計はSSV−40(KAWAGUTI
ELECTRIC WORKS製)を使用し、表面電位計の検出部とフィルムの距離は6mmとした。
【0023】
(6)絶縁性
コンデンサ用金属化フィルムの絶縁性は厚さ4.5μmのコンデンサ用金属化フィルムでコンデンサ素子を作成し、超絶縁計(東亜電波製:SM−8210)を用いて測定した。測定条件は、コンデンサに30秒間充電し、測定モードに切換えて30秒後に測定した。コンデンサ素子は以下の条件で作成した。
▲1▼素子巻:KAW−U2B40/78(皆藤製作所製)を用いφ5mmの巻芯に金属化ポリエステルフィルム2枚を重ね500回転巻き取った。
▲2▼プレス:1000kg/cm2 の圧力で、常温で行った。
▲3▼メタリコン:メタリコン剤は帝国メタル製アルミメタルTM−105を用い、溶射時の空気圧を5kg/cm2 の圧力で行った。
▲4▼リード線付け:リード線は錫メッキ軟導線を用い、電気溶接にてメタリコン剤と溶接した。
▲5▼含浸:含浸剤はマイクロクリスタリンワックス180°F(日本石油製)を用い、コンデンサ素子を真空乾燥の後、105℃にて3時間の真空含浸を行った。
▲6▼ケース外装:含浸が完了したコンデンサ素子を常温に戻してから、PBT(ポリブチレンテレフタレート)の樹脂ケースに入れ、常温硬化型エポキシ樹脂(サンユレジン製 EX−664)を充填し、40℃で硬化した。
尚、絶縁性の判定はコンデンサ25個を測定し、絶縁抵抗の平均値(X) 及び標準偏差(σ)を求め、Xが1000MΩ未満を不良、X−3σが1000を超え、Xが1000〜2000MΩを良、X−3σが1000を超え、Xが2000MΩを超えるものを優とした。
【0024】
(7)コンデンサ素子の形態保持性
図3(c)に示すように、プレスが完了したコンデンサ素子21を定盤22の上に置き、素子21のR部分に当て板23a、23bを当ててプッシュプルゲージ24で押し、R部分から荷重をかけた。この荷重を徐々に増やし、図3(a)、(b)に示すように変化してコンデンサ素子の巻芯部分が開いた時のプッシュプルゲージ24の示す値で読みとり、荷重の大小でフィルム層間密着性を判定した。尚、各水準の荷重は、プレス後のコンデンサ素子10個で測定し、その平均値で判定し、荷重の平均値が12kg以上のものを○(良好)、10〜7kgのものを△(使用可)、7kg未満のものを×(使用不可)とした。
【0025】
【実施例】
本発明の実施例1〜10、および比較例1〜9を表1に示す。表1に示したF30の異なるいくつかの種類の4μmの厚さのポリエステルフィルムにアルミニウムを真空蒸着し、フィルムのもつ表面平均粗さ(Ra)と金属化フィルムをスリットする際に電圧を印加し、すべり値を調整して試料を作成した。尚、吸熱ピーク(Tg)及び吸熱量(Ug)は、蒸着前のフィルムの保管状態、真空蒸着の蒸着条件、蒸着後の金属化フィルムの保管状態等で種々の値に調節が可能だが、本実施例では蒸着後に蒸着フィルムを加熱処理して調節した。尚、本実施例では蒸着金属をアルミニウムに、フィルムの厚みを4μmとしたが、これらに限定されるものではない。各試料のパラメータ値は、表1に示した通りであるが、各パラメータの値が本発明の範囲内であれば、コールドプレスにおいてもコンデンサ素子の形態保持力が十分で、且つコンデンサでの絶縁特性が良好であるが、そうでない場合は目的を達し得ないことがわかる。
【0026】
【表1】

Figure 0003865161
【0027】
【発明の効果】
本発明によれば、特定条件下における蒸着フィルムの強度を特定範囲にコントロールすることにより、さらに加えてすべり値を適切に調整することにより、コールドプレスにおけるコンデンサ素子の形態保持力、コンデンサでの絶縁特性を両立させることが可能になる。
【図面の簡単な説明】
【図1】示差走査熱量計での測定結果の一例を示すチャートである。
【図2】すべり値測定方法を示す斜視図である。
【図3】コンデンサ素子の形態保持性の評価方法の説明図であり、(a)、(b)はコンデンサ素子の巻芯が開く際の状態変化を示し、(c)は測定方法を示している。
【符号の説明】
11 フィルム
12 フィルムを巻いたリール
13 プッシュプルゲージ
21 プレスしたコンデンサ素子
22 定盤
23a、23b 当て板
24 プッシュプルゲージ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metallized polyester film for a capacitor used in a metallized polyester film capacitor.
[0002]
[Prior art]
For example, as described in Japanese Patent Publication No. 57-154823, a metallized polyester film for capacitors is prepared by vacuum-depositing aluminum, zinc, or an alloy of zinc and aluminum on one or both sides of a polyester film as a base. It is done. In vacuum deposition, a non-deposition portion called a margin is created, and the non-deposition portion is provided at the end of the metalized polyester film.
[0003]
Metallized polyester films are widely used in capacitors because they exhibit self-healing properties and good insulating properties when processed into capacitors, and can be miniaturized.
[0004]
[Problems to be solved by the invention]
Metalized polyester capacitors are generally produced by the following process. The metallized film wound up in a reel shape is wound on an element and pressed. After metallicon is applied to the pressed body, a lead wire is attached, immersed in an oil impregnation tank to impregnate the oil, put in a case, and sent to the inspection process. In the press process, a method of sandwiching a capacitor-deposited film wound with a device at a pressure of 10 to 100 kg / cm 2 on a hot plate heated to 90 to 150 ° C., called a heat press, for about 1 to 15 minutes is conventionally known. Generally done.
[0005]
However, in recent years, the production efficiency of capacitors has been further pursued, and an instantaneous pressing method called cold pressing at a normal temperature of 500 to 1500 kg / cm 2 for about 0.1 to 2 seconds is being adopted. In such a cold press method, since the pressing time is short, the adhesiveness of the metallized polyester film for capacitors is poor, the shape holding power of the pressed capacitor element is weak and sufficient capacity does not come out, and it is pressed at a high pressure. The capacitor vapor deposition film is damaged, and problems such as poor insulation characteristics as a capacitor sometimes occur.
[0006]
An object of the present invention is to improve such a problem and to provide a metallized polyester film for a capacitor, which has sufficient shape retention of a capacitor element and good insulation characteristics in a capacitor even in a cold press.
[0007]
[Means for Solving the Problems]
As a result of studying a metallized polyester film for a capacitor that has sufficient shape holding power of a capacitor element even in a cold press and has good insulation characteristics in a capacitor, the inventors have found that the longitudinal direction of the metallized polyester film for a capacitor is The inventors have found that a metallized film having good shape retention of the capacitor element and good insulating properties can be obtained by appropriately selecting the elongation and strength of the capacitor.
[0008]
That is, the metallized polyester film for a capacitor according to the present invention is a capacitor-deposited film obtained by performing metal deposition on one or both sides of the polyester film, and has a strength (F 30 ) of 13 when an elongation of 30% is obtained. It is characterized by being in the range of ˜24 kg / mm 2 .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The vapor-deposited metal used for the metallized polyester film for capacitors of the present invention is not particularly limited as long as it has conductivity, but usually aluminum, zinc, copper, gold, silver, used for film capacitors, Tin or an alloy thereof is preferable. In particular, aluminum is more preferable because it is thinner than other metals even if it has the same resistance value and has good self-healing properties.
[0010]
The type of the polyester film as the base film is not particularly limited, but it is necessary that the stress F 30 value when the film is stretched by 30% is limited to a range of 13 to 24 kg / mm 2 . If the F 30 value is less than 13 kg / mm 2 , the shape retention of the capacitor element is good, but the insulating characteristics of the capacitor are lowered, which is not preferable. If it exceeds 24 kg / mm 2 , the insulation characteristics of the capacitor are good, but the capacity retention of the capacitor element becomes insufficient and the capacity of the capacitor does not come out.
[0011]
Furthermore, when the endothermic peak (Tg) concerning the glass transition of the metallized polyester film for a capacitor measured by a differential scanning calorimeter is 85 to 105 ° C. and the endothermic amount (Uw) is 0.2 to 0.8 mj / mg. In addition, the insulation of the capacitor is more preferable.
[0012]
Further, when the slip value of the metallized polyester film for a capacitor is 3 to 15 g / mm per film width, the insulating properties of the capacitor and the shape retention of the capacitor element are very good. The slip value is determined by the static electricity of the metalized polyester film and the surface roughness of the base film (centerline average surface roughness Ra). To set the slip value to 3 to 15 g / mm per film width, Ra is used. Can be obtained by setting the surface potential measured at the reel surface layer to 20 to 40V.
[0013]
Next, the manufacturing method of the metallized polyester film for capacitors of the present invention will be described.
First, a polyester chip as a base is melted, and a melt obtained by melting chips containing outer grains that form a film with a desired surface roughness is sufficiently stirred so that the concentration is uniform. The melted gel-like liquid is extruded on a cooling roll called a casting roll so as to have a uniform thickness, and a thick film (sheet) drawn from the casting roll is oriented by biaxial stretching. As the stretching method, simultaneous biaxial stretching, sequential biaxial stretching, or the like can be used. A polyester film having an F 30 value of 13 to 24 kg / mm 2 in the longitudinal direction of the film can be obtained by appropriately adjusting the stretching ratio.
[0014]
A metal to be an electrode is provided on the polyester film by a vacuum deposition method. A non-deposition portion called a margin is provided by an oil margin method or a tape margin method during vacuum deposition.
[0015]
The desired Tg and Uw by the differential scanning calorimeter can be obtained even under the above-described temperature conditions during the production of the base film, but can also be adjusted to the target values by heat treatment for a certain period. Although the heat treatment for a certain period can be performed either before or after the vapor deposition, the heat treatment for a certain period of time on the vapor-deposited film after the vapor deposition can easily adjust Tg and Uw because there is no subsequent heating step.
[0016]
The slip value of a reel-shaped film slit into a certain width is determined by the centerline average surface roughness Ra determined by the size and amount of the outer grains added to the base film. Adjustment can also be made by applying a voltage and applying static electricity immediately before slitting in a reel shape.
[0017]
[Action]
In the present invention, F 30 value of the polyester film as a base, Ra, Tg, and moderately adjusts the Uw, by the surface potential of the deposition products reeled an appropriate value, metallized polyester during cold press This minimizes the damage to the film and enables both the insulation resistance of the capacitor and the shape retention of the element.
[0018]
[Methods for measuring physical properties and methods for measuring effects]
(1) Strength in the longitudinal direction of the film (F 30 )
The film was cut into a width of 10 mm, and measured with a tensile strength tester (manufactured by Shimadzu Corporation: IM-100) at a length of 100 mm in the longitudinal direction. The film thickness was tmm, the film was measured at a tensile speed of 100 mm / min, and F 30 was calculated from the strength W 130 when the film length was 130% by the following formula.
F 30 = W 130 / (t × 10mm)
[0019]
(2) Endothermic peak (Tg) and endothermic amount (Uw) related to glass transition
The measurement was performed using a DSC (differential scanning calorimeter: ROC220) manufactured by SEIKO Instruments. Measurement was performed by setting 5 mg of the sample on the DSC, cooling to −50 ° C., and then measuring the change in the amount of heat required for constant temperature rise when the temperature was raised to 170 ° C. at a rate of 40 ° C./min. The change in calorific value of the modified polyester film was examined. The endothermic peak (Tg) and endothermic amount (Uw) associated with the glass transition are Tg, which is the inflection point peak temperature of constant velocity calorie change obtained by DSC as shown in FIG. The amount of heat up to was Uw. In FIG. 1, the characteristic A indicates the amount of heat required for constant temperature increase, and changes in the middle part C. Characteristic B indicates a change in the amount of heat received by the sample film, and is obtained by measuring the amount of energy (UW) when the film absorbs and generates heat by DSC. The + side of this energy amount indicates heat generation, and the − side indicates heat absorption. Then, the change amount of the characteristic B (the area of the hatched portion D in the figure) was obtained as the heat amount Uw.
[0020]
(3) Centerline average surface roughness (Ra)
Measurement was made using a surface roughness meter (ET-30HK) manufactured by Kosaka Seisakusho. The measurement was performed at 10,000 times in the longitudinal direction of the film and 200 times in the width direction, and the average roughness (SRa) was measured.
[0021]
(4) Sliding value When the outer diameter of the metallized film for a capacitor wound up in a reel shape is 170 mm, the metallized film is rewound by about 1 m from the reel, and the metallized film 11 is unwound as shown in FIG. The film was stacked on the reel 12 with 50 cm loosened, a push-pull gauge (DPS-2 manufactured by Imada Co., Ltd.) 13 was attached to the tip of the film, and the push-pull gauge 13 was pulled. The load that began to slide on the film reel in this state was taken as the slip value. The direction of pulling the film on the reel was the horizontal direction as shown in FIG.
[0022]
(5) Surface potential of reel surface layer The surface of the capacitor metallized film wound up in the form of a reel while being wound around a φ9 mm core at a speed of about 70 revolutions / minute by the element winding machine KHW-2HC manufactured by Minato Seisakusho. Measurements were made using an electrometer. The surface electrometer is SSV-40 (KAWAGUTI
ELECTRIC WORKS) was used, and the distance between the surface electrometer detector and the film was 6 mm.
[0023]
(6) The insulation of the metallized film for an insulating capacitor was measured using a superinsulator (SM-8210, manufactured by Toa Denki Co., Ltd.) by forming a capacitor element with a metallized film for a capacitor having a thickness of 4.5 μm. Measurement conditions were such that the capacitor was charged for 30 seconds and then switched to the measurement mode and measured 30 seconds later. The capacitor element was created under the following conditions.
(1) Element winding: KAW-U2B40 / 78 (manufactured by Minato) was used, and two metallized polyester films were stacked on a core of φ5 mm and wound up by 500 turns.
(2) Press: Performed at room temperature at a pressure of 1000 kg / cm 2 .
{Circle around (3)} Metallicon: As a metallicon agent, Teikoku Metal's aluminum metal TM-105 was used, and the air pressure during thermal spraying was 5 kg / cm 2 .
(4) Lead wire attachment: The lead wire was a tin-plated soft conductor, and was welded to the metallicon agent by electric welding.
(5) Impregnation: Microcrystalline wax 180 ° F. (manufactured by Nippon Petroleum) was used as the impregnating agent, and the capacitor element was vacuum-dried and then vacuum impregnated at 105 ° C. for 3 hours.
(6) Case exterior: After the impregnated capacitor element is returned to room temperature, it is placed in a PBT (polybutylene terephthalate) resin case and filled with a room temperature curable epoxy resin (EX-664 made by Sanyuresin) at 40 ° C. Cured.
Insulation is determined by measuring 25 capacitors, and obtaining the average value (X) and standard deviation (σ) of insulation resistance. X is less than 1000 MΩ, X-3σ is over 1000, and X is 1000 to 1000 2000 MΩ was good, X-3σ was over 1000, and X was over 2000 MΩ.
[0024]
(7) Capability retention of capacitor element As shown in FIG. 3 (c), the capacitor element 21 that has been pressed is placed on the surface plate 22, and the abutting plates 23a and 23b are applied to the R portion of the element 21 and pushed. It pushed with the pull gauge 24 and the load was applied from R part. Gradually increase this load, change as shown in FIGS. 3 (a) and 3 (b), and read the value indicated by the push-pull gauge 24 when the core portion of the capacitor element is opened. Adhesion was determined. The load at each level is measured with 10 capacitor elements after pressing and is determined by the average value. When the average load value is 12 kg or more, ○ (good), 10-7 kg is △ (use Yes), less than 7 kg was marked as x (unusable).
[0025]
【Example】
Examples 1 to 10 of the present invention and Comparative Examples 1 to 9 are shown in Table 1. Aluminum is vacuum-deposited on 4 μm-thick polyester films with different types of F 30 shown in Table 1, and voltage is applied when slitting the surface average roughness (Ra) of the film and the metallized film. Then, the sample was prepared by adjusting the slip value. The endothermic peak (Tg) and endothermic amount (Ug) can be adjusted to various values depending on the storage state of the film before vapor deposition, the vapor deposition conditions of vacuum vapor deposition, the storage state of the metallized film after vapor deposition, etc. In the examples, the deposited film was heat-treated after the deposition. In this embodiment, the deposited metal is aluminum and the thickness of the film is 4 μm. However, the present invention is not limited to these. The parameter values of each sample are as shown in Table 1. However, if the value of each parameter is within the range of the present invention, the shape retention of the capacitor element is sufficient even in the cold press, and the insulation with the capacitor is performed. It can be seen that the characteristics are good, but otherwise the purpose cannot be achieved.
[0026]
[Table 1]
Figure 0003865161
[0027]
【The invention's effect】
According to the present invention, by controlling the strength of the vapor deposition film under a specific condition within a specific range, and additionally adjusting the slip value appropriately, the shape holding power of the capacitor element in the cold press, the insulation with the capacitor It becomes possible to achieve both characteristics.
[Brief description of the drawings]
FIG. 1 is a chart showing an example of measurement results with a differential scanning calorimeter.
FIG. 2 is a perspective view showing a slip value measuring method.
FIGS. 3A and 3B are explanatory views of a method for evaluating the shape retention of a capacitor element, wherein FIGS. 3A and 3B show a change in state when the core of the capacitor element is opened, and FIG. 3C shows a measurement method; Yes.
[Explanation of symbols]
11 Film 12 Film-wound reel 13 Push-pull gauge 21 Pressed capacitor element 22 Surface plate 23a, 23b Base plate 24 Push-pull gauge

Claims (3)

ポリエステルフィルムの片面若しくは両面に、金属蒸着を施したコンデンサ用蒸着フィルムであって、30%の伸びを得るときの強度(F30)が13〜24kg/mm2 の範囲にあることを特徴とするコンデンサ用金属化ポリエステルフィルム。A capacitor-deposited film having a metal vapor-deposited on one or both sides of a polyester film, and having a strength (F 30 ) in the range of 13 to 24 kg / mm 2 when 30% elongation is obtained. Metalized polyester film for capacitors. 請求項1に記載のコンデンサ用金属化ポリエステルフィルムを巻回、または積層してなるコンデンサ。A capacitor formed by winding or laminating the metallized polyester film for a capacitor according to claim 1. 請求項1に記載のコンデンサ用金属化ポリエステルフィルムを用いて巻回後コールドプレス法にて成形したことを特徴とするコンデンサ。A capacitor characterized by being formed by a cold press method after winding using the metallized polyester film for a capacitor according to claim 1.
JP21990497A 1997-07-31 1997-07-31 Metallized polyester film Expired - Fee Related JP3865161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21990497A JP3865161B2 (en) 1997-07-31 1997-07-31 Metallized polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21990497A JP3865161B2 (en) 1997-07-31 1997-07-31 Metallized polyester film

Publications (2)

Publication Number Publication Date
JPH1154362A JPH1154362A (en) 1999-02-26
JP3865161B2 true JP3865161B2 (en) 2007-01-10

Family

ID=16742861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21990497A Expired - Fee Related JP3865161B2 (en) 1997-07-31 1997-07-31 Metallized polyester film

Country Status (1)

Country Link
JP (1) JP3865161B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3130549B1 (en) 2013-01-25 2018-01-17 Toppan Printing Co., Ltd. Flexible package

Also Published As

Publication number Publication date
JPH1154362A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
JP5762501B2 (en) Electrode structure, capacitor and battery
JPH0444365B2 (en)
US3775549A (en) Electrically insulating polyproplyene laminate paper and oil-impregnated electric power cable using said laminate paper
WO2002101770A1 (en) Metallized film capacitor
JP3865161B2 (en) Metallized polyester film
JP3437750B2 (en) Method for producing laminated paper for electrical insulation and oil immersion power cable using the laminated paper
JP5917242B2 (en) Aluminum alloy foil for secondary battery electrode and manufacturing method thereof
CN109994691A (en) Separator, method for preparing the same, and electrochemical device comprising the same
JP2932550B2 (en) Biaxially stretched plastic film for capacitor and capacitor using the same
US3644987A (en) Method for manufacturing superconductors
JP2007194310A (en) Solid electrolytic capacitor, and method of manufacturing same
CN114550995A (en) Copper-plated superconducting strip structure and preparation method thereof
JP5043262B2 (en) Water shielding tape
US3293076A (en) Process of forming a superconductor
JP3874138B2 (en) Capacitor and metallized dielectric for capacitor
JP4211301B2 (en) Capacitor film and capacitor using the same
WO2023189919A1 (en) Capacitor and method for manufacturing same
KR100465363B1 (en) Electrically insulated laminates, methods of making them and oil impregnated power cables
JPH0130286B2 (en)
CN216928175U (en) Copper-plated superconducting strip structure
JP3948291B2 (en) Nb3Al compound superconducting wire and method for producing the same
CN117410502A (en) Composite metal foil, composite current collector and battery
JPS62103909A (en) Lead laminate tape for cable covering
JPH0616735Y2 (en) Evaporation foam
CN117912748A (en) Polymer conductive film, preparation method, energy storage device and battery shielding film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060915

A61 First payment of annual fees (during grant procedure)

Effective date: 20060928

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20091013

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20101013

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20111013

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20121013

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees