JP3864472B2 - Brominated diphenylethane mixture, method for producing the same, and flame-retardant resin composition comprising the same - Google Patents

Brominated diphenylethane mixture, method for producing the same, and flame-retardant resin composition comprising the same Download PDF

Info

Publication number
JP3864472B2
JP3864472B2 JP33846196A JP33846196A JP3864472B2 JP 3864472 B2 JP3864472 B2 JP 3864472B2 JP 33846196 A JP33846196 A JP 33846196A JP 33846196 A JP33846196 A JP 33846196A JP 3864472 B2 JP3864472 B2 JP 3864472B2
Authority
JP
Japan
Prior art keywords
diphenylethane
mixture
bromine
same
brominated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33846196A
Other languages
Japanese (ja)
Other versions
JPH10175893A (en
Inventor
秀雄 属
巧 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP33846196A priority Critical patent/JP3864472B2/en
Publication of JPH10175893A publication Critical patent/JPH10175893A/en
Application granted granted Critical
Publication of JP3864472B2 publication Critical patent/JP3864472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、難燃剤として高難燃性能及び高機械物性能を発現できる1分子当たりの平均臭素化数が7.6〜9.2個であり、かつ色調が白色である臭素化ジフェニルエタン混合物、その製造方法及びそれを配合してなる難燃性樹脂組成物に関するものである。
【0002】
【従来の技術】
ジフェニルエタン臭素化物として、1分子当りの平均臭素化数が6〜7個の臭素化物及び芳香族環の水素を全て臭素に置換した10臭素化物が難燃剤として知られているが、過去に本発明の混合物についての具体的な例示はなく、本発明は新規な組成の混合物である。以下に、従来品の物性及び製造方法を示す。
【0003】
平均臭素化数が7個のジフェニルエタン臭素化物は、ガスクロマトグラフィーによる分析でヘキサブロモ体を40〜55面積%、ヘプタブロモ体を12〜25面積%、オクタブロモ体を15〜25面積%、ノナブロモ体を10〜15面積%及びデカブロモ体を0〜5面積%の範囲で含有する融点範囲が約160〜210℃の灰色若しくは黄色帯びた混合物粉末である。
【0004】
また、平均臭素化数が10個のジフェニルエタン臭素化物は、ガスクロマトグラフィーによる分析でデカブロモ体を実質95面積%以上含有する融点範囲が約350℃の白色粉末である。
【0005】
これらジフェニルエタン臭素化物の製造は、臭化第2鉄、四塩化ジルコニウム及び三塩化アルミニウム等のルイス酸触媒の存在下、臭素化試剤である臭素とジフェニルエタンとを反応させることで行っている(特開平4−211623号公報、特開平5−85946号公報、特開平5−246912号公報、米国特許第5008477号明細書、米国特許5030778号明細書、米国特許第5124496号明細書等)。
【0006】
【発明が解決しようとする課題】
従来より、樹脂の難燃化にジフェニルエタン臭素化物が使用されてきたが、従来品における難燃性能及び機械物性能は未だ満足すべきものではなく、また近年の難燃規制の強化、配合した難燃性樹脂組成物の性能のさらなる向上要求により、従来品の欠点を補完する剤の開発が望まれていた。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を鑑み、ジフェニルエタン臭素化物について鋭意検討を行った。その結果、1分子当りの平均臭素化数が7.6〜9.2個の範囲にある臭素化ジフェニルエタン混合物が白色でなおかつ樹脂に配合した場合、驚くべきことに従来のジフェニルエタン臭素化物に比べ低配合量で高い難燃性能を発現できるだけでなく、著しく優れた機械物性能を発現することを見出し本発明を完成するに至った。
【0008】
すなわち、本発明は平均臭素化数が7.6〜9.2個の範囲にある白色の臭素化ジフェニルエタン混合物、その製造方法及びそれを配合してなる難燃性樹脂組成物である。
【0009】
以下、本発明を詳細に説明する。
【0010】
本発明の臭素化ジフェニルエタン混合物の物性は、以下の通りである。
【0011】
(1)生成物は、ガスクロマトグラフィー分析において、ヘキサブロモジフェニルエタン、ヘプタブロモジフェニルエタン、オクタブロモジフェニルエタン、ノナブロモジフェニルエタン及びデカブロモジフェニルエタンの混合物であり、特にノナブロモジフェニルエタンを16〜50面積%、デカブロモジフェニルエタンを6〜40面積%の範囲で含有し、融点が190〜320℃の範囲にあり、ハンター白色度が80以上である白色の粉体である。この組成及び融点範囲に於いてのみ、高難燃性能及び高機械物性能が発現される。
【0012】
(2)生成物の1分子当りの平均臭素化数は、7.6〜9.2個の範囲であり、また生成物中の臭素含有率は74〜81%、塩素含有率は0.2〜2%の範囲である。
【0013】
尚、本発明に於いていう平均臭素化数とは、臭素化ジフェニルエタン混合物を元素分析することにより得られた組成比を元に算出した1分子当りの平均臭素化数である。
【0014】
次に、この臭素化ジフェニルエタン混合物の製造方法について説明する。
【0015】
本発明の臭素化ジフェニルエタン混合物の製造方法は、ルイス酸触媒の存在下、反応に不活性な溶媒に原料のジフェニルエタンを溶解させ、これに臭素化試剤である塩化臭素を滴下し反応させることによって行われる。反応液は、塩化臭素の滴下途中より臭素化ジフェニルエタン混合物が析出し、最終的にスラリー溶液として得られる。尚、臭素化試剤に臭素を用いて本発明の化合物と同様な平均臭素化数の化合物を製造した場合、生成物に激しい着色が生じるため好ましくない。
【0016】
本発明の方法で使用される塩化臭素は、通常臭素と塩素を5℃以下で混合することで調製が可能であるが、予め臭素を反応で使用する有機溶媒に溶解した後、塩素と混合しても良い。臭素と塩素の仕込み比は、本質的には等モル比でも問題ないが製品中の塩素含有量を少なくするため、塩素に対して臭素を1.0〜1.5モル比過剰に使用しても問題ない。尚、塩化臭素は市販のものを使用しても差支えない。
【0017】
塩化臭素の添加量は、仕込みのジフェニルエタンに対して11〜20モル比であり、使用する触媒の種類、反応条件により決める。尚、目的とする平均臭素化数は、反応後得られる臭素化ジフェニルエタン混合物の難燃性能及び機械物性能を考慮して1分子当り7.6〜9.2個の範囲である。
【0018】
本発明で使用される反応溶媒としては、ジフェニルエタンを溶解させ、かつ塩化臭素に対し不活性であるか、または極めて低い反応性を有するものが適用可能である。一般的に、ハロゲン化炭化水素系溶剤が使用され、例えば塩化メチレン、クロロホルム、エチレンジクロライド、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、臭化メチレン、ブロモホルム、エチレンジブロマイド等である。有機溶媒の使用量としては、特に限定するものではないが、反応時のスラリー粘度、経済性等により反応に具するジフェニルエタンに対して重量比で3〜50倍量用いるのが望ましい。
【0019】
本発明の方法で使用されるルイス酸触媒としては、特に限定するものではないが、一般的に塩化第二鉄、臭化第二鉄等のハロゲン化鉄類、三塩化アンチモン、五塩化アンチモン、三臭化アンチモン等のハロゲン化アンチモン類、三塩化チタン、四塩化チタン等のハロゲン化チタン類、三塩化硼素、三臭化硼素等のハロゲン化硼素類及び三フッ化硼素ジエチルエーテル錯体等のハロゲン化硼素錯体等が挙げられ、特に好ましくは三塩化アンチモン、五塩化アンチモン、三臭素化アンチモン等のハロゲン化アンチモン類である。これらは、単独若しくは混合して使用しても差支えない。
【0020】
触媒の使用量は、通常、仕込みのジフェニルエタンに対して0.5〜30モル%の範囲であり、好ましくは5〜20モル%の範囲である。0.5モル%以下では臭素化反応速度が低く、30モル%以上では加えた場合では経済的でない。
【0021】
反応温度は、通常−30〜20℃の範囲であり、好ましくは−5〜10℃の範囲である。
【0022】
塩化臭素の滴下時間は、触媒の種類及び添加量、そして反応時の反応熱の発生状態により調整を行うが、通常1〜12時間程度である。塩化臭素滴下後、直ちに後処理を行っても良いが所定の温度で1〜12時間熟成を行っても良い。
【0023】
反応終了後、得られたスラリー溶液中の余剰の塩化臭素を例えば、ヒドラジン、亜硫酸水素ナトリウム等の還元剤を添加して還元した後、濾過、酸洗浄、水洗及び乾燥を行って目的のジフェニルエタン臭素化物を白色粉末として得る。
【0024】
以上の方法で得られた臭素化ジフェニルエタン混合物は、難燃剤として使用される。例えば熱可塑性樹脂及び/又は熱硬化性樹脂に配合することにより当該樹脂の機械物性能を低下させることなく高い難燃性能を発現することができる。
【0025】
本発明の臭素化ジフェニルエタン混合物が適用可能な樹脂としては、具体的に例えれば、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル、ポリウレタン、アルキド樹脂、エポキシ樹脂等の熱硬化性樹脂や、低密度ポリエチレン、高密度ポリエチレン、エチレン−ビニルアセテート共重合体、ポリスチレン、耐衝撃性ポリスチレン(以下、HIPSと略記する)、発泡ポリスチレン、アクリロニトリル−スチレン共重合体、アクリロニトリル−スチレン−ブタジエン共重合体(以下、ABSと略記する)、ポリプロピレン、石油樹脂、ポリメチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンエーテル等の熱可塑性樹脂が挙げられ、さらには熱可塑性樹脂を2種類以上混合したポリカーボネート−ABS等に代表されるポリマーアロイ等も例示できる。これらのうち、低密度ポリエチレン、高密度ポリエチレン、エチレン−ビニルアセテート共重合体、ポリスチレン、耐衝撃性ポリスチレン、発泡ポリスチレン、アクリロニトリル−スチレン共重合体、ABS、ポリプロピレン、石油樹脂、ポリメチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンエーテル等の熱可塑性樹脂及び熱可塑性樹脂を2種類以上を混合したポリカーボネート−ABS等に代表されるポリマーアロイが好適な樹脂として例示される。
【0026】
本発明の臭素化ジフェニルエタン混合物の樹脂への配合量としては、配合する樹脂の種類や目的とする難燃性能により異なり、特に限定するものではないが、通常樹脂100重量部に対して5〜50重量部配合する。
【0027】
本発明の臭素化ジフェニルエタン混合物を樹脂に配合するにあたり、難燃性能をより高めるために三酸化アンチモン、アンチモン酸ソーダ等の難燃助剤を添加しても良く、この場合、本発明の臭素化ジフェニルエタン混合物100重量部に対して通常5〜100重量部が添加される。さらに、必要に応じて、ベンゾトリアゾール系の紫外線吸収剤、2,2,6,6−テトラメチルピペリジン誘導体の光安定剤、ヒンダードフェノール系の酸化防止剤等を添加しても良く、この場合、本発明の難燃樹脂組成物100重量部に対して通常0.05〜5重量部添加される。これらのほか必要に応じて帯電防止剤やタルク等の無機充填剤を添加しても良い。
【0028】
本発明の臭素化ジフェニルエタン混合物の樹脂への配合方法としては、熱硬化性樹脂に配合する場合には、例えば予め本発明の臭素化ジフェニルエタン混合物と樹脂原料を混合した後、硬化させれば良く、熱可塑性樹脂に配合する場合には、ロールを用いた混練若しくはバンバリーミキサーを用いて必要な配合試剤を混合し、二軸押出し機等を用いてペレット化しても良い。これらの方法で得られた難燃性樹脂組成物の加工法は、特に限定するものではないが、例えばプレス成型、押出し成型及び射出成型等を行い目的とする成型品を得ることができる。
【0029】
【発明の効果】
本発明の臭素化ジフェニルエタン混合物は、有用な難燃剤であり、特に熱硬化性樹脂及び熱可塑性樹脂に配合した場合、従来品に比べ低配合量で高難燃性能及び高機械物性能を発現できる。
【0030】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
【0031】
尚、製造で得られた生成物について以下の方法により組成分析、融点測定、元素分析及びハンター白色度測定を行った。
【0032】
(1)組成分析は、ガスクロマトグラフィーを用いて行った。以下に測定条件を示す。
【0033】

Figure 0003864472
(2)融点測定は、Yanaco社製融点測定装置を用い、10℃/min.の昇温速度で公知の方法により行った。
【0034】
(3)元素分析は、炭素及び水素元素含量についてヤナギモト社製CHMコーダー(MT−3型)を用いて公知の方法で行った。また、臭素及び塩素元素含量は試料を酸素フラスコで燃焼させた後、ガスの吸収溶液をイオンクロマトグラフィー(東ソー社製イオンクロマトグラフィーシステム)を用いて公知の方法により行った。
【0035】
(4)ハンター白色度の測定は、日本電色工業社製測色色差計(ND−1001DP型)を用いて公知の方法により行った。
【0036】
実施例1
温度計、攪拌機及び冷却管を備えた3Lの四つ口丸底フラスコに臭素1758g(11.0mol)及び塩化メチレン1070gを仕込み、攪拌しながら0℃に冷却した。次いで、塩素ガス780g(11.0mol)をその温度を維持しながら、攪拌下、この臭素溶液に約2時間かけて吹き込み、塩化臭素溶液の調製を行った。尚、塩化臭素の仕込み比は、ジフェニルエタンの仕込み量に対して11モル比であり、また臭素と塩素の仕込み比は等モル比に設定した。
【0037】
続いて、5L四つ口丸底フラスコにジフェニルエタン365g(2.0mol)、三塩化アンチモン46g(0.2mol)及び塩化メチレン2570gを仕込み、室温下、攪拌しながら溶解させた。尚、三塩化アンチモンの仕込み比は、ジフェニルエタンの仕込み量に対して10モル%に相当する。溶解後、この溶液に攪拌しながら、先程の塩化臭素溶液を0℃で約3時間かけて滴下し、滴下後、その温度を維持しながら2時間熟成を行った。塩化臭素溶液の滴下途中より、反応液はスラリー状態となった。滴下終了後、得られたスラリー溶液中の残存塩化臭素を20%ヒドラジン水溶液で還元し、濾過を行った。得られた湿結晶を、5%塩酸水溶液で酸洗浄を行い、水洗を行って最後に120℃の温度で乾燥して白色の臭素化ジフェニルエタン混合物1580gを得た。
【0038】
この得られた臭素化ジフェニルエタン混合物について、融点測定、元素分析、核磁気共鳴スペクトル、ガスクロマトグラフィー,赤外吸収スペクトル及びハンター白色度を測定した結果を以下に示す。
【0039】
(1)融点測定:190〜305℃
(2)元素分析結果
Figure 0003864472
この元素分析結果から、算出した1分子当りの平均臭素化数は7.9個であった。
【0040】
(3)核磁気共鳴スペクトル(CDCl3 ,ppm):δ2.9〜3.9(m,1H)、δ7.4〜7.9(m,0.48H)
(4)ガスクロマトグラフィー(面積%):ヘキサブロモ体を7.0面積%、ヘプタブロモ体を52.0面積%、オクタブロモ体を17.0面積%、ノナブロモ体を16.5面積%、デカブロモ体を7.0面積%及び不純物を0.5面積%
(5)赤外吸収スペクトル(KBr,cm-1):ν=3085,2947,2869,2782,2705,2587,2361,1734,1541,1512,1450,1395,1323,1285,1229,1181,1159,1140,1058,1004,869,765,739,662,649,554
(6)ハンター白色度:86
実施例2
温度計、攪拌機及び冷却管を備えた3Lの四つ口丸底フラスコに臭素1918g(12.0mol)及び塩化メチレン1070gを仕込み、攪拌しながら0℃に冷却した。次いで、塩素ガス851g(12.0mol)をその温度を維持しながら、攪拌下、この臭素溶液に約2時間かけて吹き込み、塩化臭素溶液の調製を行った。尚、塩化臭素の仕込み比は、ジフェニルエタンの仕込み量に対して12モル比であり、また臭素と塩素の仕込み比は等モル比に設定した。
【0041】
続いて、5L四つ口丸底フラスコにジフェニルエタン365g(2.0mol)、三塩化アンチモン46g(0.2mol)及び塩化メチレン2570gを仕込み、室温下、攪拌しながら溶解させた。尚、三塩化アンチモンの仕込み比は、ジフェニルエタンの仕込み量に対して10モル%に相当する。溶解後、この溶液に攪拌しながら、先程の塩化臭素溶液を0℃で約3時間かけて滴下し、滴下後、その温度を維持しながら2時間熟成を行った。塩化臭素溶液の滴下途中より、反応液はスラリー状態となった。滴下終了後、得られたスラリー溶液中の残存塩化臭素を20%ヒドラジン水溶液で還元し、濾過を行った。得られた湿結晶を、5%塩酸水溶液で酸洗浄を行い、水洗を行って最後に120℃の温度で乾燥して白色の臭素化ジフェニルエタン混合物1778gを得た。
【0042】
この得られた臭素化ジフェニルエタン混合物について、ガスクロマトグラフィーによる分析を行った結果、ヘキサブロモ体を1.3面積%、ヘプタブロモ体を12.6面積%、オクタブロモ体を21.3面積%、ノナブロモ体を30.2面積%、デカブロモ体を33.2面積%、及び不純物を1.3面積%含有しており、融点範囲は260〜310℃であった。また、元素分析を行った結果では、炭素が18.6%、水素が0.7%、臭素が78.6%、及び塩素が1.4%であり、この元素分析結果から、算出した1分子当りの平均臭素化数は8.9個であった。更に、色差計による色相分析を行った結果ではハンター白色度が86であった。
【0043】
実施例3
HIPS樹脂(三菱化学製HT−88)に対して、実施例1で得られた臭素化ジフェニルエタン混合物を表1で示す配合量で配合し、200℃でロール混練を行った。続いて、200℃でプレス成型を行った後、評価用試料片を作成し、得られた試料片について、下記の方法により燃焼試験及び機械物性評価を行った。(1)燃焼試験
酸素指数は、スガ試験機製試験装置(ON−1型)を用いて、JIS K 7201に規格されている酸素指数法に準拠して行った。また、UL94V燃焼性試験はスガ試験機製試験装置(UL94V型)を用いて、UL94V垂直燃焼試験方法に準拠して行った。
【0044】
(2)MFR
MFRは、東洋精器製試験装置(T01型)を用いて、JIS K 7210に規格されているMFR測定方法に準拠して行った。
【0045】
(3)耐衝撃性
耐衝撃性は、上島製作所製試験装置(UF−インパクトテスター)を用いて、JIS K 7110に規格されているIzod測定方法に準拠して行った。
【0046】
(4)引張り試験
引張り試験は、オリエンテック社製引張り試験装置(テンシロン UCT−2.5T型)を用いて、JIS K 7113に規格されている引張り試験方法に準拠して行った。
【0047】
【表1】
Figure 0003864472
【0048】
実施例4
HIPS樹脂に対して、実施例2で得られた臭素化ジフェニルエタン混合物を表1で示す配合量で配合し、実施例3と同様な条件でロール混練を行った。続いて、実施例3と同様な条件でプレス成型を行った後、評価用試料片を作成し、得られた試料片について燃焼試験及び機械物性評価を行った。結果を表1にあわせて示す。
【0049】
比較例1
平均臭素化数が7個の臭素化ジフェニルエタン混合物について、HIPS樹脂における難燃性能及び機械物性能の評価を行うため、以下の方法により製造を行った。
【0050】
500mL四つ口丸底フラスコにジフェニルエタン365g(2.0mol)、三塩化アルミニウム18g(0.13mol)及び臭化メチレン3280gを仕込み、室温下、攪拌しながら溶解させた。尚、三塩化アルミニウムの仕込み比は、ジフェニルエタンの仕込み量に対して6.5モル%に相当する。溶解後、この溶液に攪拌しながら、臭素2237g(14.0mol)を15℃で約3時間かけて滴下し、滴下後、その温度を維持しながら2時間熟成を行った。尚、臭素の仕込み比は、ジフェニルエタンの仕込み量に対して7モル比に相当する。尚、臭素の滴下途中より、反応液はスラリー状態となった。滴下終了後、得られたスラリー溶液中の残存塩化臭素を20%ヒドラジン水溶液で還元し、濾過を行った。得られた湿結晶を、5%塩酸水溶液で酸洗浄を行い、水洗を行って最後に120℃の温度で乾燥して黄色のジフェニルエタン7臭素化物1270gを得た。
【0051】
続いて、HIPS樹脂100重量部に対して先程のジフェニルエタン7臭素化物を表1で示す配合量で配合し、実施例1と同様な条件でロール混練を行った。続いて、実施例1と同様な条件でプレス成型を行った後、評価用試料片を作成し、得られた試料片について、下記の方法により燃焼試験及び機械物性評価を行った。結果を表1にあわせて示す。
【0052】
比較例2
HIPS100重量部に対して、市販のジフェニルエタン10臭素化物(Saytex8010;アルベマール社製)を表1で示す配合量で配合し、実施例3と同様な条件でロール混練を行った。続いて、実施例3と同様な条件でプレス成型を行った後、評価用試料片を作成し、得られた試料片について燃焼試験及び機械物性評価を行った。結果を表1にあわせて示す。
【0053】
実施例5
ABS樹脂(JSR社製#10)に対して、実施例1で得られた臭素化ジフェニルエタン混合物を表2で示す配合量で配合し、220℃でロール混練を行った。続いて、240℃でプレス成型を行った後、評価用試料片を作成し、得られた試料片について燃焼試験及び機械物性評価を行った。結果を表2に示す。
【0054】
【表2】
Figure 0003864472
【0055】
実施例6
ABS樹脂に対して、実施例2で得られた臭素化ジフェニルエタン混合物を表2で示す配合量で配合し、実施例5と同様な条件でロール混練を行った。続いて、実施例5と同様な条件でプレス成型を行った後、評価用試料片を作成し、得られた試料片について燃焼試験及び機械物性評価を行った。結果を表2にあわせて示す。
【0056】
比較例3
ABS樹脂100重量部に対して、比較例1で得られたジフェニルエタン7臭素化物を表2で示す配合量で配合し、実施例5と同様な条件でロール混練を行った。続いて、実施例5と同様な条件でプレス成型を行った後、評価用試料片を作成し、得られた試料片について燃焼試験及び機械物性評価を行った。結果を表2にあわせて示す。
【0057】
比較例4
ABS樹脂100重量部に対して、ジフェニルエタン10臭素化物を表2で示す配合量で配合し、実施例5と同様な条件でロール混練を行った。続いて、実施例5と同様な条件でプレス成型を行った後、評価用試料片を作成し、得られた試料片について燃焼試験及び機械物性評価を行った。結果を表2にあわせて示す。
【0058】
比較例5
500mL四つ口丸底フラスコにジフェニルエタン36.5g(0.20mol)、三塩化アルミニウム1.8g(0.013mol)及び臭化メチレン328gを仕込み、室温下、攪拌しながら溶解させた。尚、三塩化アルミニウムの仕込み比は、ジフェニルエタンの仕込み量に対して6.5モル%に相当する。溶解後、この溶液に攪拌しながら、臭素255.7g(1.60mol)を15℃で約3時間かけて滴下し、滴下後、その温度を維持しながら2時間熟成を行った。尚、臭素の仕込み比は、ジフェニルエタンの仕込み量に対して8モル比に相当する。尚、臭素の滴下途中より、反応液はスラリー状態となった。滴下終了後、得られたスラリー溶液中の残存塩化臭素を20%ヒドラジン水溶液で還元し、濾過を行った。得られた湿結晶を、5%塩酸水溶液で酸洗浄を行い、水洗を行って最後に120℃の温度で乾燥して紫色の臭素化ジフェニルエタン混合物137gを得た。この得られた臭素化ジフェニルエタン混合物について、ガスクロマトグラフィーによる分析を行った結果、不純物を11面積%含有し、更に色差計による色相分析の結果、ハンター白色度が70であった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a brominated diphenylethane mixture having an average bromination number of 7.6 to 9.2 per molecule capable of expressing high flame retardancy and high machine performance as a flame retardant, and having a white color. The production method and a flame-retardant resin composition obtained by blending the same.
[0002]
[Prior art]
As the diphenylethane bromide, bromide having an average bromination number of 6 to 7 per molecule and 10 bromide in which aromatic ring hydrogens are all substituted with bromine are known as flame retardants. There is no specific illustration of the inventive mixture, and the present invention is a novel composition mixture. The physical properties and manufacturing methods of conventional products are shown below.
[0003]
Diphenylethane bromide having an average bromination number of 7 is 40-55 area% for hexabromo, 12-25 area for heptabromo, 15-25 area for octabromo and 15-25 area for octabromo, as analyzed by gas chromatography. Gray or yellowish mixture powder having a melting point range of about 160 to 210 ° C. containing 10 to 15 area% and decabromo compound in the range of 0 to 5 area%.
[0004]
Further, diphenylethane bromide having an average bromination number of 10 is a white powder having a melting point range of about 350 ° C. and containing substantially 95 area% or more of decabromo compound as analyzed by gas chromatography.
[0005]
These diphenylethane bromides are produced by reacting bromine, which is a bromination reagent, with diphenylethane in the presence of a Lewis acid catalyst such as ferric bromide, zirconium tetrachloride and aluminum trichloride ( JP-A-4-216233, JP-A-5-85946, JP-A-5-246912, US Pat. No. 5,0084,777, US Pat. No. 5,030,778, US Pat. No. 5,124,496).
[0006]
[Problems to be solved by the invention]
Conventionally, diphenylethane bromide has been used for flame retardant of resins, but the flame retardant performance and mechanical performance of conventional products are still unsatisfactory, and recent flame retardant regulations have been strengthened and difficult to mix Due to the demand for further improvement in the performance of the flammable resin composition, it has been desired to develop an agent that complements the drawbacks of conventional products.
[0007]
[Means for Solving the Problems]
In view of the above problems, the present inventors have intensively studied diphenylethane bromide. As a result, when a brominated diphenylethane mixture having an average bromination number per molecule in the range of 7.6 to 9.2 is white and blended with the resin, it is surprising that the conventional diphenylethane bromide In comparison with the present invention, the present inventors have found that not only high flame retardancy can be exhibited at a low blending amount but also extremely excellent mechanical performance can be achieved.
[0008]
That is, the present invention is a white brominated diphenylethane mixture having an average bromination number in the range of 7.6 to 9.2, a production method thereof, and a flame retardant resin composition formed by blending the mixture.
[0009]
Hereinafter, the present invention will be described in detail.
[0010]
The physical properties of the brominated diphenylethane mixture of the present invention are as follows.
[0011]
(1) The product is a mixture of hexabromodiphenylethane, heptabromodiphenylethane, octabromodiphenylethane, nonabromodiphenylethane and decabromodiphenylethane in gas chromatography analysis, It is a white powder containing 50 area%, decabromodiphenylethane in the range of 6 to 40 area%, melting point in the range of 190 to 320 ° C., and Hunter whiteness of 80 or more. Only in this composition and melting point range, high flame retardancy and high machine performance are exhibited.
[0012]
(2) The average bromination number per molecule of the product is in the range of 7.6 to 9.2, the bromine content in the product is 74 to 81%, and the chlorine content is 0.2. It is in the range of ˜2%.
[0013]
The average bromination number in the present invention is the average bromination number per molecule calculated based on the composition ratio obtained by elemental analysis of the brominated diphenylethane mixture.
[0014]
Next, a method for producing this brominated diphenylethane mixture will be described.
[0015]
In the method for producing a brominated diphenylethane mixture according to the present invention, the raw material diphenylethane is dissolved in a solvent inert to the reaction in the presence of a Lewis acid catalyst, and bromine chloride, which is a bromination reagent, is added dropwise to the reaction. Is done by. In the reaction solution, a brominated diphenylethane mixture is precipitated from the middle of dropwise addition of bromine chloride, and finally obtained as a slurry solution. In addition, it is not preferable to use bromine as a bromination reagent to produce a compound having an average bromination number similar to that of the compound of the present invention because intense coloration occurs in the product.
[0016]
Bromine chloride used in the method of the present invention can be usually prepared by mixing bromine and chlorine at 5 ° C. or lower. However, bromine is previously dissolved in an organic solvent used in the reaction, and then mixed with chlorine. May be. The feed ratio of bromine and chlorine is essentially no problem even at an equimolar ratio, but in order to reduce the chlorine content in the product, bromine is used in excess of 1.0 to 1.5 mole ratio to chlorine. There is no problem. Incidentally, bromine chloride may be commercially available.
[0017]
The amount of bromine chloride added is 11 to 20 molar ratio to the charged diphenylethane, and is determined by the type of catalyst used and the reaction conditions. The target average bromination number is in the range of 7.6 to 9.2 per molecule in consideration of the flame retardancy and mechanical properties of the brominated diphenylethane mixture obtained after the reaction.
[0018]
As the reaction solvent used in the present invention, a solvent which dissolves diphenylethane and is inert to bromine chloride or has a very low reactivity can be applied. Generally, halogenated hydrocarbon solvents are used, such as methylene chloride, chloroform, ethylene dichloride, 1,1,1-trichloroethane, 1,1,2-trichloroethane, methylene bromide, bromoform, ethylene dibromide, etc. is there. The amount of the organic solvent to be used is not particularly limited, but it is desirable to use it in an amount of 3 to 50 times by weight with respect to diphenylethane included in the reaction due to the slurry viscosity at the time of reaction, economy and the like.
[0019]
The Lewis acid catalyst used in the method of the present invention is not particularly limited, but generally ferric halides such as ferric chloride and ferric bromide, antimony trichloride, antimony pentachloride, Halogens such as antimony halides such as antimony tribromide, titanium halides such as titanium trichloride and titanium tetrachloride, boron halides such as boron trichloride and boron tribromide, and boron trifluoride diethyl ether complex Examples thereof include boron halide complexes, and particularly preferable are antimony halides such as antimony trichloride, antimony pentachloride, and antimony tribromide. These may be used alone or in combination.
[0020]
The amount of the catalyst used is usually in the range of 0.5 to 30 mol%, preferably in the range of 5 to 20 mol%, relative to the charged diphenylethane. If it is 0.5 mol% or less, the bromination reaction rate is low, and if it is 30 mol% or more, it is not economical when added.
[0021]
The reaction temperature is usually in the range of -30 to 20 ° C, preferably in the range of -5 to 10 ° C.
[0022]
The bromine chloride dropping time is adjusted depending on the type and amount of catalyst added and the state of heat generated during the reaction, but it is usually about 1 to 12 hours. After the bromine chloride is dropped, post-treatment may be performed immediately, but aging may be performed at a predetermined temperature for 1 to 12 hours.
[0023]
After completion of the reaction, excess bromine chloride in the resulting slurry solution is reduced by adding a reducing agent such as hydrazine or sodium hydrogen sulfite, followed by filtration, acid washing, water washing and drying to obtain the target diphenylethane. The bromide is obtained as a white powder.
[0024]
The brominated diphenylethane mixture obtained by the above method is used as a flame retardant. For example, by blending with a thermoplastic resin and / or a thermosetting resin, high flame retardancy can be achieved without deteriorating the mechanical performance of the resin.
[0025]
Specific examples of resins to which the brominated diphenylethane mixture of the present invention can be applied include thermosetting resins such as phenol resins, urea resins, melamine resins, unsaturated polyesters, polyurethanes, alkyd resins, and epoxy resins, Low density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, polystyrene, high impact polystyrene (hereinafter abbreviated as HIPS), expanded polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-styrene-butadiene copolymer ( (Hereinafter abbreviated as ABS), thermoplastic resins such as polypropylene, petroleum resin, polymethylene terephthalate, polybutylene terephthalate, and polyphenylene ether, and polycarbonate-ABS in which two or more thermoplastic resins are mixed. Polymer alloy typified also be exemplified. Among these, low density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, polystyrene, high impact polystyrene, expanded polystyrene, acrylonitrile-styrene copolymer, ABS, polypropylene, petroleum resin, polymethylene terephthalate, polybutylene Examples of suitable resins include thermoplastic resins such as terephthalate and polyphenylene ether, and polymer alloys such as polycarbonate-ABS in which two or more thermoplastic resins are mixed.
[0026]
The blending amount of the brominated diphenylethane mixture of the present invention into the resin varies depending on the type of resin to be blended and the intended flame retardancy, and is not particularly limited, but is usually 5 to 100 parts by weight of the resin. Mix 50 parts by weight.
[0027]
In blending the brominated diphenylethane mixture of the present invention with a resin, a flame retardant aid such as antimony trioxide or sodium antimonate may be added in order to further improve the flame retardant performance. Usually, 5 to 100 parts by weight are added to 100 parts by weight of the diphenylethane mixture. Further, if necessary, a benzotriazole-based UV absorber, a 2,2,6,6-tetramethylpiperidine derivative light stabilizer, a hindered phenol-based antioxidant, etc. may be added. In general, 0.05 to 5 parts by weight is added to 100 parts by weight of the flame-retardant resin composition of the present invention. In addition to these, if necessary, an inorganic filler such as an antistatic agent or talc may be added.
[0028]
As a method of blending the brominated diphenylethane mixture of the present invention into a resin, for example, when blended with a thermosetting resin, the brominated diphenylethane mixture of the present invention and a resin raw material are mixed in advance and then cured. In addition, when blending into a thermoplastic resin, a necessary blending reagent may be mixed using a kneading roll or a Banbury mixer and pelletized using a twin screw extruder or the like. Although the processing method of the flame-retardant resin composition obtained by these methods is not particularly limited, for example, a desired molded product can be obtained by performing press molding, extrusion molding, injection molding, or the like.
[0029]
【The invention's effect】
The brominated diphenylethane mixture of the present invention is a useful flame retardant, particularly when it is blended with thermosetting resins and thermoplastic resins, it exhibits high flame retardancy and high mechanical performance with a lower blending amount than conventional products. it can.
[0030]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.
[0031]
In addition, about the product obtained by manufacture, the composition analysis, melting | fusing point measurement, elemental analysis, and the hunter whiteness measurement were performed with the following method.
[0032]
(1) The composition analysis was performed using gas chromatography. The measurement conditions are shown below.
[0033]
Figure 0003864472
(2) Melting point measurement was performed at 10 ° C./min. The temperature was increased by a known method.
[0034]
(3) The elemental analysis was conducted by a known method using a CHM coder (MT-3 type) manufactured by Yanagimoto Co. with respect to the carbon and hydrogen element contents. The bromine and chlorine element contents were measured by a known method using a gas absorbing solution (ion chromatography system manufactured by Tosoh Corporation) after burning the sample in an oxygen flask.
[0035]
(4) Hunter whiteness was measured by a known method using a colorimetric color difference meter (ND-1001DP type) manufactured by Nippon Denshoku Industries Co., Ltd.
[0036]
Example 1
1758 g (11.0 mol) of bromine and 1070 g of methylene chloride were charged into a 3 L four-necked round bottom flask equipped with a thermometer, a stirrer and a condenser, and cooled to 0 ° C. with stirring. Next, 780 g (11.0 mol) of chlorine gas was blown into the bromine solution over about 2 hours under stirring while maintaining the temperature, thereby preparing a bromine chloride solution. The feed ratio of bromine chloride was 11 mole ratio relative to the feed amount of diphenylethane, and the feed ratio of bromine and chlorine was set to an equimolar ratio.
[0037]
Subsequently, 365 g (2.0 mol) of diphenylethane, 46 g (0.2 mol) of antimony trichloride and 2570 g of methylene chloride were charged into a 5 L four-necked round bottom flask and dissolved at room temperature with stirring. The charging ratio of antimony trichloride corresponds to 10 mol% with respect to the charging amount of diphenylethane. After dissolution, the above bromine chloride solution was added dropwise at 0 ° C. over about 3 hours while stirring, and after the addition, aging was performed for 2 hours while maintaining the temperature. From the middle of dropping of the bromine chloride solution, the reaction solution became a slurry. After completion of the dropwise addition, residual bromine chloride in the resulting slurry solution was reduced with a 20% aqueous hydrazine solution and filtered. The obtained wet crystals were acid washed with a 5% aqueous hydrochloric acid solution, washed with water and finally dried at a temperature of 120 ° C. to obtain 1580 g of a white brominated diphenylethane mixture.
[0038]
The obtained brominated diphenylethane mixture was measured for melting point measurement, elemental analysis, nuclear magnetic resonance spectrum, gas chromatography, infrared absorption spectrum and Hunter whiteness, and the results are shown below.
[0039]
(1) Melting point measurement: 190-305 ° C
(2) Elemental analysis results
Figure 0003864472
From this elemental analysis result, the average number of brominations per molecule calculated was 7.9.
[0040]
(3) Nuclear magnetic resonance spectrum (CDCl 3 , ppm): δ 2.9 to 3.9 (m, 1H), δ 7.4 to 7.9 (m, 0.48H)
(4) Gas Chromatography (Area%): 7.0% by area of hexabromo, 52.0% by area of heptabromo, 17.0% by area of octabromo, 16.5% by area of nonabromo, and decabromo 7.0 area% and impurities 0.5 area%
(5) Infrared absorption spectrum (KBr, cm −1 ): ν = 3085, 2947, 2869, 2782, 2705, 2587, 2361, 1734, 1541, 1512, 1450, 1395, 1323, 1285, 1229, 1181, 1159 , 1140, 1058, 1004, 869, 765, 739, 662, 649, 554
(6) Hunter whiteness: 86
Example 2
A 3 L four-necked round bottom flask equipped with a thermometer, a stirrer and a condenser tube was charged with 1918 g (12.0 mol) of bromine and 1070 g of methylene chloride, and cooled to 0 ° C. with stirring. Next, 851 g (12.0 mol) of chlorine gas was blown into the bromine solution over about 2 hours with stirring while maintaining the temperature to prepare a bromine chloride solution. The feed ratio of bromine chloride was 12 mole ratio with respect to the feed amount of diphenylethane, and the feed ratio of bromine and chlorine was set to an equimolar ratio.
[0041]
Subsequently, 365 g (2.0 mol) of diphenylethane, 46 g (0.2 mol) of antimony trichloride and 2570 g of methylene chloride were charged into a 5 L four-necked round bottom flask and dissolved at room temperature with stirring. The charging ratio of antimony trichloride corresponds to 10 mol% with respect to the charging amount of diphenylethane. After dissolution, the above bromine chloride solution was added dropwise at 0 ° C. over about 3 hours while stirring, and after the addition, aging was performed for 2 hours while maintaining the temperature. From the middle of dropping of the bromine chloride solution, the reaction solution became a slurry. After completion of the dropwise addition, residual bromine chloride in the resulting slurry solution was reduced with a 20% aqueous hydrazine solution and filtered. The obtained wet crystals were washed with a 5% aqueous hydrochloric acid solution, washed with water, and finally dried at a temperature of 120 ° C. to obtain 1778 g of a white brominated diphenylethane mixture.
[0042]
The obtained brominated diphenylethane mixture was analyzed by gas chromatography. As a result, the hexabromo compound was 1.3 area%, the heptabromo compound was 12.6 area%, the octabromo compound was 21.3 area%, and the nonabromo compound. 30.2 area%, decabromo compound 33.2 area%, and impurities 1.3 area%, melting point range 260-310 ° C. In addition, as a result of elemental analysis, carbon was 18.6%, hydrogen was 0.7%, bromine was 78.6%, and chlorine was 1.4%. The average bromination number per molecule was 8.9. Furthermore, as a result of performing a hue analysis using a color difference meter, the Hunter whiteness was 86.
[0043]
Example 3
The brominated diphenylethane mixture obtained in Example 1 was blended in the blending amount shown in Table 1 with respect to the HIPS resin (HT-88 manufactured by Mitsubishi Chemical), and roll kneading was performed at 200 ° C. Subsequently, after performing press molding at 200 ° C., an evaluation sample piece was prepared, and the obtained sample piece was subjected to a combustion test and mechanical property evaluation by the following methods. (1) The combustion test oxygen index was performed in accordance with the oxygen index method standardized in JIS K 7201 using a test apparatus (ON-1 type) manufactured by Suga Test Instruments. Further, the UL94V flammability test was performed in accordance with the UL94V vertical combustion test method using a Suga Test Instruments tester (UL94V type).
[0044]
(2) MFR
MFR was performed in accordance with the MFR measurement method standardized in JIS K 7210 using a Toyo Seiki test apparatus (T01 type).
[0045]
(3) Impact resistance The impact resistance was measured using a test apparatus (UF-impact tester) manufactured by Ueshima Seisakusho in accordance with the Izod measurement method standardized in JIS K 7110.
[0046]
(4) Tensile test The tensile test was performed in accordance with a tensile test method standardized in JIS K 7113 using an orientec tensile tester (Tensilon UCT-2.5T type).
[0047]
[Table 1]
Figure 0003864472
[0048]
Example 4
The brominated diphenylethane mixture obtained in Example 2 was blended with the HIPS resin in the blending amounts shown in Table 1, and roll kneading was performed under the same conditions as in Example 3. Subsequently, after performing press molding under the same conditions as in Example 3, a sample piece for evaluation was created, and a combustion test and mechanical property evaluation were performed on the obtained sample piece. The results are shown in Table 1.
[0049]
Comparative Example 1
A brominated diphenylethane mixture having an average bromination number of 7 was produced by the following method in order to evaluate the flame retardancy performance and mechanical performance of the HIPS resin.
[0050]
A 500 mL four-necked round bottom flask was charged with 365 g (2.0 mol) of diphenylethane, 18 g (0.13 mol) of aluminum trichloride and 3280 g of methylene bromide, and dissolved at room temperature with stirring. The charging ratio of aluminum trichloride corresponds to 6.5 mol% with respect to the charging amount of diphenylethane. After dissolution, 2237 g (14.0 mol) of bromine was added dropwise at 15 ° C. over about 3 hours while stirring the solution, and then aging was performed for 2 hours while maintaining the temperature. The bromine feed ratio corresponds to a 7 molar ratio with respect to the diphenylethane charge. In addition, the reaction liquid became a slurry state in the middle of dropping of bromine. After completion of the dropwise addition, residual bromine chloride in the resulting slurry solution was reduced with a 20% aqueous hydrazine solution and filtered. The obtained wet crystals were washed with a 5% aqueous hydrochloric acid solution, washed with water and finally dried at a temperature of 120 ° C. to obtain 1270 g of yellow diphenylethane 7 bromide.
[0051]
Subsequently, the diphenylethane 7 bromide described above was blended in the blending amount shown in Table 1 with respect to 100 parts by weight of the HIPS resin, and roll kneading was performed under the same conditions as in Example 1. Subsequently, after performing press molding under the same conditions as in Example 1, an evaluation sample piece was prepared, and the obtained sample piece was subjected to a combustion test and mechanical property evaluation by the following methods. The results are shown in Table 1.
[0052]
Comparative Example 2
Commercially available diphenylethane 10 bromide (Saytex 8010; manufactured by Albemarle) was blended in the blending amount shown in Table 1 with respect to 100 parts by weight of HIPS, and roll kneading was performed under the same conditions as in Example 3. Subsequently, after performing press molding under the same conditions as in Example 3, a sample piece for evaluation was created, and a combustion test and mechanical property evaluation were performed on the obtained sample piece. The results are shown in Table 1.
[0053]
Example 5
The brominated diphenylethane mixture obtained in Example 1 was blended in the blending amount shown in Table 2 with respect to the ABS resin (# 10 manufactured by JSR), and roll kneading was performed at 220 ° C. Subsequently, after performing press molding at 240 ° C., a sample piece for evaluation was prepared, and a combustion test and mechanical property evaluation were performed on the obtained sample piece. The results are shown in Table 2.
[0054]
[Table 2]
Figure 0003864472
[0055]
Example 6
The brominated diphenylethane mixture obtained in Example 2 was blended with the ABS resin in the blending amounts shown in Table 2, and roll kneading was performed under the same conditions as in Example 5. Then, after performing press molding on the same conditions as Example 5, the sample piece for evaluation was created and the combustion test and the mechanical property evaluation were performed about the obtained sample piece. The results are shown in Table 2.
[0056]
Comparative Example 3
Diphenylethane 7 bromide obtained in Comparative Example 1 was blended in the blending amount shown in Table 2 with respect to 100 parts by weight of ABS resin, and roll kneading was performed under the same conditions as in Example 5. Then, after performing press molding on the same conditions as Example 5, the sample piece for evaluation was created and the combustion test and the mechanical property evaluation were performed about the obtained sample piece. The results are shown in Table 2.
[0057]
Comparative Example 4
Diphenylethane 10 bromide was blended in the blending amount shown in Table 2 with respect to 100 parts by weight of the ABS resin, and roll kneading was performed under the same conditions as in Example 5. Then, after performing press molding on the same conditions as Example 5, the sample piece for evaluation was created and the combustion test and the mechanical property evaluation were performed about the obtained sample piece. The results are shown in Table 2.
[0058]
Comparative Example 5
A 500 mL four-necked round bottom flask was charged with 36.5 g (0.20 mol) of diphenylethane, 1.8 g (0.013 mol) of aluminum trichloride and 328 g of methylene bromide, and dissolved at room temperature with stirring. The charging ratio of aluminum trichloride corresponds to 6.5 mol% with respect to the charging amount of diphenylethane. After dissolution, while stirring, 255.7 g (1.60 mol) of bromine was added dropwise at 15 ° C. over about 3 hours, and after the addition, aging was performed for 2 hours while maintaining the temperature. In addition, the feed ratio of bromine corresponds to 8 molar ratio with respect to the feed amount of diphenylethane. In addition, the reaction liquid became a slurry state in the middle of dropping of bromine. After completion of the dropwise addition, residual bromine chloride in the resulting slurry solution was reduced with a 20% aqueous hydrazine solution and filtered. The obtained wet crystals were washed with a 5% aqueous hydrochloric acid solution, washed with water, and finally dried at a temperature of 120 ° C. to obtain 137 g of a purple brominated diphenylethane mixture. This brominated diphenylethane mixture thus obtained was analyzed by gas chromatography. As a result, it contained 11 area% impurities, and as a result of hue analysis by a color difference meter, the Hunter whiteness was 70.

Claims (2)

ハロゲン化鉄類、ハロゲン化アンチモン類、ハロゲン化チタン類、ハロゲン化硼素類及びハロゲン化硼素錯体からなる群より選ばれるルイス酸触媒の存在下、ジフェニルエタンを仕込みのジフェニルエタンに対して11〜20モル比の塩化臭素と反応させることを特徴とする、ヘキサブロモジフェニルエタン、ヘプタブロモジフェニルエタン、オクタブロモジフェニルエタン、ノナブロモジフェニルエタン及びデカブロモジフェニルエタンの混合物で、平均臭素化数が7.6〜9.2個の範囲にあり、ガスクロマトグラフィーによる分析においてノナブロモ体を16〜50面積%、デカブロモ体を6〜40面積%の範囲で含有し、なおかつ色調がハンター白色度で80以上である臭素化ジフェニルエタン混合物の製造方法。 11-20 with respect to diphenylethane charged with diphenylethane in the presence of a Lewis acid catalyst selected from the group consisting of iron halides, antimony halides, titanium halides, boron halides and boron halide complexes. A mixture of hexabromodiphenylethane, heptabromodiphenylethane, octabromodiphenylethane, nonabromodiphenylethane and decabromodiphenylethane , characterized by reacting with a molar ratio of bromine chloride and having an average bromination number of 7.6 In the range of ˜9.2, it contains 16-50 area% of nonabromo compound and 6-40 area% of decabromo compound in the analysis by gas chromatography, and the color tone is 80 or more in Hunter whiteness. A method for producing a brominated diphenylethane mixture. 臭素化ジフェニルエタン混合物の溶融開始温度が190℃以上で、溶融終了温度が320℃以下であることを特徴とする請求項2に記載の臭素化ジフェニルエタン混合物の製造方法 The method for producing a brominated diphenylethane mixture according to claim 2, wherein the bromination diphenylethane mixture has a melting start temperature of 190 ° C or higher and a melting end temperature of 320 ° C or lower .
JP33846196A 1996-12-18 1996-12-18 Brominated diphenylethane mixture, method for producing the same, and flame-retardant resin composition comprising the same Expired - Fee Related JP3864472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33846196A JP3864472B2 (en) 1996-12-18 1996-12-18 Brominated diphenylethane mixture, method for producing the same, and flame-retardant resin composition comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33846196A JP3864472B2 (en) 1996-12-18 1996-12-18 Brominated diphenylethane mixture, method for producing the same, and flame-retardant resin composition comprising the same

Publications (2)

Publication Number Publication Date
JPH10175893A JPH10175893A (en) 1998-06-30
JP3864472B2 true JP3864472B2 (en) 2006-12-27

Family

ID=18318388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33846196A Expired - Fee Related JP3864472B2 (en) 1996-12-18 1996-12-18 Brominated diphenylethane mixture, method for producing the same, and flame-retardant resin composition comprising the same

Country Status (1)

Country Link
JP (1) JP3864472B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090045304A (en) * 2006-08-29 2009-05-07 알베마를 코포레이션 Preparation of decahalodiphenyl ethane
EP2079673A1 (en) 2006-11-09 2009-07-22 Albermarle Corporation Processing of solid brominated aromatic organic compounds containing occluded bromine
KR100781965B1 (en) 2006-12-29 2007-12-06 제일모직주식회사 Thermoplastic resin composition having improved impact resistance
US7408088B1 (en) 2007-02-08 2008-08-05 Albemarle Corporation Process for separation of bromine from gaseous hydrogen bromide and use of such process in production of decabromodiphenylethane
EP2132158B1 (en) 2007-03-16 2014-08-13 Albemarle Corporation Preparation and provision of high assay decabromodiphenylethane
CN101636369B (en) 2007-03-16 2014-07-30 雅宝公司 Preparation and provision of high assay decabromodiphenylethane
KR100875957B1 (en) 2007-12-28 2008-12-26 제일모직주식회사 Chemical-resistant, impact-resistant, thermoplastic resin composition with improved extrudablity
KR101150817B1 (en) 2008-12-15 2012-06-13 제일모직주식회사 Flame-retardant high impact polystyrene resin composition having good fluidity
KR101098281B1 (en) * 2008-12-17 2011-12-23 제일모직주식회사 Mixtures of Brominated Diphenyl Ethanes, Method for Preparing Thereof and Resin Composition Using the Same
KR20100069878A (en) * 2008-12-17 2010-06-25 제일모직주식회사 Flame retardant thermoplastic resin composition
KR101101158B1 (en) * 2008-12-18 2012-01-05 제일모직주식회사 Flame Retardant Thermosetting Resin Composition
KR101101157B1 (en) * 2008-12-18 2012-01-05 제일모직주식회사 Flame Retardant Unsaturated Polyester Resin Composition
US8119720B2 (en) 2008-12-29 2012-02-21 Cheil Industries Inc. Thermoplastic resin composition having improved flowability
KR20100078694A (en) 2008-12-30 2010-07-08 제일모직주식회사 Thermoplastic resin composition with improved chemical resistance, impact resistance, high gloss and melt flow index
PL2459506T3 (en) 2009-07-27 2014-09-30 Albemarle Corp Preparation of high assay decabromodiphenylalkane product with low occluded free bromine content
KR101267267B1 (en) 2009-12-30 2013-05-27 제일모직주식회사 Flame-Retardant Thermoplastic Resin Composition with Great Color Tone
KR101251333B1 (en) 2009-12-30 2013-04-05 제일모직주식회사 Flame retardant thermoplastic resin composition having good weatherability and impact resistance and molded article produced therefrom

Also Published As

Publication number Publication date
JPH10175893A (en) 1998-06-30

Similar Documents

Publication Publication Date Title
JP3864472B2 (en) Brominated diphenylethane mixture, method for producing the same, and flame-retardant resin composition comprising the same
EP1032602B9 (en) Process for the preparation of brominated polystyrene having improved color characteristics
EP0047549B1 (en) Process for the bromination of polystyrenes
KR101419669B1 (en) Brominated styrenic polymers and their preparation
JP3882203B2 (en) Bromination of polystyrene resin
KR20110095884A (en) Flame retardant halogenated phenyl ether blends
JPH1143511A (en) Brominated styrene oligomer, its production and flame-retardant resin composition compounded with the same
JPH09227625A (en) Brominated polystyrene for flame retardant and flame-retardant resin composition containing the same
JP3876464B2 (en) Method for producing diphenylethane bromide
EP3166980B1 (en) Preparation of bromine-containing polymers and their application as flame retardants
NL1005508C2 (en) Brominated p-cumylphenol and derivatives thereof, their method of manufacture and flame retardant resin compositions comprising them.
WO2014106841A1 (en) Preparation of bromine-containing aromatic compounds and their application as flame retardants
JP4120026B2 (en) Brominated α-methylstyrene trimer, method for producing the same, and flame-retardant resin composition comprising the same
CN106715516B (en) The preparation of brominated polymer as fire retardant
JP3849209B2 (en) Brominated p-cumylphenol and derivatives thereof, production method thereof, and flame retardant resin composition comprising them
JP4324983B2 (en) Flame retardant carbonate compound, method for producing the same, and flame retardant resin composition comprising the same
JP4324984B2 (en) Brominated p-cumylphenol derivative, process for producing the same and flame retardant resin composition comprising the same
JP4109417B2 (en) Method for producing polystyrene bromide having improved color
JP3360237B2 (en) Polyester resin composition
JPH07126320A (en) Production of brominated polystyrene
JPH0581575B2 (en)
JP4110299B2 (en) Brominated p-cumylphenol derivative, method for producing the same, and flame-retardant resin composition comprising the same
JP2588816B2 (en) Flame retardant thermoplastic resin composition
JPH09208619A (en) Brominated alpha-methylstyrene oligomer, its preparation and flame-retardant resin composition comprising the oligomer
JPH07292026A (en) Production of brominated polystyrene

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees