JP3864369B2 - Low temperature ground tank - Google Patents

Low temperature ground tank Download PDF

Info

Publication number
JP3864369B2
JP3864369B2 JP2001118197A JP2001118197A JP3864369B2 JP 3864369 B2 JP3864369 B2 JP 3864369B2 JP 2001118197 A JP2001118197 A JP 2001118197A JP 2001118197 A JP2001118197 A JP 2001118197A JP 3864369 B2 JP3864369 B2 JP 3864369B2
Authority
JP
Japan
Prior art keywords
side wall
bottom plate
temperature
ground tank
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001118197A
Other languages
Japanese (ja)
Other versions
JP2002308376A (en
Inventor
雅樹 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2001118197A priority Critical patent/JP3864369B2/en
Publication of JP2002308376A publication Critical patent/JP2002308376A/en
Application granted granted Critical
Publication of JP3864369B2 publication Critical patent/JP3864369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LNG等の低温液体を貯蔵するコンクリート造の低温地上タンクに関する。
【0002】
【従来の技術】
この種のタンクの一例を図4〜図5に示す。これは、コンクリート造の底版1を多数の杭2により支持して地表部に設け、底版1の外周縁部よりコンクリート造の筒状の側壁3を立ち上げてその上端部に屋根4を架設したものであり、図5に示すように側壁3にはその周方向に多数のPC鋼材5を配してそれを緊張してプレストレスを導入することにより、側壁3を補強し亀裂を防止する構造のものである。
【0003】
図5に示すように、底版1はその外周縁部の版厚が大きくされてそこに側壁3の下端部が接合されることにより底版1と側壁3とが構造的に強固に一体化しており、プレストレス導入による側壁3の変形や側壁3の熱変形が底版1によって拘束されるようになっている。また、底版1には地盤凍結防止用のヒータ6が組み込まれている。
【0004】
底版1および側壁3の内面には保冷性能を確保するための断熱層が設けられるが、図示例のものでは、底版1の上面にパーライトコンクリート7、泡ガラス8等からなる断熱層10が設けられ、側壁3の内面には発泡ポリウレタンフォーム(PUF)11を介して粒状パーライト12、グラスウール13からなる断熱層14が設けられ、それら断熱層10,14の内面に液密を確保する内槽材15が取り付けられている。上記のPUF11は冷熱抵抗緩和材と称されるものであって、これは断熱性能を有するばかりでなくその内面にはアルミシート等により防液処理が施されて液密性能も有するものとされており、内槽材15からの万一の漏液が生じた際においてもこのPUF11により側壁3に対する液密性と断熱性は確保されるようになっている。
【0005】
【発明が解決しようとする課題】
ところで、内槽材15からの漏液が万一生じた場合、上記のように冷熱抵抗緩和材としてのPUF11により側壁3に対する液密性と断熱性は確保されるものの、その内側の断熱層14には低温液体が浸透してしまうので断熱性能を維持できなくなり、したがって側壁3の温度は通常時に比べて大幅に低下してしまうことが不可避である。そして、側壁3にそのような温度低下が生じると側壁3は熱収縮して内側に変形しようとするのであるが、側壁3の下端部は底版1の外周縁部に接合されているのでその変形が拘束され、しかも底版1にはヒータ6が組み込まれていて底版1の温度は漏液時においても高く維持されるために底版1と側壁3の接合部には大きな温度差が生じてしまい、その結果、側壁3の下端部には大きな熱応力が生じて図5(b)に示すように上下方向の曲げ変形が生じることが想定され、それによる亀裂の発生も想定される。
【0006】
従来においては、上記のような万一の漏液時における側壁3の熱応力や熱応力をも考慮して側壁3に導入するべきプレストレスを設定しており、そのため、漏液を考慮しない場合よりも余分な緊張力の導入が必要となり、PC鋼材5の所要本数も多くなっているのが実状である。
【0007】
上記事情に鑑み、本発明は、漏液時における側壁下端部の熱応力と熱変形を抑制することで側壁に導入するプレストレスを軽減することができる有効な構造の低温地上タンクを提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1の発明は、LNG等の低温液体を貯蔵するコンクリート造の低温地上タンクであって、ヒータが組み込まれた底版の外周縁部に筒状の側壁の下端部を接合してその側壁に周方向のプレストレスを導入し、側壁の内面には、その内面に防液処理が施されて液密性能を有しかつ断熱性能を有する冷熱抵抗緩和材を介してその内側に断熱層を設けるとともに、前記冷熱抵抗緩和材による側壁の下端部に対する断熱性を強化して底版と側壁との接合部に生じる温度差を低減するように、該冷熱抵抗緩和材の厚さを側壁の下端部にいくほど段階的あるいは連続的に変化させて他の部分よりも厚く設定したことを特徴とする。
【0009】
請求項2の発明は、請求項1記載の低温地上タンクであって、底版の外周縁部におけるヒータの組み込み位置を他の部分よりも低く設定したことを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の低温地上タンクの実施形態を説明するが、以下の実施形態の低温地上タンクの基本構成はいずれも図4〜図5に示した従来のものと共通であるので、既に説明した構成要素については図面に同一符号を付して説明を簡略化する。
【0011】
図1は第1実施形態の低温地上タンクの要部を示すもので、これは側壁3の内面に設ける冷熱抵抗緩和材としてのPUF11の厚みを側壁3の下端部において従来よりも厚くしたものである。これによれば、内槽材15が万一の漏液を生じて断熱層14の断熱性能が損なわれた場合においても、PUF11により最低限の断熱性が維持されるばかりでなく、特に側壁3の下端部に対する断熱性が従来よりも強化されてそこでの温度低下が抑制され、ヒータ6によって温度が維持される底版1と側壁3との接合部に生じる温度差も低減することができる。したがって、側壁3下端部に生じる熱応力が低減し、図5(b)に示したような熱変形が生じ難いものとなり、その結果、側壁3に導入するべきプレストレスを従来のように万一の漏洩時における熱応力を考慮して余分に大きく設定しておくような無駄を回避することができ、PUF11を厚くすることに伴うコスト増は些少で済むので全体的には十分なコストダウンを図ることができる。
【0012】
本第1実施形態においては、図1に示しているように側壁3の下端部にいくほどPUF11の厚みを段階的(図示例では3段階にわたって変化させている)に厚くし、底版1との接合部において厚みを最大とすると、底版1と側壁3との間の温度差を可及的に低減できるとともに側壁3下端部に生じる温度勾配を緩やかにできるので最も効果的かつ合理的である。ただし、PUF11の厚さを段階的にではなく連続的に変化させることでも良い。いずれにしても、本第1実施形態においては、側壁3に導入する緊張力、漏液時に想定される側壁3各部の温度低下、その温度低下に伴って側壁各部に生じる熱応力、側壁3に亀裂が生じる限界の応力、その他の諸条件を考慮して、漏液時においても側壁3の下端部における温度低下を十分に抑制して亀裂を生じる限界の熱応力が生じることを防止し得るように、PUF11の各部の厚さを最適に設定すれば良い。
【0013】
図2は参考例を示す。これは底版1の外周部に組み込むヒータ6の位置を従来よりも低くしたものである。すなわち、従来の底版1にはその厚さ方向のほぼ中央位置に揃えて多数のヒータ6を組み込んでいたのであるが、本参考例においては外周縁部に位置する3本のヒータ6の位置を他のヒータ6よりも下げることにより底版1の外周縁部の温度を従来よりも低下させたものとなっている。
【0014】
参考例では、PUF11の厚さは従来と同様であるので、万一の漏液時には側壁3の温度が大きく低下してしまうが、上記のようにヒータ6の位置を下げることにより漏液時における側壁3と底版1の温度差は従来よりも自ずと小さくなり、したがって側壁3下端部に生じる熱応力が低減して図5(b)に示したような側壁3下端部の熱変形を防止することができる。
【0015】
参考例においては、底版1と側壁3との接合部における温度勾配が可及的に緩やかになるようにヒータ6の位置を底版1の外周部の厚さの範囲内で設定すれば良く、必要であれば個々のヒータ6の位置を上下方向のみならず水平方向にも細かく調節したり、ヒータ6どうしの間隔も調節する等の対策も併せて行っても良い。いずれにしてもヒータ6の位置の変更だけであるのでコストアップの要因は少なく極めて有効である。
【0016】
図3は第2実施形態を示す。これは、上記の第1実施形態と参考例とを組み合わて、PUF11の厚みを側壁3の下端部において段階的に厚くし、かつ底版1の外周縁部に組み込むヒータ6の位置を下げたものである。これによれば、PUF11により漏液時における側壁3下端部の温度低下を抑制し、併せてヒータ6の位置を下げることで底版1と側壁3との接合部における温度勾配をより緩やかにし、それにより漏液時における側壁3下端部の熱応力と熱変形をより効果的に抑制することができる。
【0017】
なお、以上の各実施形態はあくまで一例であって、本発明は上記各実施形態に限定されるものでは勿論なく、冷熱抵抗緩和材や各断熱材の種類や特性、底版や側壁等の各部の具体的な構成、その他については、適宜の変更が可能であるし、貯蔵する低温液体もLNGに限るものではない。
【0018】
【発明の効果】
請求項1の発明は、周方向にプレストレスを導入した側壁の内面に液密性能を有しかつ断熱性能を有する冷熱抵抗緩和材を設け、側壁の下端部においてはその冷熱抵抗緩和材の厚さを段階的あるいは連続的に変化させて下端部にいくほど他の部分よりも厚く設定したので、その冷熱抵抗緩和材によって側壁の下端部に対する断熱性が強化されて万一の漏液時においても側壁の下端部に対する断熱性が十分に確保されてそこでの温度低下を抑制でき、それによりヒータによって温度が維持される底版と側壁との間の温度差を可及的に低減できるとともに側壁下端部に生じる温度勾配を緩やかにできて、側壁下端部に生じる熱応力と熱変形を抑制でき、その結果、側壁に導入するべきプレストレスを軽減することができ、コストダウンを図ることができる。
【0019】
請求項2の発明は、上記に加え、底版の外周縁部におけるヒータの組み込み位置を他の部分よりも低く設定したので、漏液時における側壁と底版との温度差をより小さくすることができ、それにより側壁下端部に生じる熱応力と熱変形をより効果的に抑制することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態である低温地上タンクの概略構成を示す要部拡大図である。
【図2】 参考例である低温地上タンクの概略構成を示す要部拡大図である。
【図3】 本発明の第2実施形態である低温地上タンクの概略構成を示す要部拡大図である。
【図4】 従来一般の低温地上タンクの概略構成を示す全体図である。
【図5】 同、要部(図4におけるV部)の拡大図である。
【符号の説明】
1 底版
3 側壁
6 ヒータ
11 発泡ポリウレタンフォーム(PUF、冷熱抵抗緩和材)
14 断熱層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a concrete low temperature ground tank for storing a low temperature liquid such as LNG.
[0002]
[Prior art]
An example of this type of tank is shown in FIGS. This is because a concrete bottom slab 1 is supported by a number of piles 2 and is provided on the ground surface. A concrete cylindrical side wall 3 is raised from the outer peripheral edge of the bottom slab 1 and a roof 4 is erected on the upper end thereof. As shown in FIG. 5, the side wall 3 is provided with a large number of PC steel materials 5 in the circumferential direction, and is tensioned to introduce prestress, thereby reinforcing the side wall 3 and preventing cracks. belongs to.
[0003]
As shown in FIG. 5, the bottom plate 1 has a plate thickness at the outer peripheral edge thereof increased, and the lower end portion of the side wall 3 is joined thereto, whereby the bottom plate 1 and the side wall 3 are structurally firmly integrated. The deformation of the side wall 3 and the thermal deformation of the side wall 3 due to the introduction of prestress are restricted by the bottom plate 1. Further, the bottom plate 1 incorporates a heater 6 for preventing ground freezing.
[0004]
The bottom plate 1 and the inner surface of the side wall 3 are provided with a heat insulating layer for ensuring cold insulation performance. In the illustrated example, a heat insulating layer 10 made of pearlite concrete 7, foam glass 8 or the like is provided on the upper surface of the bottom plate 1. The inner surface of the side wall 3 is provided with a heat insulating layer 14 made of granular pearlite 12 and glass wool 13 via a polyurethane foam (PUF) 11, and an inner tank material 15 that ensures liquid tightness on the inner surfaces of these heat insulating layers 10, 14. Is attached. The above-mentioned PUF11 is called a cold resistance reducing material, which not only has a heat insulation performance, but also has an inner surface that is liquid-proofed by an aluminum sheet or the like and has a liquid tightness performance. Even in the unlikely event that liquid leakage from the inner tank material 15 occurs, the PUF 11 ensures the liquid-tightness and heat insulation of the side wall 3.
[0005]
[Problems to be solved by the invention]
By the way, in the unlikely event that liquid leakage from the inner tank material 15 occurs, although the liquid tightness and heat insulating properties for the side wall 3 are ensured by the PUF 11 as the cooling resistance reducing material as described above, the heat insulating layer 14 on the inner side thereof. Since the low temperature liquid permeates into the wall, the heat insulation performance cannot be maintained. Therefore, it is inevitable that the temperature of the side wall 3 is greatly reduced as compared with the normal time. When such a temperature drop occurs in the side wall 3, the side wall 3 is thermally contracted and tends to be deformed inward. However, since the lower end portion of the side wall 3 is joined to the outer peripheral edge portion of the bottom plate 1, the deformation is caused. In addition, since the heater 6 is incorporated in the bottom plate 1 and the temperature of the bottom plate 1 is maintained high even at the time of leakage, a large temperature difference occurs at the joint between the bottom plate 1 and the side wall 3. As a result, it is assumed that a large thermal stress is generated at the lower end portion of the side wall 3 to cause a bending deformation in the vertical direction as shown in FIG.
[0006]
Conventionally, the pre-stress to be introduced into the side wall 3 is set in consideration of the thermal stress and thermal stress of the side wall 3 in the event of a leak as described above. In fact, it is necessary to introduce extra tension, and the actual number of PC steel members 5 is increased.
[0007]
In view of the above circumstances, the present invention provides a low-temperature ground tank having an effective structure that can reduce prestress introduced into the side wall by suppressing thermal stress and thermal deformation at the lower end of the side wall at the time of liquid leakage. With the goal.
[0008]
[Means for Solving the Problems]
The invention of claim 1 is a concrete low-temperature ground tank for storing a low-temperature liquid such as LNG, and the lower end of a cylindrical side wall is joined to the outer peripheral edge of a bottom plate in which a heater is incorporated. Circumferential pre-stress is introduced, and the inner surface of the side wall is provided with a heat insulating layer on the inner surface of the inner surface of the inner side of the inner wall through a cooling resistance relaxation material having a liquid-tight performance and a heat-tight performance. In addition, the thickness of the thermal resistance relaxation material is reduced to the lower end portion of the side wall so as to enhance the heat insulating property on the lower end portion of the side wall by the thermal resistance relaxation material and reduce the temperature difference generated at the joint between the bottom plate and the side wall. It is characterized in that it is set to be thicker than other parts by changing it stepwise or continuously.
[0009]
The invention according to claim 2 is the low-temperature ground tank according to claim 1 , characterized in that the heater mounting position at the outer peripheral edge of the bottom plate is set lower than other portions.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the low-temperature ground tank of the present invention will be described. However, since the basic configuration of the low-temperature ground tank of the following embodiments is the same as that of the conventional one shown in FIGS. Constituent elements are given the same reference numerals in the drawings to simplify the description.
[0011]
FIG. 1 shows the main part of the low-temperature ground tank of the first embodiment. This is a structure in which the thickness of the PUF 11 as a cooling resistance reducing material provided on the inner surface of the side wall 3 is made thicker at the lower end of the side wall 3 than in the prior art. is there. According to this, even when the inner tank material 15 causes liquid leakage and the heat insulating performance of the heat insulating layer 14 is impaired, not only the minimum heat insulating property is maintained by the PUF 11 but also the side wall 3 in particular. The heat insulating property for the lower end portion of the steel plate is strengthened more than before, and the temperature drop there is suppressed, and the temperature difference generated at the joint between the bottom plate 1 and the side wall 3 where the temperature is maintained by the heater 6 can also be reduced. Therefore, the thermal stress generated at the lower end of the side wall 3 is reduced, and the thermal deformation as shown in FIG. 5B is unlikely to occur. As a result, the prestress to be introduced into the side wall 3 should be reduced as in the conventional case. It is possible to avoid waste that is set excessively in consideration of thermal stress at the time of leakage, and the cost increase associated with increasing the thickness of the PUF 11 can be negligible. Can be planned.
[0012]
In the first embodiment, as shown in FIG. 1, the thickness of the PUF 11 is gradually increased toward the lower end portion of the side wall 3 (changed in three steps in the illustrated example). When the thickness is maximized at the joint, the temperature difference between the bottom plate 1 and the side wall 3 can be reduced as much as possible, and the temperature gradient generated at the lower end of the side wall 3 can be moderated, which is most effective and rational. However, the thickness of the PUF 11 may be changed continuously instead of stepwise . In any case, in the first embodiment, the tension introduced into the side wall 3, the temperature drop of each part of the side wall 3 assumed at the time of leakage, the thermal stress generated in each part of the side wall with the temperature drop, Considering the critical stress at which cracking occurs and other conditions, it is possible to prevent the occurrence of critical thermal stress at which cracking occurs by sufficiently suppressing the temperature drop at the lower end of the side wall 3 even during leakage. In addition, the thickness of each part of the PUF 11 may be set optimally.
[0013]
FIG. 2 shows a reference example . In this case, the position of the heater 6 incorporated in the outer peripheral portion of the bottom slab 1 is made lower than in the prior art. That is, the conventional bottom plate 1 incorporates a large number of heaters 6 so as to be aligned at the substantially central position in the thickness direction. In this reference example , the positions of the three heaters 6 positioned at the outer peripheral edge portion are set. By lowering the temperature than the other heaters 6, the temperature of the outer peripheral edge portion of the bottom slab 1 is made lower than in the prior art.
[0014]
In this reference example , since the thickness of the PUF 11 is the same as that of the prior art, the temperature of the side wall 3 is greatly reduced in the event of a leak, but by reducing the position of the heater 6 as described above, Therefore, the temperature difference between the side wall 3 and the bottom plate 1 is naturally smaller than in the prior art, so that the thermal stress generated at the lower end of the side wall 3 is reduced to prevent thermal deformation of the lower end of the side wall 3 as shown in FIG. be able to.
[0015]
In this reference example , the position of the heater 6 may be set within the thickness range of the outer peripheral portion of the bottom plate 1 so that the temperature gradient at the joint between the bottom plate 1 and the side wall 3 is as gentle as possible. If necessary, measures such as finely adjusting the position of each heater 6 not only in the vertical direction but also in the horizontal direction, and adjusting the interval between the heaters 6 may be taken. In any case, since only the position of the heater 6 is changed, there are few factors for increasing the cost, which is extremely effective.
[0016]
FIG. 3 shows a second embodiment . This is a combination of the first embodiment described above and the reference example , in which the thickness of the PUF 11 is gradually increased at the lower end portion of the side wall 3 and the position of the heater 6 incorporated in the outer peripheral edge portion of the bottom plate 1 is lowered. It is. According to this, the temperature drop at the lower end of the side wall 3 at the time of liquid leakage is suppressed by the PUF 11 and the temperature gradient at the joint between the bottom plate 1 and the side wall 3 is further lowered by lowering the position of the heater 6. Thus, the thermal stress and thermal deformation at the lower end of the side wall 3 at the time of leakage can be more effectively suppressed.
[0017]
Each of the above embodiments is merely an example, and the present invention is not limited to each of the above embodiments, and of course, the types and characteristics of the thermal resistance mitigating material and each heat insulating material, the parts of the bottom plate, the side wall, and the like. About a concrete structure and others, an appropriate change is possible, and the low-temperature liquid to store is not restricted to LNG.
[0018]
【The invention's effect】
In the invention of claim 1, a cooling resistance relaxation material having liquid tightness and heat insulation performance is provided on the inner surface of the side wall into which prestress is introduced in the circumferential direction, and the thickness of the cooling resistance relaxation material is provided at the lower end portion of the sidewall. Since the thickness was set to be thicker than the other parts as the depth was changed stepwise or continuously, the heat resistance to the lower end of the side wall was enhanced by the thermal resistance mitigation material, and in the event of a leak In addition, sufficient heat insulation is ensured for the lower end of the side wall, and the temperature drop therein can be suppressed, whereby the temperature difference between the bottom plate and the side wall where the temperature is maintained by the heater can be reduced as much as possible. The temperature gradient generated in the part can be moderated, the thermal stress and thermal deformation generated in the lower end of the side wall can be suppressed, and as a result, the prestress to be introduced into the side wall can be reduced, and the cost can be reduced. It can be.
[0019]
The invention of claim 2, in addition to the above, since the incorporation position of the heater in the outer peripheral edge of the bottom plate is set lower than the other part, it is possible to further reduce the temperature difference between the side wall and the bottom plate at the time of leakage Thus, it is possible to more effectively suppress thermal stress and thermal deformation generated at the lower end of the side wall .
[Brief description of the drawings]
FIG. 1 is an enlarged view of a main part showing a schematic configuration of a low-temperature ground tank according to a first embodiment of the present invention.
FIG. 2 is a main part enlarged view showing a schematic configuration of a low temperature ground tank as a reference example .
FIG. 3 is a main part enlarged view showing a schematic configuration of a low temperature ground tank according to a second embodiment of the present invention.
FIG. 4 is an overall view showing a schematic configuration of a conventional general low-temperature ground tank.
FIG. 5 is an enlarged view of the main part (V part in FIG. 4).
[Explanation of symbols]
1 Bottom plate 3 Side wall 6 Heater 11 Polyurethane foam (PUF, thermal resistance mitigation material)
14 Thermal insulation layer

Claims (2)

LNG等の低温液体を貯蔵するコンクリート造の低温地上タンクであって、ヒータが組み込まれた底版の外周縁部に筒状の側壁の下端部を接合してその側壁に周方向のプレストレスを導入し、側壁の内面には、その内面に防液処理が施されて液密性能を有しかつ断熱性能を有する冷熱抵抗緩和材を介してその内側に断熱層を設けるとともに、前記冷熱抵抗緩和材による側壁の下端部に対する断熱性を強化して底版と側壁との接合部に生じる温度差を低減するように、該冷熱抵抗緩和材の厚さを側壁の下端部にいくほど段階的あるいは連続的に変化させて他の部分よりも厚く設定したことを特徴とする低温地上タンク。It is a concrete low temperature ground tank that stores low temperature liquid such as LNG, and joins the lower edge of the cylindrical side wall to the outer peripheral edge of the bottom plate with the heater installed, and introduces pre-stress in the circumferential direction to the side wall. and, on the inner surface of the side wall, provided with a heat insulating layer on the inside through the cold resistance reducing material having a and thermal insulation performance liquid-tight performance liquid-proof treatment is applied on its inner surface, the cold resistance reducing material In order to enhance the heat insulation of the lower end portion of the side wall by reducing the temperature difference generated at the joint between the bottom plate and the side wall, the thickness of the thermal resistance relaxation material is gradually or continuously increased toward the lower end portion of the side wall. A low-temperature ground tank characterized by being changed to be thicker than other parts. 請求項1記載の低温地上タンクであって、底版の外周縁部におけるヒータの組み込み位置を他の部分よりも低く設定したことを特徴とする低温地上タンク。  2. The low-temperature ground tank according to claim 1, wherein the heater mounting position at the outer peripheral edge of the bottom plate is set lower than that of other portions.
JP2001118197A 2001-04-17 2001-04-17 Low temperature ground tank Expired - Fee Related JP3864369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001118197A JP3864369B2 (en) 2001-04-17 2001-04-17 Low temperature ground tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001118197A JP3864369B2 (en) 2001-04-17 2001-04-17 Low temperature ground tank

Publications (2)

Publication Number Publication Date
JP2002308376A JP2002308376A (en) 2002-10-23
JP3864369B2 true JP3864369B2 (en) 2006-12-27

Family

ID=18968625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001118197A Expired - Fee Related JP3864369B2 (en) 2001-04-17 2001-04-17 Low temperature ground tank

Country Status (1)

Country Link
JP (1) JP3864369B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080226A (en) * 2009-10-06 2011-04-21 Ihi Corp Pile joint structure
JP2012127439A (en) * 2010-12-16 2012-07-05 Ihi Corp Low-temperature tank structure
JP2012233354A (en) * 2011-05-02 2012-11-29 Ihi Corp Low-temperature tank

Also Published As

Publication number Publication date
JP2002308376A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
KR101180742B1 (en) Heat insulation panel for cryogenic liquid storage tank and heat insulation structure having the same
JP5896749B2 (en) Low temperature tank
KR100868704B1 (en) Lng containment tank of lng ship and the method for construction and repair of it
JP5033169B2 (en) Double barrier for liquefied gas storage tank for onshore and its construction method
JP3864369B2 (en) Low temperature ground tank
JP5076779B2 (en) Membrane anchor for low temperature tank corner
JP6036605B2 (en) Above-ground cryogenic tank
WO2019176097A1 (en) Storage-type water heater
JP3978892B2 (en) Tank pump pit and its construction method
CN114228914A (en) Heat insulation system of B-type liquid cargo tank and B-type liquid cargo tank
JP2023070644A (en) Heat insulation device for extremely-low temperature storage tank of substance such as hydrogen, and construction method thereof
JP2012127439A (en) Low-temperature tank structure
JPH09184320A (en) Flat-bottomed ground tank
JP3479437B2 (en) Vertical insulated low-temperature tank and method of construction
JP2006132564A (en) Bottom structure for low temperature pc tank
JPH09165090A (en) Low temperature storage tank
WO2005082747A1 (en) Low-temperature pc tank and method for constructing and operating low-temperature pc tank
JP2004106884A (en) Construction method for tank sidewall
KR20160116223A (en) Lng storage tank and apparatus for absorbing impact of the same
JP2003247699A (en) Anchor equipment structure of tank
JP2003227596A (en) Metallic double-shell low temperature tank
JP2879717B2 (en) Outer tank interior method for low-temperature storage tanks
JPH07248097A (en) Low temperature liquefied gas tank
JPH0658000A (en) Coupling structure between pc dike and footing foundation
JP2002071887A (en) Concrete cask

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3864369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141013

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees