JP3865129B2 - LC-MS analysis method and mobile phase thereof - Google Patents

LC-MS analysis method and mobile phase thereof Download PDF

Info

Publication number
JP3865129B2
JP3865129B2 JP2002237803A JP2002237803A JP3865129B2 JP 3865129 B2 JP3865129 B2 JP 3865129B2 JP 2002237803 A JP2002237803 A JP 2002237803A JP 2002237803 A JP2002237803 A JP 2002237803A JP 3865129 B2 JP3865129 B2 JP 3865129B2
Authority
JP
Japan
Prior art keywords
mobile phase
acid
esi
trifpa
tfa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002237803A
Other languages
Japanese (ja)
Other versions
JP2004077276A (en
Inventor
栄一 山本
泰 石濱
直樹 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Eisai R&D Management Co Ltd
Original Assignee
Shimadzu Corp
Eisai R&D Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Eisai R&D Management Co Ltd filed Critical Shimadzu Corp
Priority to JP2002237803A priority Critical patent/JP3865129B2/en
Publication of JP2004077276A publication Critical patent/JP2004077276A/en
Application granted granted Critical
Publication of JP3865129B2 publication Critical patent/JP3865129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【0001】
【発明の属する技術分野】
液体クロマトグラフィー−マススペクトロメトリー(LC−MS)を用いた分離分析分野に関し、例えばペプチドやタンパク質を分析するプロテオーム解析や細胞内代謝物を分析するメタボローム解析など、LC−MSを使って分析する方法と、その分析方法で使用される移動相に関するものである。
【0002】
【従来の技術】
従来、LC−MSでペプチドなどを分析する場合、試料成分の高分離と高感度検出が要求されるため、LCでの高分離効率とMSでの高イオン化効率を両立させる移動相添加剤として、主にギ酸とトリフルオロ酢酸(TFA)が用いられてきた。
【0003】
【発明が解決しようとする課題】
しかし、ギ酸を用いた場合は、MSの感度向上という点では効果があるものの、試料成分の分離が悪い場合が多く、分離性能の点で課題がある。
一方、TFAは、試料成分の分離という点では効果があるものの、検出感度がギ酸に比べて低くなってしまうので、高感度化という点で課題がある。
【0004】
そこで、感度と分離性能の両立を実現できるような移動相添加剤が望まれている。
本発明は、LC−MSにおいて、ペプチドや塩基性薬物などを分析する場合、適当な添加剤を移動相に添加することにより、感度と分離性能の両立を実現できるようにすることを目的とするものである。
【0005】
【課題を解決するための手段】
本発明の分析方法は、LC−MSにおいて、移動相に3,3,3−トリフルオロプロピオン酸(TriFPA)及び3,3,3−トリフルオロメチル−2−トリフルオロメチルプロピオン酸(TFTFPA)のうちのいずれかを添加することを特徴とする。
また、本発明の移動相は、LC−MSで使用される移動相であり、上記の試薬を添加した移動相である。
【0006】
本発明では、移動相に上記の部分フッ素化カルボン酸をイオンペアー試薬として添加したことにより、LCでの高い分離効率を維持した状態で、MSでの高イオン化効率を保持した高感度検出が可能になり、例えばペプチドやタンパク質などの高感度精密分離が可能となる。
【0007】
【発明の実施の形態】
LC−MSとして液体クロマトグラフィー−エレクトロスプレー−マススペクトロメトリー(LC−ESI−MS)システムを用いて、LCでの高分離効率と、MSでの高イオン化効率を両立させる移動相添加剤として、ジフルオロ酢酸(DFA)、3,3,3−トリフルオロプロピオン酸(TriFPA)及び3,3,3−トリフルオロメチル−2−トリフルオロメチルプロピオン酸(TFTFPA)を見出し、その有用性を確認した。
【0008】
【実施例】
(液体クロマトグラフィー)
a)塩基性薬物(アテノロール、スルピリド、ナドロール、テトラヒドロゾリン)分析
高速液体クロマトグラフ(HPLC)としてLC−10Avpシステム(株式会社島津製作所製)を使用した。
【0009】
カラムとしてL−カラムODS(登録商標:CERI社)(内径2.0mm×長さ150mm)を使用し、移動相として水−アセトニトリル混液を用い、移動相には10mmol/Lの酸(酢酸、ギ酸、DFA、TFA、2,2,3,3−テトラフルオロプロピオン酸(TetraFPA)、TriFPA、TFTFPA)をそれぞれ添加した。移動相の流速は200μL/minとした。溶出はアセトニトリル濃度のリニアグラジエントを採用した(10−90%アセトニトリル/25min)。
【0010】
試料として塩基性薬物混合試料(濃度100μg/mL)2μLをHPLCに注入し(注入量;200ng)、検出波長UV231nmで得たLC−UVクロマトグラムから各薬物のピークについて、USP(United States Pharmacopoeia)法により、理論段数(N)及び保持比(k)を求めた。
【0011】
b)ペプチド(アンギオテンシンI、II、III)分析
高速液体クロマトグラフとしてLC−10Avpシステムを使用した。
カラムとしてCadenza CD-C18 ODS (内径2.0mm、長さ75mm)を使用し、移動相、流速は前述の条件を適用し、アセトニトリル濃度のグラジエント条件は10−60%アセトニトリル/10minとした。
【0012】
試料としてペプチド混合試料(濃度;100マイクロg/mL)2μLをHPLCに注入し(注入量;200ng)、検出波長UV231nmでLC−UVクロマトグラムを得た。
【0013】
(インフュ−ジョン−マススペクトロメトリー)
質量分析計としてAPI−III(アプライドバイオシステムズ社製)を使用した。10mmol/Lの酸(酢酸、ギ酸、DFA、TFA、TetraFPA、TriFPA、TFTFPA)を含む薬物溶液及びアンギオテンシンII溶液(濃度;500ng/mL、30%メタノール)をシリンジポンプで5μL/minでMSに導入した。オリフィス電圧を60kV、イオンスプレー電圧を5kVとし、ポジティブモードで測定した。スキャンはスキャンスピード5msec/scan、スキャン範囲200−600amuで20回積算により、ESI−MSスペクトルを記録した。
【0014】
(液体クロマトグラフィー−マススペクトロメトリー)
試料として塩基性薬物混合試料を用い、液体クロマトグラフィー−エレクトロスプレー−マススペクトロメトリー(LC−ESI−MS)分析を行った。HPLCカラムはCadenza CD-C18(登録商標:インタクト社)(内径2.0mm、長さ75mm)を用いた。
【0015】
液体クロマトグラフィーは、前述のように、移動相として水−アセトニトリル混液を用い、移動相には10mmol/Lの酸を添加し、移動相の流速は200μL/minとした。溶出はアセトニトリル濃度のリニアグラジエントを採用した(10−90%アセトニトリル/10min)。
【0016】
マススペクトロメトリーは、前述のように、API−III(アプライドバイオシステムズ社製)を使用し、オリフィス電圧を60kV、イオンスプレー電圧を5kVとし、ポジティブモードで測定した。スキャンはスキャンスピード5msec/scan、スキャン範囲200−600amuで20回積算により、ESI−MSスペクトルを記録した。
試料(濃度;300ng/mL)2μLをHPLCに注入し(注入量;600pg)、LC−ESI−MSクロマトグラムを得た。
【0017】
(結果)
各種の移動相添加剤を用いたLCクロマトグラムより得られた薬物ピークのk値及びN値をそれぞれ図1及び図2に示す。
DFA、TetraFPA、TriFPA及びTFTFPAは、酢酸、ギ酸に比べ、TFAと同様にk及びNに大きな値を示した。このことより、DFA、TetraFPA、TriFPA及びTFTFPAはTFAと同様に塩基性化合物に対し、ペアードイオンとして機能していることが示唆された。
【0018】
一方、インフュ−ジョンESI−MSで得られたESI−MSシグナル強度比(TFAを1.00)を図3に示す。
DFA、TriFPA及びTFTFPAは、酢酸、ギ酸と同様にTFAに比べ、各薬物、ペプチドに対し、高いESI−MSシグナル強度を与えた。
【0019】
TriFPAを用いた分析例として、塩基性薬物混合試料のLC−ESI−MSクロマトグラムを図4に示す。図4の各図の左上の数値は質量数、右上の数値はピーク強度を表す。化合物とも良好なピーク形状とシグナル/ノイズ比を示している。
【0020】
さらに、図5に示されるように、酢酸、TriFPA、TFAをそれぞれ移動相に添加したときのアンギオテンシン混合試料のLC−UVクロマトグラムにおいて、良好な分離が確認された。
【0021】
図6に10mmol/LのTriFPAを移動相に添加したときのアンギオテンシン混合試料(試料濃度;300ng/mL)2μLをHPLCに注入し(注入量;600pg)、得たLC−ESI−MSクロマトグラムを示す。図7にそのとき分離された各アンギオテンシンのマススペクトルを示す。このように、各アンギオテンシンの良好な分離が確認された。
【0022】
以上のように、DFA、TriFPA及びTFTFPAは、LCにおいて、トリフルオロ酢酸と同様に揮発性のペアードイオンとして機能し、塩基性化合物(アテノロール、スルピリド、ナドロール、テトラヒドロゾリン)、ペプチド(アンギオテンシンI、II、III)に対して、酢酸、ギ酸に比べ、高い理論段数(N)と良好な保持比(k)を与えた。更に、これらの酸を用いた場合の化合物のESI−MSシグナル強度はトリフルオロ酢酸よりも高く、ギ酸、酢酸と同等であった。
このことから、塩基性化合物やペプチドのLC−ESI−MSによる分析にとって、DFA、TriFPA及びTFTFPAは高感度と高分離効率を両立させる有用なイオンペアー試薬であることが明らかとなった。
【0023】
【発明の効果】
本発明により、部分フッ素化化合物であるTriFPA及びTFTFPAをLC−MSの移動相に用いることで、トリフルオロ酢酸(TFA)と同様に揮発性のペアードイオンとして機能し、塩基性化合物(アテノロール、スルピリド、ナドロール、テトラヒドロゾリン)、ペプチド(アンギオテンシンI、II、III)に対して、酢酸、ギ酸に比べ、高い理論段数(N)と良好な保持比(k)を与えることができる。更に、これらの酸を用いた場合の化合物のESI−MSシグナル強度はTFAよりも高く、ギ酸、酢酸と同等であった。
今後、ペプチドの高感度LC−MS分析において広く利用されることが期待される。
【図面の簡単な説明】
【図1】各種の移動相添加剤を用いたLCクロマトグラムより得られた薬物ピークのk値を示す図である。
【図2】各種の移動相添加剤を用いたLCクロマトグラムより得られた薬物ピークのN値を示す図である。
【図3】各種の移動相添加剤を用いたインフュ−ジョンESI−MSで得られたESI−MSシグナル強度比(TFAを1.00)を示す図である。
【図4】添加剤としてTriFPAを用いたときの塩基性薬物混合試料のLC−ESI−MSクロマトグラムを示す図である。
【図5】酢酸、TriFPA、TFAをそれぞれ移動相に添加したときのアンギオテンシン混合試料のLC−UVクロマトグラムを示す図である。
【図6】 TriFPAを移動相に添加したときのアンギオテンシン混合試料のLC−ESI−MSクロマトグラムを示す図である。
【図7】そのときの各アンギオテンシンのマススペクトルを示す図である。
[0001]
BACKGROUND OF THE INVENTION
In the field of separation analysis using liquid chromatography-mass spectrometry (LC-MS), for example, analysis using LC-MS, such as proteome analysis for analyzing peptides and proteins and metabolome analysis for analyzing intracellular metabolites And the mobile phase used in the analysis method.
[0002]
[Prior art]
Conventionally, when analyzing peptides and the like by LC-MS, high separation of sample components and high sensitivity detection are required, so as a mobile phase additive that achieves both high separation efficiency in LC and high ionization efficiency in MS, Mainly formic acid and trifluoroacetic acid (TFA) have been used.
[0003]
[Problems to be solved by the invention]
However, when formic acid is used, although it is effective in terms of improving the sensitivity of MS, there are many cases where the separation of sample components is poor, and there is a problem in terms of separation performance.
On the other hand, TFA is effective in terms of separation of sample components, but has a problem in terms of increasing sensitivity because detection sensitivity is lower than formic acid.
[0004]
Therefore, a mobile phase additive that can realize both sensitivity and separation performance is desired.
An object of the present invention is to achieve both sensitivity and separation performance by adding an appropriate additive to a mobile phase when analyzing a peptide or a basic drug in LC-MS. Is.
[0005]
[Means for Solving the Problems]
In the LC-MS, the analysis method of the present invention comprises 3,3,3-trifluoropropionic acid (TriFPA) and 3,3,3-trifluoromethyl-2-trifluoromethylpropionic acid (TFTFPA) as mobile phases. Any one of them is added.
Moreover, the mobile phase of the present invention is a mobile phase used in LC-MS, and is a mobile phase to which the above-mentioned reagent is added.
[0006]
In the present invention, by adding the above partially fluorinated carboxylic acid to the mobile phase as an ion pair reagent, high sensitivity detection with high ionization efficiency in MS is possible while maintaining high separation efficiency in LC. Thus, for example, highly sensitive and precise separation of peptides and proteins becomes possible.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As a mobile phase additive that achieves both high separation efficiency in LC and high ionization efficiency in MS using liquid chromatography-electrospray-mass spectrometry (LC-ESI-MS) system as LC-MS, difluoro Acetic acid (DFA), 3,3,3-trifluoropropionic acid (TriFPA) and 3,3,3-trifluoromethyl-2-trifluoromethylpropionic acid (TFTPA) were found and their usefulness was confirmed.
[0008]
【Example】
(Liquid chromatography)
a) LC-10Avp system (manufactured by Shimadzu Corporation) was used as a high performance liquid chromatograph (HPLC) for analysis of basic drugs (atenolol, sulpiride, nadolol, tetrahydrozoline).
[0009]
An L-column ODS (registered trademark: CERI) (inner diameter: 2.0 mm × length: 150 mm) was used as a column, a water-acetonitrile mixture was used as a mobile phase, and 10 mmol / L acid (acetic acid, formic acid was used as the mobile phase. , DFA, TFA, 2,2,3,3-tetrafluoropropionic acid (TetraFPA), TriFPA, TFTFPA) were added respectively. The flow rate of the mobile phase was 200 μL / min. For elution, a linear gradient of acetonitrile concentration was employed (10-90% acetonitrile / 25 min).
[0010]
As a sample, 2 μL of a basic drug mixed sample (concentration: 100 μg / mL) was injected into HPLC (injection amount: 200 ng), and the peak of each drug was determined from the LC-UV chromatogram obtained at a detection wavelength of UV 231 nm. The number of theoretical plates (N) and retention ratio (k) were determined by the method.
[0011]
b) Peptide (Angiotensin I, II, III) Analysis The LC-10Avp system was used as a high performance liquid chromatograph.
Cadenza CD-C18 ODS (inner diameter 2.0 mm, length 75 mm) was used as a column, the mobile phase and flow rate were applied with the above-mentioned conditions, and the gradient condition of acetonitrile concentration was 10-60% acetonitrile / 10 min.
[0012]
As a sample, 2 μL of a peptide mixed sample (concentration: 100 microg / mL) was injected into HPLC (injection amount: 200 ng), and an LC-UV chromatogram was obtained at a detection wavelength of UV 231 nm.
[0013]
(Infusion-Mass Spectrometry)
API-III (Applied Biosystems) was used as a mass spectrometer. Drug solution containing 10 mmol / L acid (acetic acid, formic acid, DFA, TFA, TetraFPA, TriFPA, TFTFPA) and angiotensin II solution (concentration: 500 ng / mL, 30% methanol) are introduced into MS at 5 μL / min with a syringe pump did. The orifice voltage was set to 60 kV, the ion spray voltage was set to 5 kV, and measurement was performed in the positive mode. In the scan, an ESI-MS spectrum was recorded by integrating 20 times at a scan speed of 5 msec / scan and a scan range of 200 to 600 amu.
[0014]
(Liquid chromatography-mass spectrometry)
Using a basic drug mixed sample as a sample, liquid chromatography-electrospray-mass spectrometry (LC-ESI-MS) analysis was performed. As the HPLC column, Cadenza CD-C18 (registered trademark: Intact) (inner diameter: 2.0 mm, length: 75 mm) was used.
[0015]
As described above, in liquid chromatography, a water-acetonitrile mixture was used as the mobile phase, 10 mmol / L acid was added to the mobile phase, and the flow rate of the mobile phase was 200 μL / min. A linear gradient of acetonitrile concentration was employed for elution (10-90% acetonitrile / 10 min).
[0016]
As described above, for mass spectrometry, API-III (manufactured by Applied Biosystems) was used, the orifice voltage was set to 60 kV, the ion spray voltage was set to 5 kV, and measurement was performed in the positive mode. In the scan, an ESI-MS spectrum was recorded by integrating 20 times at a scan speed of 5 msec / scan and a scan range of 200 to 600 amu.
2 μL of a sample (concentration: 300 ng / mL) was injected into HPLC (injection amount: 600 pg) to obtain an LC-ESI-MS chromatogram.
[0017]
(result)
The k value and N value of the drug peak obtained from the LC chromatogram using various mobile phase additives are shown in FIGS. 1 and 2, respectively.
DFA, TetraFPA, TriFPA, and TFTFPA showed large values for k and N, as with TFA, compared to acetic acid and formic acid. From this, it was suggested that DFA, TetraFPA, TriFPA and TFTFPA function as a paired ion with respect to a basic compound like TFA.
[0018]
On the other hand, the ESI-MS signal intensity ratio (TFA is 1.00) obtained by infusion ESI-MS is shown in FIG.
DFA, TriFPA and TFTFPA gave higher ESI-MS signal intensity to each drug and peptide than TFA as well as acetic acid and formic acid.
[0019]
As an analysis example using TriFPA, an LC-ESI-MS chromatogram of a basic drug mixed sample is shown in FIG. The numerical value at the upper left of each figure in FIG. 4 represents the mass number, and the numerical value at the upper right represents the peak intensity. Both compounds show good peak shape and signal / noise ratio.
[0020]
Furthermore, as shown in FIG. 5, good separation was confirmed in the LC-UV chromatogram of the angiotensin mixed sample when acetic acid, TriFPA, and TFA were added to the mobile phase.
[0021]
In FIG. 6, 2 μL of an angiotensin mixed sample (sample concentration: 300 ng / mL) when 10 mmol / L TriFPA was added to the mobile phase was injected into the HPLC (injection amount: 600 pg), and the obtained LC-ESI-MS chromatogram was obtained. Show. FIG. 7 shows a mass spectrum of each angiotensin separated at that time. Thus, good separation of each angiotensin was confirmed.
[0022]
As described above, DFA, TriFPA, and TFTFPA function as volatile paired ions in LC, as in trifluoroacetic acid, and include basic compounds (atenolol, sulpiride, nadolol, tetrahydrozoline), peptides (angiotensin I, II). , III) gave a higher theoretical plate number (N) and better retention ratio (k) than acetic acid and formic acid. Furthermore, the ESI-MS signal intensity of the compound when these acids were used was higher than that of trifluoroacetic acid, and was equivalent to formic acid and acetic acid.
From this, it became clear that DFA, TriFPA, and TFTFPA are useful ion pair reagents that achieve both high sensitivity and high separation efficiency for LC-ESI-MS analysis of basic compounds and peptides.
[0023]
【The invention's effect】
According to the present invention, by using TriFPA and TFTFPA, which are partially fluorinated compounds, as a mobile phase of LC-MS, it functions as a volatile paired ion like trifluoroacetic acid (TFA), and a basic compound (atenolol, Compared to acetic acid and formic acid, a higher theoretical plate number (N) and a better retention ratio (k) can be given to sulpiride, nadolol, tetrahydrozoline) and peptides (angiotensin I, II, III). Furthermore, the ESI-MS signal intensity of the compounds when these acids were used was higher than that of TFA and was equivalent to formic acid and acetic acid.
In the future, it is expected to be widely used in high-sensitivity LC-MS analysis of peptides.
[Brief description of the drawings]
FIG. 1 is a diagram showing k values of drug peaks obtained from LC chromatograms using various mobile phase additives.
FIG. 2 is a diagram showing N values of drug peaks obtained from LC chromatograms using various mobile phase additives.
FIG. 3 is a diagram showing an ESI-MS signal intensity ratio (TFA is 1.00) obtained by infusion ESI-MS using various mobile phase additives.
FIG. 4 is a diagram showing an LC-ESI-MS chromatogram of a basic drug mixed sample when TriFPA is used as an additive.
FIG. 5 is an LC-UV chromatogram of an angiotensin mixed sample when acetic acid, TriFPA, and TFA are added to the mobile phase, respectively.
FIG. 6 shows an LC-ESI-MS chromatogram of an angiotensin mixed sample when TriFPA is added to the mobile phase.
FIG. 7 is a diagram showing a mass spectrum of each angiotensin at that time.

Claims (2)

液体クロマトグラフィー−マススペクトロメトリーにおいて、
移動相に3,3,3−トリフルオロプロピオン酸及び3,3,3−トリフルオロメチル−2−トリフルオロメチルプロピオン酸のうちのいずれかを添加することを特徴とするLC−MS分析方法。
In liquid chromatography-mass spectrometry,
An LC-MS analysis method characterized by adding any of 3,3,3-trifluoropropionic acid and 3,3,3-trifluoromethyl-2-trifluoromethylpropionic acid to a mobile phase.
液体クロマトグラフィー−マススペクトロメトリーで使用される移動相において、
3,3,3−トリフルオロプロピオン酸及び3,3,3−トリフルオロメチル−2−トリフルオロメチルプロピオン酸のうちのいずれかを添加したことを特徴とするLC−MS用移動相。
In the mobile phase used in liquid chromatography-mass spectrometry,
A mobile phase for LC-MS, wherein any one of 3,3,3-trifluoropropionic acid and 3,3,3-trifluoromethyl-2-trifluoromethylpropionic acid is added.
JP2002237803A 2002-08-19 2002-08-19 LC-MS analysis method and mobile phase thereof Expired - Lifetime JP3865129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002237803A JP3865129B2 (en) 2002-08-19 2002-08-19 LC-MS analysis method and mobile phase thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002237803A JP3865129B2 (en) 2002-08-19 2002-08-19 LC-MS analysis method and mobile phase thereof

Publications (2)

Publication Number Publication Date
JP2004077276A JP2004077276A (en) 2004-03-11
JP3865129B2 true JP3865129B2 (en) 2007-01-10

Family

ID=32021402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002237803A Expired - Lifetime JP3865129B2 (en) 2002-08-19 2002-08-19 LC-MS analysis method and mobile phase thereof

Country Status (1)

Country Link
JP (1) JP3865129B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101035213B1 (en) 2005-11-08 2011-05-18 도호쿠 다이가쿠 Method of quantifying membrane protein by using mass spectrometer
US7834313B2 (en) * 2008-08-08 2010-11-16 Quest Diagnostics Investments Incorporated Mass spectrometry assay for plasma-renin
JP5299956B2 (en) 2008-09-29 2013-09-25 国立大学法人東北大学 Peptides used for simultaneous protein quantification of metabolic enzymes using a mass spectrometer
JP5317336B2 (en) 2009-02-23 2013-10-16 国立大学法人東北大学 Peptide for evaluation, artificial standard protein, and protein quantification method for protein quantification using mass spectrometer
CN101788490B (en) * 2010-02-10 2012-06-27 中国科学院长春应用化学研究所 Method for simultaneously carrying out chiral separation analysis on anisodamine, atenolol and metoprolol
JP5682986B2 (en) 2011-07-22 2015-03-11 国立大学法人東北大学 Method for producing stable isotope-labeled target peptide fragments in mass spectrometry
CN106018586B (en) * 2016-05-12 2018-05-25 山西省食品药品检验所 The detection method of 7 kinds of sleep class chemicals of detection simultaneously
CN108956795B (en) * 2018-04-20 2021-08-06 公安部物证鉴定中心 Method for detecting imidazoline drugs in biological body fluid for criminal investigation

Also Published As

Publication number Publication date
JP2004077276A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
Davis et al. Automated LC–LC–MS–MS platform using binary ion-exchange and gradient reversed-phase chromatography for improved proteomic analyses
Petritis et al. Parameter optimization for the analysis of underivatized protein amino acids by liquid chromatography and ionspray tandem mass spectrometry
Lim et al. Current developments in LC-MS for pharmaceutical analysis
Sickmann et al. Identification of proteins from human cerebrospinal fluid, separated by two‐dimensional polyacrylamide gel electrophoresis
Bringmann et al. Analysis of the glucosinolate pattern of Arabidopsis thaliana seeds by capillary zone electrophoresis coupled to electrospray ionization‐mass spectrometry
Li et al. Supercritical fluid chromatography‐mass spectrometry for chemical analysis
Tengattini et al. Hydrophilic interaction liquid chromatography-mass spectrometry as a new tool for the characterization of intact semi-synthetic glycoproteins
Galmier et al. Identification of degradation products of diclofenac by electrospray ion trap mass spectrometry
Figueiredo et al. Quantitation of drugs via molecularly imprinted polymer solid phase extraction and electrospray ionization mass spectrometry: benzodiazepines in human plasma
JP3865129B2 (en) LC-MS analysis method and mobile phase thereof
Desai et al. Analysis of native amino acid and peptide enantiomers by high‐performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry
Gao et al. Evaluation of volatile ion-pair reagents for the liquid chromatography–mass spectrometry analysis of polar compounds and its application to the determination of methadone in human plasma
Chassaigne et al. Speciation of metal complexes with biomolecules by reversed-phase HPLC with ion-spray and inductively coupled plasma mass spectrometric detection
Schubert et al. Impact of solvent conditions on separation and detection of basic drugs by micro liquid chromatography–mass spectrometry under overloading conditions
Esposito et al. Qualitative detection of desmopressin in plasma by liquid chromatography–tandem mass spectrometry
Niwa et al. Measurement of the novel decapeptide cetrorelix in human plasma and urine by liquid chromatography–electrospray ionization mass spectrometry
Adachi et al. Determination of vitamin D3 and D2 in multi-vitamin tablets by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry
EP3746203B1 (en) Difluoroacetic acid ion pairing reagent for high sensitivity, high resolution lc-ms of biomolecules
Govaerts et al. Hyphenation of liquid chromatography to ion trap mass spectrometry to identify minor components in polypeptide antibiotics
Heinig et al. An improved LC‐MS/MS method for the determination of taspoglutide in plasma and urine using orthogonal HILIC–RP column switching, ultra‐performance LC separation and ‘wrong‐way‐round’electrospray ionization
Yamaguchi et al. Development of a sensitive liquid chromatography‐electrospray ionization mass spectrometry method for the measurement of KW‐5139 in rat plasma
Banno et al. Assay of nicergoline and three metabolites in human plasma and urine by high-performance liquid chromatography—atmospheric pressure ionization mass spectrometry
Parker et al. Nanoscale packed capillary liquid chromatography—electrospray ionization mass spectrometry: analysis of penicillins and cephems
Abbood et al. Hydrophilic interaction liquid chromatography for dalargin separation from its structural analogues and side products
Uçaktürk et al. Effect of the mobile phase compositions on the confirmation analysis of some prohibited substances in sport by LC–ESI–MS/MS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060927

R150 Certificate of patent or registration of utility model

Ref document number: 3865129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term