JP3864323B2 - Sealing apparatus and sealing method for thermoplastic resin container - Google Patents

Sealing apparatus and sealing method for thermoplastic resin container Download PDF

Info

Publication number
JP3864323B2
JP3864323B2 JP03155597A JP3155597A JP3864323B2 JP 3864323 B2 JP3864323 B2 JP 3864323B2 JP 03155597 A JP03155597 A JP 03155597A JP 3155597 A JP3155597 A JP 3155597A JP 3864323 B2 JP3864323 B2 JP 3864323B2
Authority
JP
Japan
Prior art keywords
heating member
heat
sealing
welding
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03155597A
Other languages
Japanese (ja)
Other versions
JPH10229033A (en
Inventor
鴻 成澤
Original Assignee
昭栄株式会社
アドフォクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭栄株式会社, アドフォクス株式会社 filed Critical 昭栄株式会社
Priority to JP03155597A priority Critical patent/JP3864323B2/en
Publication of JPH10229033A publication Critical patent/JPH10229033A/en
Application granted granted Critical
Publication of JP3864323B2 publication Critical patent/JP3864323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液状物が含まれる内容物を収容し且つ該液体を導入する際に用いる開口をもつ熱可塑性樹脂容器を封止するのに好適な装置及び方法に関する。
【0002】
近年、電解コンデンサ、電気二重層コンデンサ、一次電池、二次電池など、小型の電子部品或いは電気装置などでは、必要部材及び液体を熱可塑性樹脂容器内に収容し、液状物を導入する際に用いた開口を熱溶着に依って封止することが行なわれているが、良好な封止を行なう為には、封止方法及び封止装置の更なる改良が必要であり、本発明は、これに応える一手段を提供することができる。
【0003】
【従来の技術】
例えば、超小型電解コンデンサに於いては、導電部材を導出した陽極箔と陰極箔を絶縁紙を介在して巻き上げてなるコンデンサ素子体及び電解液を熱可塑性樹脂容器に収容し、電解液を導入する際に用いた開口を熱溶着して封止することが行なわれている(要すれば、「特願平6−153254号」、「特願平7−135116号」などを参照)。
【0004】
図7は従来の封止方法を説明する為の熱可塑性樹脂容器及び封止装置の一部を表す要部切断側面図である。
【0005】
図に於いて、1は熱可塑性樹脂容器、1Aは開口、1Bは開口周縁のカラー部分、2は熱溶着加熱部材、3は熱溶着封止部分、4は仮想カラー部分をそれぞれ示している。尚、この場合、熱可塑性樹脂としては、PPS(polyphenylene sulfide)が多用されている。
【0006】
容器1内に液体などを収容して封止する際、特に、その液状物が容器1の熱溶着温度で蒸気圧が高くなるものである場合には、温度が上昇していない加熱部材2をカラー部分1Bに押し付けて開口1Aを塞いだ状態とし、
▲1▼ 加熱部材2の温度上昇
▲2▼ 熱溶着
▲3▼ 加熱部材2の温度低下
のプロセスを経て加熱部材2を熱溶着封止部分3から引き離し、1サイクルの封止プロセスを終了する。
【0007】
このようにすることで、容器1内にある液体の蒸気圧が高まり、内部圧力が一時的に高くなっても、ピン・ホールの発生がない、良好な封止が可能である。
【0008】
若し、加熱部材2を常時温度上昇した状態にしておき、それをカラー部分1Bに押し付けて封止しようとしても、容器1内の空気は勿論、液体の蒸気が溶融した熱可塑性樹脂を押し退けて噴出する為、安定した封止は不可能である。
【0009】
本出願人が実施している前記封止に於いては、開口1Aが1〔mm〕φの場合に加熱部材2に依るカラー部分1Bの押圧力は加熱開始から溶着終了まで2.5〔kg〕〜3〔kg〕を維持しているから、容器1内の圧力が200〔気圧〕になっても、内容物の吹き返しは起こらない。尚、実際の加熱溶着温度は約320〔℃〕程度であるから、容器1内の圧力は10〔気圧〕以下であって、良好な封止可能になっている。
【0010】
【発明が解決しようとする課題】
課題1
通常、PPS樹脂の溶融温度は約290〔℃〕であるから、加熱部材2の温度を290〔℃〕以上にすれば、熱溶着封止することが可能であり、そして、その温度を高くするほど短時間で熱溶着封止できるので、量産性を向上するには、加熱部材2の温度を高くした方が良い。
【0011】
然しながら、実験したところに依れば、加熱部材2の温度が350〔℃〕を越えると、熱溶着封止終了後の離型、即ち、容器1に於ける熱溶着封止部分3と加熱部材2との引き離しが著しく悪くなることが判った。
【0012】
課題2
また、本出願人が用いている容器1は、PPS樹脂を主材とし、高温に於ける物理特性を改善する為、ガラス・ファイバを30重量容量〔%〕〜40重量容量〔%〕程度混入している。
【0013】
一般に、ガラス・ファイバは硬度が高く、ビッカース硬度で640にもなっているので、SKD−11(JIS規格の工具鋼で焼入れ後のビッカース硬度が700)で作製した加熱部材2であっても、約10000回程度の使用で表面荒れが生じるので、再研磨しなければならない。
【0014】
前記10000回は多いように思われようが、6〔秒〕間に1回の溶着を行なうとした場合、約18〔時間〕で交換を必要とすることになる。
【0015】
課題3
更にまた、図7から判るように、加熱部材2がカラー部分1Bと当接する面は椀状にしてある為、熱溶着封止部分3は球面の一部をなし、容器1の面から突出した状態になっていて、また、その厚さは一様ではない。
【0016】
従って、製品を取り扱い中に容器1の頂面が他の物体に接触して真っ先に衝撃を受けるのは、熱溶着封止部分3の、しかも、開口1Aを塞いでいる部分であって、その部分は、特に、他の部分と比較して薄くなっていて、通常、0.2〔mm〕程度である為、外力に依って容易にクラックが入る。
【0017】
これを防ぐ為には、例えば、図7に破線で示したように、仮想カラー部分4を実際に設けておけば、熱溶着封止部分3を保護することはできるが、外形寸法が大きくなってしまうことは回避できない。尚、表面実装型電子部品では、外形に於ける0.1〔mm〕程度の大小が問題になることは良く知られている。
【0018】
課題4
更にまた、熱溶着封止部分3と加熱部材2との引き離しを容易にする為、熱溶着封止部分3に於ける温度を300〔℃〕〜320〔℃〕として溶着する場合、PPS樹脂が溶ける速さは遅いので、開口1Aが1〔mm〕φである容器1に於いては、前記溶着温度を約1.5〔秒〕間(有効溶着時間)維持することが必要がある。尚、本明細書では、加熱部材2の加熱時間及び有効溶着時間をもって溶着時間と呼んでいる。
【0019】
当初の実験では、比較的大きな蓄熱容量をもつ加熱部材2を用い、加熱部材2の加熱時間及び有効溶着時間を長めに取っていたが、これでは、長い溶着時間と冷却時間が必要となり、加工時間/1サイクルが7〔秒〕にもなってしまう。
【0020】
前記諸課題を踏まえ、本発明では、熱可塑性樹脂容器の封止装置、特に、熱溶着加熱部材の構造を改良し、また、その封止装置を用いて熱可塑性樹脂容器を封止する方法、特に、熱溶着加熱部材の温度制御を改良することで、保守が容易であると共に熱可塑性樹脂容器の良好な封止を可能とし、全体として、量産性を向上させようとする。
【0021】
【課題を解決するための手段】
本発明では、熱融着加熱部材の形状構造に簡単な改変を加えて離型性の向上や容器に於ける熱溶着封止部分の保護を図り、また、熱溶着加熱部材の先端にある押圧加熱面に被膜を形成して長寿命化し、更に、その熱溶着加熱部材を用いた封止プロセスに於いて、熱溶着加熱部材の温度制御に関して改変を加えることで封止プロセスに必要な時間を短縮し、全体として量産性を大きく向上させている。
【0022】
前記したところから、本発明に依る熱可塑性樹脂容器の封止装置及び封止方法に於いては、
(1)
熱可塑性樹脂容器(例えばPPSなどの熱可塑性樹脂容器11)の一部に形成された開口(例えば開口11A)を囲むカラー部分(例えばカラー部分11B)に対し、溶着開始から溶着終了までの間、前記容器内に在る内容物の吹き返しが起こることを抑止可能な一定圧力で押接して該開口を閉塞し且つ発熱部分からの熱を伝えて溶着封止する押圧加熱面(例えば押圧加熱面13A)をもち且つ前記押圧加熱面の中央部分及びその近傍の温度を高く又周縁の温度を低くする為に前記押圧加熱面に近い部分がカラー部分の径(例えばカラー部分11Bの直径D1)と近似する径(例えば溝13Bの形成で縮径)に縮径された熱溶着加熱部材(例えば熱溶着加熱部材13)を備えてなることを特徴とするか、又は、
【0023】
(2)
前記(1)に於いて、押圧加熱面をTiN膜で覆ってなる熱溶着加熱部材を備えてなることを特徴とするか、又は、
【0027】
前記手段を採ることに依り、加熱部材の形状構造に簡単な改変が施され、押圧加熱面に依る開口の良好な閉塞を維持しながら、温度分布、即ち、押圧加熱面の中央部分及びその近傍は高い温度に保ち、また、その周縁では低い温度を保つようにすることで、加熱部材の押圧加熱面と熱溶着封止部分との良好な引き離し、即ち、離型を良好に行なうことができる。更に付言すると、加熱工程中、容器の内容物が温められ、膨張して吹き返すことを防止する為、常に2.5kg〜3kgの圧力を維持しながら溶着を行っていて、押圧加熱面は溝の存在で中央部により多くの熱が伝導されて樹脂の溶融温度に比較して充分に高くなり、溶けた樹脂は開口に流れ込むのであるが、押圧加熱面の外周は溝の存在で熱伝導が阻止されている為に樹脂の溶融は遅くなり、2.5kg〜3kgの圧力をカラー部分の外周で支えるので、中央部の温度が充分に高くなるにも拘わらず吹き返しは発生しない。このような効果を生む為、溝、即ち、縮径された部分は重要な役割を担持している。
【0028】
また、加熱部材に於ける押圧加熱面の面荒れは有効に抑止され、通常の使い方であれば、20万回の熱溶着に耐えることができるので、従来の20倍も長寿命化され、その交換は長期に亙って不要であり、封止装置の稼働率は向上し、量産に大きく寄与することができる。
【0029】
更にまた、加熱部材の押圧加熱面の形状構造に簡単な改変を施すことで、容器の熱溶着封止部分が保護される形状を実現することも可能である。
【0030】
更にまた、加熱部材の蓄熱容量を低減させると共に適切な温度制御を実施することで、溶着時間を半減させ、量産性を倍増することができた。
【0031】
【発明の実施の形態】
図1乃至図3は本発明に依る実施の形態1を説明する為の工程要所に於ける封止装置及び電子部品を表す要部切断側面説明図である。
【0032】
図に於いて、11は熱可塑性樹脂容器、11Aは開口、11Bは開口周縁のカラー部分、12は液状物が含まれる内容物、13は熱溶着加熱部材、13Aは押圧加熱面、13Bは溝、14は電源、15は電源スイッチ、16は冷却空気ブロワ、17は熱溶着封止部分、17Aは開口11A内に流れ込んだ樹脂、D1はカラー部分11Bの直径、D2は熱溶着加熱部材13の直径、D3は溝13Bの存在で縮径された加熱部材13の直径をそれぞれ示している。尚、図示していないが、熱溶着加熱部材13の少なくとも押圧加熱面13Aには、PVD(physical vapor deposision)法に成膜されたTiN膜で覆ってあり、これについては、後に詳記する。
【0033】
図1乃至図3を参照しつつ、容器11の封止を行なう工程を説明するが、ここでも、容器11を構成する熱可塑性樹脂はPPSである。
【0034】
図1参照
1−(1)
液状物を含む内容物12を収容した容器11を封止装置にセットし、加熱部材13の押圧加熱面13Aをカラー部分11Bに押し当てることに依って、開口11Aを覆う。尚、この段階では、電源スイッチ15は開放されている。
【0035】
図2参照
2−(1)
電源スイッチ15を閉成し、加熱部材13に例えば50〔A〕程度の電流を流し、300〔℃〕〜320〔℃〕程度に発熱させ、その熱をカラー部分11Bに伝えて溶融する。
【0036】
2−(2)
電源スイッチ15を開放し、その後は、加熱部材13の余熱に依って熱溶着封止部分17の形状が所定寸法になるまで熱溶着を継続する。
【0037】
図3参照
3−(1)
熱溶着封止部分17の形状が所定寸法になった段階で、冷却空気ブロワ16から冷却空気のブローを行なって加熱部材13を冷却する。
【0038】
3−(2)
加熱部材13の冷却が終わった段階で、押圧加熱面13Aと熱溶着封止部分17との引き離し、即ち、離型を行なって封止加工の1サイクルを終了する。
【0039】
図4は図1乃至図3を参照して説明した封止プロセスの時間推移を表すタイミング・チャートであって、図4を参照すると、本発明に於ける封止プロセスの標準的な時間推移が明瞭に看取できる。
【0040】
さて、前記したように、容器11の封止を行なうに際し、短時間で加工を終わらせる為、高温、例えば350〔℃〕以上の熱溶着を行なった場合、押圧加熱面13Aと熱溶着封止部分17との離型が悪くなるので、押圧加熱面13Aの表面温度を約300〔℃〕〜320〔℃〕程度の範囲に維持して実施すると良いことが実験に依って判明している。
【0041】
図1から明らかなように、加熱部材13、従って、押圧加熱面13Aの直径D2は、開口11Aを塞ぎ且つカラー部分11Bを完全に覆うようにしなければならないので、カラー部分11Bの直径D1に比較して大きくすることが不可欠である。
【0042】
そのような形状をもった押圧加熱面13Aをカラー部分11Bに当接して溶融する際、押圧加熱面13Aに於けるカラー部分11Bと当接している部分では、熱がカラー部分11Bに吸収される為、温度低下が発生する。
【0043】
ここで、加熱部材13に溝13Bが設けられていないと仮定した場合、加熱部材13に於ける熱は直径D2の押圧加熱面13Aの全面に伝導されている状態となり、そのような状態で、カラー部分11Bに熱が吸収された場合、押圧加熱面13Aに於いては、カラー部分11Bと当接している直径D1に対応する領域のみに温度低下が発生し、従って、D2−D1の外周部分では温度低下がなく、高温状態が維持され、これが離型を悪くする原因になっている。
【0044】
本発明に依る加熱部材13では、その先端近傍に溝13Bを設けることで直径D3に縮径され、そして、D3≒D1になっているので、D2−D1の外周部分への熱伝導は抑止され、熱溶着時の温度上昇は少ないので離型性が大きく改善され、これに依って、課題1は解決された。
【0045】
ところで、本発明に依る加熱部材13の少なくとも押圧加熱面13Aは、PVD法で成膜した厚さが例えば2〔μm〕程度のTiN膜で覆ってあり、このTiN膜は、押圧加熱面13Aの面荒れ防止に卓効があり、しかも、押圧加熱面13Aと熱溶着封止部分17との良好な引き離し、即ち、離型性を向上するのにも寄与している。
【0046】
PVD法で成膜したTiN膜のビッカース硬度は約1700〜2400程度であり、前記説明した封止プロセスのような使い方をした場合、寿命は20万回の熱溶着に耐えることができ、従来の20倍の長寿命になった。
【0047】
因みに、本発明者は、前記TiN膜のみでなく、他の表面改質被膜についても多くの実験を行なったので、次に、その若干について触れておくことにする。
【0048】
例えばCVD(chemical vapor deposition)法で成膜したTiC膜は、ビッカース硬度が約3800〜4000程度であって、離型の点では大変優れていて、TiC膜を100とした場合、TiN膜は90程度である。
【0049】
然しながら、TiC膜は熱衝撃に対する耐性に乏しく、加熱及び冷却を繰り返すことで、押圧加熱面13Aから剥離してしまい、現在のところ、実用に供するには問題がある。尚、TiN膜の熱衝撃に対する耐性は極めて良好であり、剥離は全く発生しない。
【0050】
また、同じくCVD法で成膜したWC膜は、ビッカース硬度が約3800〜4000程度であって、TiN膜よりも高いが、離型が劣悪であって、使用に耐えない。
【0051】
前記したところから明らかな通り、TiN膜は離型の面でTiC膜に僅か劣るものの、熱衝撃に依る剥離に対する耐性は極めて高いので、現在のところ、加熱部材13の少なくとも押圧加熱面13AをTiN膜で覆うことが長寿命化する為の最適な手段であり、これに依って、課題2は解決された。
【0052】
図7を参照して説明したところであるが、本発明に於いても、図1乃至図3について説明した加熱部材13は、その押圧加熱面13Aは椀状になっている為、熱溶着封止部分17のうち、開口11Aを覆っている箇所が他の部分に比較して薄くなってしまい、外力が加わった場合、クラックが入るおそれがあったが、これは押圧加熱面13Aの形状を変えることで簡単に解決できる。
【0053】
図5は本発明に依る実施の形態2を説明する為の工程要所に於ける封止装置及び電子部品を表す要部説明図であり、図1乃至図3に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。
【0054】
図に於いて、(A)は封止装置の熱溶着加熱部材並びに電子部品の要部切断側面、(B)は電子部品の要部平面、21は熱溶着加熱部材、21Aは熱溶着加熱部材21の押圧加熱面、22は熱溶着封止部分をそれぞれ示している。
【0055】
ここで用いる加熱部材21に於いては、その押圧加熱面21Aの構造が、熱溶着封止部分22の中央部分近傍に凹所を生成させるように変形部分を設けた点に特徴があり、それに依って得られる熱溶着封止部分22では、中央部分近傍、即ち、機械的強度が最も低い部分が凹んでいるので、そこに外力が加わることを凹所の周囲で防ぐことができる。
【0056】
図5の(A)では、押圧加熱面21Aの中央部分が突出した形状になっているので、図から明らかなように、熱溶着封止部分22の側断面は中央部分が凹んでM形になっているのが看取されよう。
【0057】
図5の(B)及び(C)では、中央部分が+記号形、或いは、S字形に突出した押圧加熱面21Aに依って形成された熱溶着封止部分22が表されていて、このようにすると、電気極性の指示や製造者の表示などが困難な超小型の電解コンデンサや電池などでは二つの目的を同時に達成することが可能であり、これに依って、課題3は解決された。
【0058】
さきに、図4を用いて封止プロセスの標準的な時間推移を明らかにした通り、その封止プロセスに於いては、加熱部材13の加熱時間と有効溶着時間とを加えた溶着時間が4〔秒〕になっていて、それに更に加熱部材13の冷却時間が加わって、全体で7〔秒〕を要し、これが封止加工の1サイクルになっている。
【0059】
前記した通り、本発明に依る加熱部材13は長寿命化され、交換するまでの時間が大幅に延長されたので、それだけでも、電子部品や電気装置の量産性は向上しているのであるが、前記封止加工の1サイクル分に要する時間を短縮することができれば、直接的に量産性を向上することができる。
【0060】
そこで、加熱部材13の質量を小さく、従って、蓄熱容量を低減して例えば約1/2とし、それに依って、温度の上昇及び下降を速め、加えて、きめ細かく温度制御、即ち、加熱電源のオン・オフ制御を複数に分割して実施することで、封止加工の1サイクル分の時間を短縮して量産性を向上させる。
【0061】
図6は蓄熱容量を低減した熱溶着加熱部材を用いた封止プロセスの時間推移を表すタイミング・チャートである。尚、以下の封止プロセス説明では、図1乃至図3を参考にすると理解が容易である。
【0062】
▲1▼ 加熱部材13を下降させて押圧加熱面13Aをカラー部分11Bに押し当てると殆ど同時に電源スイッチ15をオンにする。
【0063】
加熱部材13の温度が上昇すると熱溶着が始まるのであるが、加熱部材13は蓄熱容量が小さいので急速に温度が上昇し、0.3〔秒〕〜0.5〔秒〕で320〔℃〕に達している。
【0064】
▲2▼ 加熱部材13の温度が320〔℃〕になった時点で電源スイッチ15はオフとし、その後は、加熱部材13の余熱で熱溶着を継続する。
【0065】
▲3▼ 電源スイッチ15をオフにしてから0.5〔秒〕経過すると温度が若干低下してくるので、再び電源スイッチ15をオンにして加熱部材13に通電する。
【0066】
▲4▼ 再通電してから、0.2〔秒〕で電源スイッチ15をオフとし、その後は、再び加熱部材13の余熱で熱溶着を継続し、このようにすることで、有効溶着時間である1.5〔秒〕間は略320〔℃〕の温度を維持する。
【0067】
前記のようにして、溶着時間が2.5〔秒〕を経過した時点で冷却空気ブロワ16か ら冷却空気のブローを行なって加熱部材13の冷却を行なう。この冷却時間は2〔秒〕 であるが、1.5〔秒〕を経過した時点で加熱部材13を上昇させ、離型を行なって良 い。尚、加熱部材13の蓄熱容量を小さくして温度上昇を速くすることで、高速で樹脂 の規定量を溶融することができる筈であるが、開口11Aに流れ込んだ溶融樹脂が強固 な封止を行う為には、適切な速度の存在が判明していて、樹脂の溶融量と溶融速度をコ ントロールする為には間欠加熱が有効である。
【0068】
前記封止プロセスに依れば、有効溶着時間1.5〔秒〕を確保しながら、溶着時間は2.5〔秒〕に短縮され、また、冷却時間も短縮されたことから、封止加工1サイクル当たりの所要時間は4.5〔秒〕となり、従来の7〔秒〕と比較すると、55〔%〕の増産が可能であり、これに依って、課題4は解決された。
【0069】
前記の制御、特に、温度制御は、通常であれば、加熱部材13に温度センサを設け、検出温度を一定に保つように、フィード・バック・ループを形成して実現するのであるが、温度センサへの熱伝導の遅延がある為、複雑で高価になるわりには、温度の安定性は良くならない。
【0070】
本発明では、簡単なシーケンサを用い、加熱電源のオン・オフ時間をプログラムすることで、安価で、且つ、安定な動作を得ることができた。
【0071】
前記実施の形態では、主として電解コンデンサを対象にして説明したが、本発明は、これに限られることなく、他の電子部品や電気装置に適用して、優れた効果を奏することができる。
【0072】
例えば、電気二重層コンデンサは、正極並びに負極に活性炭素を用い、電解液として水系或いは非水系電解液をそれぞれ容器に気密封止するものであるから、本発明は有効であり、この他、リチウム電池(一次電池)は正極に活物質、負極に金属リチウムを用い、電解液として非水系電解液をそれぞれ容器に気密封止するものであり、更にまた、ニッケル水素電池(二次電池)は正極に水素吸蔵合金、負極にニッケルを用い、電解液として苛性カリ水溶液をそれぞれ容器に気密封止するようになっているので、コンデンサなどの場合と同じ効果が得られる。
【0073】
因みに、アルミニウム電解コンデンサは、正極に酸化膜付きアルミニウム、負極にアルミニウムを用い、電解液として水系或いは非水系電解液をそれぞれ容器に気密封止することが行なわれている。
【0074】
【発明の効果】
本発明に依る熱可塑性樹脂容器の封止装置及び封止方法に於いては、熱可塑性樹脂容器の一部に形成された開口を囲むカラー部分に押接して該開口を閉塞し且つ熱を伝えて溶着封止する熱溶着加熱部材の形状構造に改良し、また、押圧加熱面をTiN膜で覆い、更にまた、熱溶着加熱部材に発熱エネルギを間欠的に複数回に亙って供給することで有効溶着時間中は所定溶着温度を維持するようにしている。
【0075】
前記構成を採ることに依り、加熱部材の形状構造に簡単な改変を施すことに依って、押圧加熱面に依る開口の良好な閉塞を維持しながら、温度分布、即ち、押圧加熱面の中央部分及びその近傍は高い温度に保ち、また、その周縁では低い温度を保つようにすることで、加熱部材の押圧加熱面と熱溶着封止部分との良好な引き離し、即ち、離型を良好に行なうことができる。
【0076】
また、加熱部材に於ける押圧加熱面の面荒れは有効に抑止され、通常の使い方であれば、20万回の熱溶着に耐えることができるので、従来の20倍も長寿命化され、その交換は長期に亙って不要であり、封止装置の稼働率は向上し、量産に大きく寄与することができる。
【0077】
更にまた、加熱部材の押圧加熱面の形状構造に簡単な改変を施すことで、容器の熱溶着封止部分が保護される形状を実現することも可能である。
【0078】
更にまた、加熱部材の蓄熱容量を低減させると共に適切な温度制御を実施することで、溶着時間を半減させ、量産性を倍増することができた。
【図面の簡単な説明】
【図1】本発明に依る実施の形態1を説明する為の工程要所に於ける封止装置及び電子部品を表す要部切断側面説明図である。
【図2】本発明に依る実施の形態1を説明する為の工程要所に於ける封止装置及び電子部品を表す要部切断側面説明図である。
【図3】本発明に依る実施の形態1を説明する為の工程要所に於ける封止装置及び電子部品を表す要部切断側面説明図である。
【図4】図1乃至図3を参照して説明した封止プロセスの時間推移を表すタイミング・チャートである。
【図5】本発明に依る実施の形態2を説明する為の工程要所に於ける封止装置及び電子部品を表す要部説明図である。
【図6】蓄熱容量を低減した熱溶着加熱部材を用いた封止プロセスの時間推移を表すタイミング・チャートである。
【図7】従来の封止方法を説明する為の熱可塑性樹脂容器及び封止装置の一部を表す要部切断側面図である。
【符号の説明】
11 熱可塑性樹脂容器
11A 開口
11B 開口周縁のカラー部分
12 液状物が含まれる内容物
13 熱溶着加熱部材
13A 押圧加熱面
13B 溝
14 電源
15 電源スイッチ
16 冷却空気ブロワ
17 熱溶着封止部分
17A 開口11A内に流れ込んだ樹脂
21 熱溶着加熱部材
21A 押圧加熱面
22 熱溶着封止部分
D1 カラー部分11Bの直径
D2 熱溶着加熱部材13の直径
D3 溝13Bの存在で縮径された加熱部材13の直径
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and method suitable for sealing a thermoplastic resin container having an opening used for containing contents containing a liquid substance and introducing the liquid.
[0002]
In recent years, in small electronic parts or electrical devices such as electrolytic capacitors, electric double layer capacitors, primary batteries, and secondary batteries, necessary members and liquids are accommodated in a thermoplastic resin container and used when introducing a liquid material. However, in order to achieve good sealing, further improvements in the sealing method and the sealing device are necessary. It is possible to provide a means for meeting the requirements.
[0003]
[Prior art]
For example, in a micro electrolytic capacitor, a capacitor element body and an electrolytic solution obtained by winding up an anode foil and a cathode foil from which conductive members are led out through insulating paper are accommodated in a thermoplastic resin container, and the electrolytic solution is introduced. The openings used for this are thermally sealed and sealed (see, for example, “Japanese Patent Application No. 6-153254”, “Japanese Patent Application No. 7-135116”, etc.).
[0004]
FIG. 7 is a cutaway side view of a main part showing a part of a thermoplastic resin container and a sealing device for explaining a conventional sealing method.
[0005]
In the figure, 1 is a thermoplastic resin container, 1A is an opening, 1B is a collar portion at the periphery of the opening, 2 is a heat welding heating member, 3 is a heat welding sealing portion, and 4 is a virtual color portion. In this case, PPS (polyphenylene sulfide) is often used as the thermoplastic resin.
[0006]
When the liquid or the like is accommodated in the container 1 and sealed, particularly when the liquid material has a high vapor pressure at the heat welding temperature of the container 1, the heating member 2 whose temperature has not increased is provided. Press the collar 1B to close the opening 1A,
(1) Temperature rise of the heating member 2 (2) Thermal welding (3) The heating member 2 is separated from the thermal welding sealing portion 3 through the process of lowering the temperature of the heating member 2, and one cycle sealing process is completed.
[0007]
By doing in this way, even if the vapor pressure of the liquid in the container 1 is increased and the internal pressure is temporarily increased, it is possible to achieve good sealing without the occurrence of pin holes.
[0008]
Even if the heating member 2 is kept in a state in which the temperature is constantly raised and is pressed against the collar portion 1B for sealing, the air in the container 1 as well as the thermoplastic resin in which the liquid vapor has melted is pushed away. Due to the ejection, stable sealing is impossible.
[0009]
In the sealing performed by the present applicant, when the opening 1A is 1 [mm] φ, the pressing force of the collar portion 1B by the heating member 2 is 2.5 [kg] from the start of heating to the end of welding. ] because by keeping to 3 (kg), even if the pressure in the container 1 becomes 200 [pressure], spitting the contents does not occur. Since the actual heat welding temperature is about 320 [° C.], the pressure in the container 1 is 10 [atm] or less, and good sealing is possible.
[0010]
[Problems to be solved by the invention]
Assignment 1
Usually, since the melting temperature of the PPS resin is about 290 [° C.], if the temperature of the heating member 2 is set to 290 [° C.] or higher, it is possible to perform heat-sealing and increase the temperature. Since heat sealing can be performed in a short time, it is better to raise the temperature of the heating member 2 in order to improve mass productivity.
[0011]
However, according to the experiment, when the temperature of the heating member 2 exceeds 350 [° C.], the mold release after the end of the thermal welding sealing, that is, the thermal welding sealing portion 3 and the heating member in the container 1 is performed. It was found that the separation from 2 was significantly worse.
[0012]
Assignment 2
In addition, the container 1 used by the present applicant is mainly made of PPS resin, and glass fibers are mixed in an amount of 30% by weight [%] to 40% by weight [%] in order to improve physical properties at high temperature. is doing.
[0013]
In general, since glass fiber has a high hardness and Vickers hardness of 640, even heating member 2 made of SKD-11 (Vickers hardness after quenching with JIS standard tool steel is 700) Since the surface becomes rough after about 10,000 use, it must be re-polished.
[0014]
Although it seems that there are many 10,000 times, if it is assumed that welding is performed once in 6 [seconds], replacement is required in about 18 [hours].
[0015]
Issue 3
Furthermore, as can be seen from FIG. 7, the surface of the heating member 2 that contacts the collar portion 1 </ b> B has a bowl shape, so that the heat-sealed sealing portion 3 is part of a spherical surface and protrudes from the surface of the container 1. It is in a state and its thickness is not uniform.
[0016]
Therefore, it is the portion of the heat-sealed sealing portion 3 that closes the opening 1A that the top surface of the container 1 comes into contact with another object and receives the impact first when handling the product. In particular, the portion is thinner than the other portions and is usually about 0.2 [mm], so that it easily cracks depending on the external force.
[0017]
In order to prevent this, for example, as shown by a broken line in FIG. 7, if the virtual collar portion 4 is actually provided, the heat-sealed sealing portion 3 can be protected, but the outer dimensions are increased. It cannot be avoided. It is well known that a surface mount type electronic component has a problem of a size of about 0.1 mm in the outer shape.
[0018]
Exercise 4
Furthermore, in order to facilitate the separation between the heat welded sealing portion 3 and the heating member 2, when the temperature in the heat welded sealed portion 3 is 300 [° C.] to 320 [° C.], the PPS resin Since the melting speed is slow, it is necessary to maintain the welding temperature for about 1.5 [seconds] (effective welding time) in the container 1 having the opening 1A of 1 [mm] φ. In the present specification, the heating time and effective welding time of the heating member 2 are referred to as welding time.
[0019]
In the initial experiment, the heating member 2 having a relatively large heat storage capacity was used, and the heating time and the effective welding time of the heating member 2 were set longer, but this requires a long welding time and a cooling time. Time / cycle becomes 7 [seconds].
[0020]
Based on the above-mentioned problems, in the present invention, a sealing device for a thermoplastic resin container, in particular, a method for improving the structure of a heat welding heating member, and sealing a thermoplastic resin container using the sealing device, In particular, by improving the temperature control of the heat welding heating member, it is easy to maintain and allows good sealing of the thermoplastic resin container, thereby improving the mass productivity as a whole.
[0021]
[Means for Solving the Problems]
In the present invention, a simple modification is made to the shape and structure of the heat fusion heating member to improve the releasability and protect the heat welding sealing portion in the container, and the pressure at the tip of the heat welding heating member A coating is formed on the heating surface to prolong the service life. Furthermore, in the sealing process using the heat welding heating member, the time required for the sealing process can be reduced by modifying the temperature control of the heat welding heating member. This shortens and greatly improves mass productivity as a whole.
[0022]
From the above, in the sealing device and the sealing method of the thermoplastic resin container according to the present invention,
(1)
For the color part (for example, the color part 11B) surrounding the opening (for example, the opening 11A) formed in a part of the thermoplastic resin container (for example, the thermoplastic resin container 11 such as PPS), from the start of welding to the end of welding, A pressure heating surface (for example, the pressure heating surface 13A) that presses and contacts with a constant pressure that can prevent the contents in the container from being blown back , closes the opening, and transfers heat from the heat generating portion to be welded and sealed. ) And a portion close to the pressure heating surface approximates the diameter of the color portion (for example, the diameter D1 of the color portion 11B) in order to increase the temperature of the central portion of the pressure heating surface and the vicinity thereof and lower the peripheral temperature. Or a heat welding / heating member (for example, heat welding / heating member 13) having a diameter reduced to a diameter (for example, a diameter reduced by forming the groove 13B), or
[0023]
(2)
In the above (1), the pressure heating surface is provided with a heat welding heating member covered with a TiN film , or
[0027]
By adopting the above means, the heating member is simply modified in its shape structure, and while maintaining good closure of the opening due to the pressure heating surface, the temperature distribution, that is, the central portion of the pressure heating surface and its vicinity Is kept at a high temperature, and at the periphery thereof, a low temperature is maintained, so that the pressing and heating surface of the heating member and the heat-sealed sealing portion can be satisfactorily separated, that is, the mold can be released well. . In addition, during the heating process, in order to prevent the contents of the container from being warmed and expanded and blown back, welding is always performed while maintaining a pressure of 2.5 kg to 3 kg. Existence causes more heat to be transferred to the center and becomes sufficiently higher than the melting temperature of the resin, and the molten resin flows into the opening, but the outer periphery of the pressure heating surface prevents heat conduction due to the presence of grooves. As a result, the resin melts slowly, and a pressure of 2.5 kg to 3 kg is supported on the outer periphery of the collar portion, so that no blow-back occurs even though the temperature at the center portion is sufficiently high. In order to produce such an effect, the groove, that is, the reduced diameter portion has an important role.
[0028]
In addition, surface roughness of the heating surface of the heating member is effectively suppressed, and if it is used in a normal manner, it can withstand 200,000 times of thermal welding, so that the life is extended 20 times that of the conventional method. Replacement is unnecessary for a long period of time, and the operating rate of the sealing device is improved, which can greatly contribute to mass production.
[0029]
Furthermore, it is also possible to realize a shape in which the heat-sealed sealed portion of the container is protected by simply modifying the shape structure of the heating surface of the heating member.
[0030]
Furthermore, by reducing the heat storage capacity of the heating member and carrying out appropriate temperature control, it was possible to halve the welding time and double the mass productivity.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 to FIG. 3 are principal part cut side explanatory views showing a sealing device and an electronic component in process essential points for explaining the first embodiment according to the present invention.
[0032]
In the figure, 11 is a thermoplastic resin container, 11A is an opening, 11B is a collar portion around the opening, 12 is a content containing a liquid material, 13 is a heat welding heating member, 13A is a pressure heating surface, and 13B is a groove. , 14 is a power source, 15 is a power switch, 16 is a cooling air blower, 17 is a heat-sealed sealed portion, 17A is a resin that flows into the opening 11A, D1 is a diameter of the collar portion 11B, and D2 is a heat-welding heating member 13 The diameter D3 indicates the diameter of the heating member 13 that has been reduced in diameter due to the presence of the groove 13B. Although not shown, at least the pressure heating surface 13A of the heat welding heating member 13 is covered with a TiN film formed by a PVD (physical vapor deposition) method, which will be described in detail later.
[0033]
Although the process of sealing the container 11 will be described with reference to FIGS. 1 to 3, the thermoplastic resin constituting the container 11 is again PPS.
[0034]
See Fig. 1 1- (1)
The opening 11A is covered by setting the container 11 containing the contents 12 containing the liquid material in the sealing device and pressing the pressing heating surface 13A of the heating member 13 against the collar portion 11B. At this stage, the power switch 15 is opened.
[0035]
See Fig. 2- (1)
The power switch 15 is closed, a current of about 50 [A] is passed through the heating member 13 to generate heat of about 300 [° C.] to 320 [° C.], and the heat is transmitted to the collar portion 11B to be melted.
[0036]
2- (2)
After the power switch 15 is opened, the heat welding is continued until the shape of the heat-welded / sealed portion 17 reaches a predetermined dimension due to the remaining heat of the heating member 13.
[0037]
See Fig. 3 3- (1)
When the shape of the heat-sealed sealing portion 17 reaches a predetermined size, cooling air is blown from the cooling air blower 16 to cool the heating member 13.
[0038]
3- (2)
At the stage where cooling of the heating member 13 is finished, the pressure heating surface 13A and the heat welded sealing portion 17 are separated, that is, released from the mold, and one cycle of the sealing process is completed.
[0039]
FIG. 4 is a timing chart showing a time transition of the sealing process described with reference to FIGS. 1 to 3. Referring to FIG. 4, a standard time transition of the sealing process in the present invention is shown. Clearly understandable.
[0040]
As described above, when sealing the container 11, in order to finish the processing in a short time, when heat welding at a high temperature, for example, 350 [° C.] or higher is performed, the press heating surface 13A and the heat sealing are sealed. Since the mold release from the portion 17 is deteriorated, it has been proved by experiments that the surface temperature of the pressure heating surface 13A is preferably maintained in the range of about 300 [° C.] to 320 [° C.].
[0041]
As is apparent from FIG. 1, the diameter D2 of the heating member 13, and thus the pressure heating surface 13A, must be closed to cover the opening 11A and completely cover the collar portion 11B, so that it is compared with the diameter D1 of the collar portion 11B. It is essential to make it bigger.
[0042]
When the pressure heating surface 13A having such a shape is brought into contact with the color portion 11B and melted, heat is absorbed by the color portion 11B at the portion of the pressure heating surface 13A in contact with the color portion 11B. Therefore, a temperature drop occurs.
[0043]
Here, when it is assumed that the groove 13B is not provided in the heating member 13, the heat in the heating member 13 is conducted to the entire surface of the pressure heating surface 13A having the diameter D2, and in such a state, When the heat is absorbed by the collar portion 11B, a temperature drop occurs only in the area corresponding to the diameter D1 in contact with the collar portion 11B on the pressure heating surface 13A. Therefore, the outer peripheral portion of D2-D1 In this case, there is no temperature drop and a high temperature state is maintained, which causes the mold release to deteriorate.
[0044]
In the heating member 13 according to the present invention, the groove 13B is provided in the vicinity of the tip of the heating member 13 so that the diameter is reduced to D3 and D3≈D1, so that heat conduction to the outer peripheral portion of D2-D1 is suppressed. Since the temperature rise at the time of heat welding is small, the releasability is greatly improved. Thus, the problem 1 is solved.
[0045]
By the way, at least the pressure heating surface 13A of the heating member 13 according to the present invention is covered with a TiN film having a thickness of, for example, about 2 [μm] formed by the PVD method, and this TiN film is formed on the pressure heating surface 13A. The surface roughening prevention has an excellent effect, and also contributes to good separation between the press-heating surface 13A and the heat-welded sealing portion 17, that is, to improve the releasability.
[0046]
The TiN film formed by the PVD method has a Vickers hardness of about 1700 to 2400, and when used as in the sealing process described above, the lifetime can withstand 200,000 thermal weldings. The service life was 20 times longer.
[0047]
Incidentally, since the present inventor conducted many experiments not only on the TiN film but also on other surface-modified films, some of them will be mentioned next.
[0048]
For example, a TiC film formed by a CVD (Chemical Vapor Deposition) method has a Vickers hardness of about 3800 to 4000 and is excellent in terms of mold release. When the TiC film is 100, the TiN film is 90%. Degree.
[0049]
However, the TiC film has poor resistance to thermal shock, and is repeatedly peeled off from the pressure heating surface 13A by repeated heating and cooling, and there is a problem for practical use at present. The TiN film has extremely good resistance to thermal shock, and no peeling occurs.
[0050]
Similarly, the WC film formed by the CVD method has a Vickers hardness of about 3800 to 4000 and is higher than the TiN film, but the mold release is inferior and cannot be used.
[0051]
As is apparent from the above, the TiN film is slightly inferior to the TiC film in terms of mold release, but has a very high resistance to delamination due to thermal shock. Therefore, at least the pressure heating surface 13A of the heating member 13 is currently made of TiN. Covering with a film is the optimum means for extending the life, and accordingly, Problem 2 has been solved.
[0052]
As described with reference to FIG. 7, in the present invention, the heating member 13 described with reference to FIGS. 1 to 3 has a heat-sealing seal because the pressing heating surface 13 </ b> A has a bowl shape. Of the portion 17, the portion covering the opening 11 </ b> A is thinner than the other portions, and when an external force is applied, there is a risk of cracking, but this changes the shape of the pressure heating surface 13 </ b> A. Can be solved easily.
[0053]
FIG. 5 is an explanatory view of the main part showing the sealing device and the electronic component at the main points of the process for explaining the second embodiment according to the present invention, and is the same as the symbols used in FIGS. The symbols shall represent the same part or have the same meaning.
[0054]
In the figure, (A) is a heat welding heating member of a sealing device and a cut side surface of the main part of the electronic component, (B) is a plane of the main part of the electronic component, 21 is a heat welding heating member, and 21A is a heat welding heating member. Reference numeral 21 denotes a pressure heating surface, and 22 denotes a heat-welded sealed portion.
[0055]
The heating member 21 used here is characterized in that the structure of the pressure heating surface 21A is provided with a deformed portion so as to generate a recess in the vicinity of the central portion of the heat-welded sealing portion 22, Thus, in the heat-sealed sealing portion 22 obtained, the vicinity of the center portion, that is, the portion having the lowest mechanical strength is recessed, so that external force can be prevented from being applied to the periphery of the recess.
[0056]
In FIG. 5A, since the central portion of the pressure heating surface 21A protrudes, as is apparent from the figure, the side cross section of the heat-welded sealed portion 22 has a concave central portion and is M-shaped. You will be caught.
[0057]
5 (B) and 5 (C), the heat seal portion 22 formed by the pressure heating surface 21A projecting in the center of the + symbol shape or S shape is shown. In this case, it is possible to achieve two purposes at the same time with an ultra-small electrolytic capacitor or battery that is difficult to indicate the electrical polarity or display by the manufacturer. Thus, Problem 3 has been solved.
[0058]
As shown in FIG. 4, the standard time transition of the sealing process is clarified. In the sealing process, the welding time obtained by adding the heating time of the heating member 13 and the effective welding time is 4. [Seconds], and the cooling time of the heating member 13 is further added, and it takes 7 [seconds] as a whole, which is one cycle of the sealing process.
[0059]
As described above, the heating member 13 according to the present invention has a long life and the time until replacement is greatly extended, so that alone, the mass productivity of electronic components and electrical devices is improved. If the time required for one cycle of the sealing process can be reduced, mass productivity can be improved directly.
[0060]
Therefore, the mass of the heating member 13 is reduced, and thus the heat storage capacity is reduced to about 1/2, for example, and the temperature rise and fall is accelerated, and in addition, fine temperature control, that is, heating power is turned on. -By performing the off control divided into a plurality of times, the time for one cycle of the sealing process is shortened to improve the mass productivity.
[0061]
FIG. 6 is a timing chart showing the time transition of the sealing process using the heat welding heating member with reduced heat storage capacity. In the following description of the sealing process, it is easy to understand with reference to FIGS.
[0062]
(1) When the heating member 13 is lowered and the pressing heating surface 13A is pressed against the collar portion 11B, the power switch 15 is turned on almost simultaneously.
[0063]
When the temperature of the heating member 13 rises, thermal welding starts. However, since the heat storage capacity of the heating member 13 is small, the temperature rises rapidly, and the temperature rises to 320 [° C.] from 0.3 [seconds] to 0.5 [seconds]. Has reached.
[0064]
{Circle around (2)} When the temperature of the heating member 13 reaches 320 [° C.], the power switch 15 is turned off, and thereafter, heat welding is continued by the residual heat of the heating member 13.
[0065]
(3) The temperature slightly decreases when 0.5 [seconds] elapses after the power switch 15 is turned off. Therefore, the power switch 15 is turned on again and the heating member 13 is energized.
[0066]
(4) After re-energizing, the power switch 15 is turned off in 0.2 [seconds], and then the heat welding is continued again with the remaining heat of the heating member 13, and in this way, the effective welding time is reduced. The temperature of about 320 [° C.] is maintained for a certain 1.5 seconds.
[0067]
5 As described above, when the welding time has passed 2.5 [seconds], the cooling air is blown from the cooling air blower 16 to cool the heating member 13. Although the cooling time is 2 [seconds], the heating member 13 may be raised when the time of 1.5 [seconds] elapses to release the mold. It should be noted that the specified amount of resin can be melted at high speed by reducing the heat storage capacity of the heating member 13 to increase the temperature , but the molten resin flowing into the opening 11A provides a strong seal. to do is not found to exist in the appropriate speed, to the amount of fusion and the melting rate of the resin to controls is effective intermittent heating.
[0068]
According to the sealing process, while ensuring an effective welding time of 1.5 [seconds], the welding time was reduced to 2.5 [seconds] and the cooling time was also shortened. The required time per cycle is 4.5 [seconds], and 55 [%] of production can be increased compared to the conventional 7 [seconds]. Thus, Problem 4 has been solved.
[0069]
The above-described control, particularly temperature control, is usually realized by providing a temperature sensor on the heating member 13 and forming a feedback loop so as to keep the detected temperature constant. Although there is a delay in heat conduction, the temperature stability is not improved at the expense of complexity and cost.
[0070]
In the present invention, an inexpensive and stable operation can be obtained by programming the on / off time of the heating power source using a simple sequencer.
[0071]
In the above-described embodiment, the description has been made mainly on the electrolytic capacitor. However, the present invention is not limited to this, and can be applied to other electronic components and electric devices to achieve excellent effects.
[0072]
For example, an electric double layer capacitor uses activated carbon for a positive electrode and a negative electrode, and an aqueous or nonaqueous electrolytic solution as an electrolytic solution is hermetically sealed in a container. Therefore, the present invention is effective. The battery (primary battery) uses an active material for the positive electrode and metallic lithium for the negative electrode, and a non-aqueous electrolyte solution is hermetically sealed in the container as the electrolyte solution. Furthermore, the nickel metal hydride battery (secondary battery) is the positive electrode. Since the hydrogen storage alloy is used for the negative electrode and nickel is used for the negative electrode and the caustic potash aqueous solution is hermetically sealed in the container as the electrolyte, the same effect as in the case of a capacitor or the like can be obtained.
[0073]
Incidentally, in an aluminum electrolytic capacitor, aluminum with an oxide film is used for a positive electrode and aluminum is used for a negative electrode, and an aqueous or non-aqueous electrolytic solution is hermetically sealed as an electrolytic solution in a container.
[0074]
【The invention's effect】
In the sealing device and the sealing method for a thermoplastic resin container according to the present invention, the collar portion surrounding the opening formed in a part of the thermoplastic resin container is pressed to close the opening and transmit heat. The shape and structure of the heat welding heating member that is welded and sealed is improved, the pressure heating surface is covered with a TiN film, and heat generation energy is intermittently supplied to the heat welding heating member multiple times. The predetermined welding temperature is maintained during the effective welding time.
[0075]
By adopting the above configuration, by making a simple modification to the shape structure of the heating member, the temperature distribution, that is, the central portion of the pressure heating surface, while maintaining good blockage of the opening due to the pressure heating surface And the vicinity thereof is kept at a high temperature, and the peripheral edge thereof is kept at a low temperature, so that the pressing and heating surface of the heating member and the heat-welded sealing portion can be satisfactorily separated, that is, the mold can be released well. be able to.
[0076]
In addition, surface roughness of the heating surface of the heating member is effectively suppressed, and if it is used in a normal manner, it can withstand 200,000 times of thermal welding, so that the life is extended 20 times that of the conventional method. Replacement is unnecessary for a long period of time, and the operating rate of the sealing device is improved, which can greatly contribute to mass production.
[0077]
Furthermore, it is also possible to realize a shape in which the heat-sealed sealed portion of the container is protected by simply modifying the shape structure of the heating surface of the heating member.
[0078]
Furthermore, by reducing the heat storage capacity of the heating member and carrying out appropriate temperature control, it was possible to halve the welding time and double the mass productivity.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory side view of a principal part showing a sealing device and an electronic component in a process essential point for explaining a first embodiment according to the present invention.
FIG. 2 is an explanatory side view of a principal part showing a sealing device and an electronic component in a process essential point for explaining the first embodiment according to the present invention;
FIG. 3 is an explanatory side view of a principal part showing a sealing device and an electronic component in a process essential point for explaining the first embodiment according to the present invention;
FIG. 4 is a timing chart showing a time transition of the sealing process described with reference to FIGS. 1 to 3;
FIG. 5 is a main part explanatory view showing a sealing device and an electronic component in process key points for explaining a second embodiment according to the present invention;
FIG. 6 is a timing chart showing a time transition of a sealing process using a heat welding heating member with a reduced heat storage capacity.
FIG. 7 is a cutaway side view of a main part showing a part of a thermoplastic resin container and a sealing device for explaining a conventional sealing method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Thermoplastic resin container 11A Opening 11B Color part 12 of opening periphery Contents 13 containing liquid material Heat welding heating member 13A Press heating surface 13B Groove 14 Power supply 15 Power switch 16 Cooling air blower 17 Heat welding sealing part 17A Opening 11A The resin 21 that has flowed into the inside 21 Heat welding heating member 21A Press heating surface 22 Heat welding sealing portion D1 Diameter D2 of the collar portion 11B Diameter D2 of the heat welding heating member 13 Diameter of the heating member 13 reduced in diameter due to the presence of the groove 13B

Claims (2)

熱可塑性樹脂容器の一部に形成された開口を囲むカラー部分に対し、溶着開始から溶着終了までの間、前記容器内に在る内容物の吹き返しが起こることを抑止可能な一定圧力で押接して該開口を閉塞し且つ発熱部分からの熱を伝えて溶着封止する押圧加熱面をもち且つ前記押圧加熱面の中央部分及びその近傍の温度を高く又周縁の温度を低くする為に前記押圧加熱面に近い部分がカラー部分の径と近似する径に縮径された熱溶着加熱部材
を備えてなることを特徴とする熱可塑性樹脂容器の封止装置。
The collar part surrounding the opening formed in a part of the thermoplastic resin container is pressed against the collar part at a constant pressure that can prevent the contents in the container from blowing back from the start of welding to the end of welding. The pressure heating surface that closes the opening and transfers heat from the heat generating portion to weld and seal, and pressurizes to increase the temperature of the central portion of the pressure heating surface and the vicinity thereof and to lower the temperature of the peripheral edge. A sealing device for a thermoplastic resin container, comprising a heat welding heating member having a diameter close to the diameter of a collar portion at a portion close to a heating surface.
押圧加熱面をTiN膜で覆ってなる熱溶着加熱部材
を備えてなることを特徴とする請求項1記載の熱可塑性樹脂容器の封止装置。
2. A sealing device for a thermoplastic resin container according to claim 1, further comprising a heat welding heating member having a pressure heating surface covered with a TiN film.
JP03155597A 1997-02-17 1997-02-17 Sealing apparatus and sealing method for thermoplastic resin container Expired - Fee Related JP3864323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03155597A JP3864323B2 (en) 1997-02-17 1997-02-17 Sealing apparatus and sealing method for thermoplastic resin container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03155597A JP3864323B2 (en) 1997-02-17 1997-02-17 Sealing apparatus and sealing method for thermoplastic resin container

Publications (2)

Publication Number Publication Date
JPH10229033A JPH10229033A (en) 1998-08-25
JP3864323B2 true JP3864323B2 (en) 2006-12-27

Family

ID=12334440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03155597A Expired - Fee Related JP3864323B2 (en) 1997-02-17 1997-02-17 Sealing apparatus and sealing method for thermoplastic resin container

Country Status (1)

Country Link
JP (1) JP3864323B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5703185B2 (en) * 2011-10-06 2015-04-15 日立オートモティブシステムズ株式会社 Resin case and manufacturing method thereof, and electronic control device using resin case

Also Published As

Publication number Publication date
JPH10229033A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
TW463403B (en) Sealed battery suited to production in a slim rectangular form
JP5147365B2 (en) Metal container sealing method
US20060024571A1 (en) Cylindrical lithium rechargeable battery and method for fabricating the same
US20100247992A1 (en) Sealed secondary battery, and method for manufacturing the battery
WO1999025035A1 (en) Method of manufacturing enclosed battery and enclosed battery
EP2449619B1 (en) Method of assembling a bipolar battery
EP3038189B1 (en) Secondary cell
JPH1177347A (en) Laser welding method of aluminum sheet, manufacture of enclosed cell, and enclosed cell itself
KR20080042966A (en) Process for preparation of prismatic secondary battery
JP2001205452A (en) Ultrasonic welding equipment, ultrasonic welding method, closed battery and producing method thereof
JP3864323B2 (en) Sealing apparatus and sealing method for thermoplastic resin container
JP2004158318A (en) Cylindrical battery and its manufacturing method
KR102111203B1 (en) Insulator and cap assembly of cylindrical secondary battery and manufacturing method thereof
JP4294341B2 (en) Sealed battery and its manufacturing method
JP2005108633A (en) Heat bonding method of laminated film, manufacturing method of film-packaged battery, and heat bonding device for laminated film
KR102456873B1 (en) Secondary battery for small device and method of manufacturing the same
KR100435038B1 (en) Method for forming cathode terminal of Lithium ion secondary battery
KR20120131914A (en) Secondary battery and method for manufacturing the same
JP4085887B2 (en) Sealed container and manufacturing method thereof
CN212783686U (en) Metal conductive frame of battery core
CN219759669U (en) Encapsulation briquetting and battery packaging hardware
KR101237289B1 (en) Safety vent and manufacturing method thereof and battery comprising it
KR100347607B1 (en) Manufacturing of small container with good weld strength and air-tightability
KR20230016581A (en) Method for fabricating secondary battery of pouch type
KR102168946B1 (en) Method for Manufacturing Battery Cell Using Blow Forming

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees