JP3864190B2 - 発電方法と発電システム - Google Patents
発電方法と発電システム Download PDFInfo
- Publication number
- JP3864190B2 JP3864190B2 JP2002234427A JP2002234427A JP3864190B2 JP 3864190 B2 JP3864190 B2 JP 3864190B2 JP 2002234427 A JP2002234427 A JP 2002234427A JP 2002234427 A JP2002234427 A JP 2002234427A JP 3864190 B2 JP3864190 B2 JP 3864190B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- power generation
- biomass
- gas turbine
- gasification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/12—Heat utilisation in combustion or incineration of waste
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Incineration Of Waste (AREA)
- Gasification And Melting Of Waste (AREA)
Description
【発明の属する技術分野】
本発明は、バイオマス(農業生産物、木材、植物などの生物資源)のうち主に木質系バイオマスをガス化して得られるガスを用いて発電する発電方法および同発電システムに関するもので、とくに小規模分散型に好適なものに関する。
【0002】
【従来の技術】
上記の木質系バイオマスのうち現在利用されていないものに、製材所木屑、林地放置間伐材、土場放置枝条、剪定街路樹、建築廃材などがある。その中でとくに発生量が多い製材所木屑や林地放置間伐材は、山間部に存在し集積度が低く、輸送し一個所に集めるとしても輸送コストがかさむため、それらをエネルギーとして利用する大規模設備の設置は燃料調達コストの面で難しい。したがって、この種の木質系バイオマスをエネルギーとして有効利用するためには、各々の製材所で木屑集積量及び製材所とその周辺でのエネルギー需要に見合った小規模設備の普及が不可欠である。
【0003】
バイオマスによるエネルギー転換に関する先行技術として、たとえば下記(1)からの(4)の技術が知られている。
【0004】
(1)特開2001−240877号公報(「バイオマスガス化炉およびバイオマスガス化方法」)には、バイオマスを利用して高効率なガス化を行うことができるバイオマスガス化炉およびそれを利用したガス化システムとして噴流層型のガス化炉により700℃〜1200℃の温度によりガス化し、冷却水によるガス冷却、精製を実施してCO,H2ガスを生成することが開示されている。
【0005】
(2)特開昭63−120824号公報(「バイオマス燃料ガス化発電方法」)には、バイオマス燃料に蒸気と空気からなるガス化剤を作用させてガス化し、この生成ガスを燃焼させた燃焼ガスにより膨張タービンを駆動して発電するとともに、この膨張タービンの排ガスにより高温水蒸気と高温空気を生成して前記ガス化剤とするが開示されている。
【0006】
(3)特開平11−294187号公報(「バイオマスガス化発電プラント」)には、バイオマスをガス化し、このガスを燃焼させ、ガスタービンを駆動し発電するバイオマスガス化発電プラントにおいて、燃料となるバイオマス中に含まれる水分を回収しガスタービン圧縮機に供給することにより発電効率を向上させる方法が開示されている。
【0007】
(4)特開昭63−210188号公報(「バイオマス等の固体燃料のガス化方法」)には、バイオマス等の固体燃料を原料とし、これにガスタービン排ガスをガス化剤として作用させることにより前記原料をガス化し、ガス焚きボイラーに送る方法が開示されている。
【0008】
【発明が解決しようとする課題】
しかしながら、上記した4件の公報に記載の技術では、以下のような点で解決すべき課題が残されている。すなわち、
(a)バイオマスは、石炭などの固体燃料に比べてガス化反応温度が低く、300℃を越えるとガス化反応が進行することがわかっている。しかし、バイオマスを300℃〜750℃程度の低温でガス化しようとすると、バイオマスが十分にガス化されず、高分子状態の炭化水素成分(タール成分)がガス中に生成されていく。このタール成分は温度が低下するのに伴い高沸点成分から順次凝縮するが、粘性が非常に強いため配管やバルブ、集塵器などの各種機器の内壁への付着や配管等の閉塞によるハンドリングトラブルを起こし易い。
【0009】
(b)そこで、上記公報(1)に記載の技術では、このタール成分の生成をできるだけ抑制するために、700℃〜1200℃の高温でガス化しているが、高温でガス化するために燃料の燃焼反応割合を増加させると生成ガスの持つ顕熱が大きくなり、冷ガス効率(バイオマス自体の化学エネルギーに対する生成ガスの化学エネルギー比)はそれだけ低くなる。また、ガス化炉を1200℃程度の耐熱構造にする必要がある。集塵装置についても1200℃程度の耐熱構造にするか、あるいはガス化炉で生成したガスを集塵装置の耐熱温度以下に一旦冷却してから集塵する必要がある。そして、ガス化炉や集塵装置を1200℃程度までの耐熱構造にするのは、設備が複雑になりコストがかかるため、小規模設備には適さない。さらに、1200℃の高温で実用に耐えうる高効率な集塵装置はいまだ耐久性・信頼性の面で問題が残されている。一方、生成ガスを集塵装置の手前(上流側)で一旦冷却する方法を採用すると、システム全体のエネルギー転換効率が低下する。
【0010】
(c)加えて、上記公報(1)に記載の技術では、生成ガスを冷却して利用する際に、生成したタールを除去するか触媒でタール成分を分解してCOとH2ガスに改質する等の方法を採用している。タールを水洗で除去したりフィルターで分離したりすることは、生成ガスの顕熱を失うだけでなくタール成分の持つ化学エネルギーの損失となるうえに、水処理、フィルターの洗浄といった操作が必要となり、運転を複雑にし設備費を増加させることになる。一方触媒で分解してCOとH2ガスに改質する方法では、タール成分を改質するための装置が必要になる上、触媒が高価で劣化が早いため、定期的に交換する必要があり、操業コストが増加する。
【0011】
(d)上記公報(2)に記載の技術では、1300℃の高温でバイオマスをガス化し、その生成ガスを上記公報(1)に記載のように冷却する代わりに、ガス化剤と熱交換することにより450℃まで冷却し、脱硫・集塵してから、燃焼器に導いている。言いかえると、上記公報(1)に記載の技術では捨てていた生成ガスの熱エネルギーをガス化剤と熱交換することにより熱回収している。しかし、高温でガス化しているのでガス化炉およびその後段にあるサイクロンは1300℃程度の耐熱構造にする必要があり、設備費を増加させることになる。
【0012】
(e)上記公報(3)に記載の技術では、バイオマスの乾燥にガスタービンからの排気ガスを利用しているが、ガス化反応自体に排気ガスの持つ熱エネルギーと排気ガスに含まれる高温の水蒸気を利用していない。
【0013】
(f)上記公報(4)記載の技術では、ガスタービン排ガスをガス化剤として利用しているが、バイオマスのガス化により生成するガスをガスタービン燃料として利用する際に、バイオマスのガス化過程で発生する未反応チャーがガスタービンのブレードを損傷するおそれあるいは、生成タールによる配管系統の閉塞のおそれがあるため、ガス精製装置が必要となり、装置が複雑になる問題があるとして、ガスタービン燃料としてバイオマス以外の燃料を利用している。
【0014】
(g)上記公報(1)〜(4)に記載の技術を含めて従来技術では、小規模設備において初期設備コストを低く抑え、かつ経済的に適合する運転効率を得ることは技術的に難しい。
【0015】
本発明は上述の点に鑑みなされたもので、木質系バイオマスのガス化により、従来と比べ効率的かつ経済的にバイオマスを有用エネルギーに転換可能な小規模分散型システムに好適な発電方法および同発電システムを提供することを目的としている。
【0016】
【課題を解決するための手段】
上記の目的を達成するために請求項1の発電方法は、バイオマスをガス化して得られるガスを用いて熱機関で発電する発電方法において、熱機関としてガスタービンを用い、このガスタービンの膨張タービン入口圧力に対応した圧力で、かつ450℃〜750℃の温度範囲でガス化し、(熱交換器を通すなどして冷却することなく)タール成分を含む生成ガスを乾式集塵処理を施したのち、そのままの温度・圧力状態で燃焼させて、生成した高温燃焼ガスを前記ガスタービンに導入して発電するとともに、
前記ガスタービンの燃焼空気用の圧縮機で圧縮された空気の一部をガス化用ガス化剤として用いることを特徴としている。
【0017】
請求項1の発電方法によれば、バイオマスの持つ化学エネルギーを有効に活用するために、生成したガスを冷却または再加熱することなく、そのまま、すなわちガスの温度・圧力をガス化炉の運転温度・圧力とほぼ同じに保ったまま燃焼させることによってガスの保有している熱エネルギーおよび化学エネルギーを全て熱機関に利用することができる。よって、従来と比べ高効率かつ経済的にバイオマスをエクセルギーの高い電気エネルギーに転換することが可能になる。
【0018】
特に、タール成分を気体状態のまま燃焼器に導き、燃焼させるので、工程が簡素化され、設備コストが低減される。また、バイオマスを450℃〜750℃の比較的低い温度範囲でガス化するので、ガス化炉や集塵器などの設備を1000℃以上の高温に耐えられる高度の耐熱構造にする必要がない。そのため、設備コストが比較的低く、したがって、小規模分散型システムに好適である。
【0019】
また、比較的低温でガス化することにより、生成ガス中の未反応チャー等のダストをそのままの温度・圧力下で集塵した後、ガスタービンの燃焼器に送ることを可能にし、上記公報(4)記載の技術において必要とするガス精製装置を不要としている。加えて、バイオマスのみをエネルギー源として電気および熱を製造しているため、化石燃料等バイオマス以外の燃料が原則として不要である。
【0020】
ところで、ガスタービン発電システムでは、一般に燃料ガスを高圧(0.3〜0.8MPa程度)で燃焼させ、生成した高温高圧の燃焼ガスをガスタービンで膨張させるため、燃料ガスをガス圧縮機で圧縮する必要があり、ガス化炉で生成したガスを圧縮するためには温度を常温近くまで下げる必要がある。そのためには生成ガス中のタール成分を完全に除去することが不可欠である。本発明では、ガス化炉の運転圧力(ガス化圧力)をガスタービンの膨張タービンの入口圧力に対応する圧力、すなわち(0.3〜0.8MPa程度)とすることにより、ガス圧縮機が不要になる。それに伴い生成ガスの冷却、タール成分の除去も不要になる。
【0021】
なお、本発明は高温高圧の燃焼ガスを常圧まで断熱膨張させる従来型のガスタービン発電システムにおいてその利点を発揮するが、ガスタービン燃焼器が常圧で、燃焼ガスを真空まで膨張させるタイプのいわゆる逆ブレイトンサイクルに対しても適用でき、タール成分の除去が不要であるという利点を発揮する。
【0022】
請求項1の発電方法は、図1に示す発電システムに適用されるもので、小規模分散型発電システムとして好適である。
【0023】
請求項2の発電方法は、請求項1記載の発電方法において、バイオマスの水蒸気ガス化に必要な水蒸気として、前記ガスタービンの排ガス中に含まれる水蒸気を利用することを特徴としている。
【0024】
請求項2の発電方法によれば、蒸発の潜熱に相当する熱エネルギーが不要となり、熱効率を向上させる。
【0025】
請求項3の発電方法は、バイオマスのガス化を水蒸気の存在下で水蒸気ガス化反応により行う際、吸熱反応である水蒸気ガス化反応に必要な熱または、ガス化炉の温度を維持するために必要な熱の一部もしくは全部を、前記ガスタービンの排気ガスのもつ顕熱でまかなうことを特徴としている。
【0026】
請求項3の発電方法によれば、水蒸気ガス化における吸熱反応に必要な熱、または、ガス化炉の温度を維持するために必要な熱の一部若しくは全部をガスタービン排ガスの顕熱でまかなうことにより、より高い冷ガス効率でガス化する。
【0027】
請求項4の発電方法は、バイオマスの水蒸気ガス化に必要な水蒸気を、バイオマスの含水をガスタービン排ガスの顕熱で蒸発することにより供給することを特徴とする。
【0028】
請求項4の発電方法によれば、バイオマスの水蒸気ガス化に必要な水蒸気として、バイオマスの含水をガスタービン排ガスの顕熱で蒸発したものを利用するので、蒸発の潜熱に相当する熱エネルギーが不要となり、熱効率が向上する。
【0029】
請求項5の発電システムは、バイオマスをガス化して得られるガスを用いて発電する発電システムにおいて、バイオマスを、450℃〜750℃の温度範囲でガス化するガス化炉と、このガス化炉による生成ガスをそのままの温度・圧力状態で乾式集塵する乾式集塵装置と、この集塵装置による集塵後のタール成分を含む生成ガスを完全燃焼させ高温燃焼ガスを発生させる燃焼器とを、これらの順番に接続することにより構成されバイオマスを燃料として燃焼させる燃焼システムと、この燃焼システムで生成したガスを膨張させるガスタービンと、このガスタービンにより駆動される発電機とを具備し、前記ガスタービンの吸気空気を前記ガスタービンの燃焼空気用の圧縮機で加圧後に前記ガスタービンからの排ガスと熱交換させることにより加熱する熱再生器を設け、その加圧・加熱された空気の一部を、前記燃焼システムのガス化炉のガス化用ガス化剤として導き、前記ガス化炉での生成ガスを集塵器を通して送り込んで燃焼させる前記燃焼器へ前記加圧・加熱された空気の残りを直接に送ることを特徴としている。
【0030】
請求項5の発電システムは、請求項3の発電方法を実施するシステムであり、請求項3の発電方法が奏するのと同様の作用を奏する。また請求項5の発電システムによれば、ガス化炉や集塵器などの燃焼システムを比較的低温の耐熱構造にすればよいため、設備コストを低減でき、とくに小規模分散型の発電システムとして最適である。ここで、請求項5の発電システムは、水分を含んだバイオマスをそのまま、または乾燥させて水分を蒸発させ、発生した水蒸気と共に流動層炉などのガス化炉に導入し、その蒸発水分をバイオマスの水蒸気ガス化反応に利用して冷ガス効率を高めるものであり、上記公報(3)記載の技術においてバイオマス中の水分を回収してガスタービン圧縮機に導入し発電効率を向上させるという課題を解決しようするのとは異なる。なお、上記燃焼システムは、バイオマスに代表される比較的低温でガス化する固体燃料で、かつ灰分を含む燃料を利用するのに好適であり、ダストの極めて少ない高温燃焼ガスを発生させることができ、また低温でガス化するので、上記公報(2)に記載の技術にある熱交換器を省略し、タール成分を含む生成ガスを乾式集塵処理を施して、そのままの温度・圧力状態で燃焼させることができ、設備費の抑制が図れる。
【0031】
請求項5の発電システムは、請求項1記載の発電方法に対応するシステムであり、同発電システムによれば、システム全体の構成が比較的簡単で、しかもバイオマスの持つ化学エネルギーを無駄なくガス化ガスの化学エネルギーに転換して高効率の発電が実現できる。
【0032】
請求項6記載の発電システムは、請求項5記載の発電システムにおいて、大気に放出するガスタービン排ガスの一部を加圧する圧縮機を備え、前記圧縮機にて圧縮した前記排ガスをガス化用ガス剤として前記ガス化炉に送るように構成するとともに、前記ガスタービンの排ガスと熱交換することにより、ガスタービン用燃焼空気、前記ガス化用ガス剤および水を加熱する熱交換器を備えることを特徴としている。
【0033】
請求項6の発電システムは、請求項2および3記載の発電方法に対応する発電システムであり、請求項5の発電システムとほぼ同様の作用を奏するほか、本発電システムによれば、大気中へ放出するガスタービン排ガスの一部をガス化ガスとして利用するので、さらに高効率な発電が可能になる。
【0034】
請求項7記載の発電システムは、請求項5または6記載の発電システムにおいて、前記ガス化炉に供給するバイオマスに含まれる水分を、前記ガス化炉に供給する前にガスタービンの排ガスで蒸発させるための乾燥器を備えることを特徴としている。
【0035】
請求項7の発電システムは、請求項4記載の発電方法に対応する発電システムであり、本発電システムによれば、排ガスの持つ低温廃熱を利用してバイオマスに含まれる水分を蒸発できるため、バイオマスの持つエネルギーを高効率で有効に利用できる。
【0036】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0037】
図1は本発明の発電方法を適用した発電システムの実施例を示すシステム全体の系統図である。
【0038】
図1に示すように、本実施例の発電システム100は、エネルギー源である木質系バイオマス〈A〉を貯留するサイロ1、この下流側にホッパ2、さらに乾燥器3をこの順に備えている。サイロ1には温水による加熱装置(図示せず)が配備されており、サイロ1内に貯留されているバイオマス〈A〉を予熱できるようになっている。なお、本発明で使用する木質系バイオマスは、とくに発生量の多い製材所木屑を主に使用するが、そのほか、製材所木屑、林地放置間伐材、土場放置枝条、剪定街路樹、建築廃材なども使用することができる。
【0039】
前記乾燥器3の下流側に、ガス化炉として、本例では流動層炉4が設置されている。流動層炉4の頂部の排ガス口が集塵器5にダクト21を介して接続されている。集塵器5は、本例ではサイクロンと耐熱フィルター(耐熱温度:650℃程度)とから構成される。集塵器5の出口が配管22でガスタービン(用)燃焼器6に接続され、この燃焼器6で燃焼されたガスが下流側に設置されたガスタービン7に送り込まれる。ガスタービン7には同軸上に圧縮機(コンプレッサ)7aが連結され、さらに、発電機(ジェネレータ)8が連結されている。なお、集塵器5からは、サイクロンでガス分と分離され回収された未焼却成分であるチャー〈5〉やバイオマスの灰分〈5〉が排出される。
【0040】
前記ガスタービン7の排ガス出口に熱再生器9が接続されている。大気中の空気〈11〉が圧縮機7aで吸引・圧縮され、この加圧空気(圧縮空気)〈12〉が熱再生器9に送られて、排ガス〈7〉と熱交換されて加熱される。熱再生器9から出た加熱・加圧空気〈13〉〈15〉は配管24により流動層炉4の底部に送られ、流動化ガスとして流動層炉4に吹き込まれる。配管24は分岐されて燃焼器6に接続されているが、分岐管25には流量調整弁15が介設され、流動層炉4と燃焼器6とへの加熱・加圧空気〈14〉〈15〉の流量を調整できるようになっている。
【0041】
熱再生器9から出た排ガス〈8〉は、配管27で乾燥器3へ送られ、バイオマス〈C〉を乾燥するための加熱源として用いられる。乾燥器3でバイオマス〈C〉の乾燥用熱源に使用された排ガス〈9〉は配管28を通して熱交換器10に送られ、給水(水道水)を加熱し温水に変える。給水〈16〉は配管31に介設されたポンプPで熱交換器10へ供給され、温水〈17〉となって配管32から必要な機器、たとえばサイロ1へ送られる。一方、熱交換器10から排出された排ガス〈10〉は配管29を通して煙突11から大気中へ放出される。
【0042】
上記のようにして本発明の実施例にかかる発電システム100が構成される。なお、この発電システム100には、バイオマスを燃料として燃焼させ高温燃焼ガスを発生させる、本発明の実施例にかかる燃焼システム(流動層炉(ガス化炉)14、集塵器(集塵装置)5および燃焼器6)が含まれる。
【0043】
この発電システム100では、圧縮機7a(ガスタービン7の燃焼空気用の圧縮機)にて吸気・圧縮された空気〈12〉は熱再生器9でタービン排ガス〈7〉と熱交換することにより加熱され、一部〈15〉はガス化炉である流動層炉4へ送られ、残り〈14〉は燃焼器6へ直接に送られる。流動層炉4へ送られた加熱・圧縮空気〈15〉は、流動層炉4内へ投入されたバイオマス〈D〉を流動化させる。バイオマス〈D〉の一部は圧縮空気〈15〉に含まれる酸素と燃焼反応し、部分燃焼される。このように流動層炉4へ送られた加熱・圧縮空気〈15〉は、ガス化炉(流動層炉4)のガス化用ガス化剤として用いられる。本例の場合、流動層炉4内は、ガスタービン7の膨張タービン入口圧力に対応した加圧状態(たとえば0.4MPa〜0.5MPa)に保持され、バイオマス〈D〉が部分燃焼することにより炉内温度は450℃〜750℃(好ましくは500℃〜700℃)の間になる。この状態を維持できる温度である350℃以上に保持したまま、燃焼器6へ送られるために、集塵器5のフィルターや配管21・22の内壁などに付着することがない。
【0044】
一方、ガスタービン7からの排ガス〈7〉は熱再生器9で
の結果、COおよびH2のガス〈1〉が生成されるとともに、タール成分〈1〉も気化状態で生成される。
【0045】
このようにして発生したガス(気化状態のタール成分を含んだCOおよびH2のガス)〈1〉は、そのままの温度・圧力状態で集塵器5に送られる。そして、集塵器5でチャー・灰分〈5〉が分離され、そのまま(流動層炉4から排気されたときの温度(たとえば650℃)および加圧状態をほぼ保ったまま)燃焼器6に送られる。この燃焼器6では、熱再生器9で加熱された圧縮空気〈14〉と混合されて一体となって、ガスタービン7の膨張タービン入口圧力に対応した圧力(たとえば0.4MPa〜0.5MPa)で完全燃焼させて、高温燃焼ガスを発生させ、ガスタービン7に導入する。この高温燃焼ガスによってガスタービン7を駆動し、同時に発電機8を回転させ、発電する。また、バイオマス〈D〉をガス化した際にタール成分が生じるが、このタール成分は気化
圧縮空気〈12〉を加熱した後、乾燥器3へ送られ、流動層炉4に供給するバイオマス〈C〉に含まれる水分を蒸発させ、バイオマス〈C〉を乾燥させるのに使用される。バイオマス〈A〉は通常50%程度の水分を含んでいるが、乾燥器3でガス化反応に不必要な水分を蒸発させる。ガスタービン排ガス〈9〉はその後、熱交換器10で水を加熱して温水にする。
【0046】
以上のようにして、バイオマスをガス化して燃焼させて発電させるが、バイオマスとして木質系バイオマスを使用しているので、特別な排ガス処理を施さなくても、排ガスを大気中へ放出できる。
【0047】
次に、図2は本発明の他の実施例にかかる発電方法を適用した発電システムの別の実施例を示すシステム全体の系統図である。
【0048】
本例の発電システム200と上記実施例の発電システム100との違いは、流動層炉4の流動化ガスとしてガスタービン7からの排ガス〈10〉を利用している点である。すなわち、給水と熱交換器10にて熱交換し、温度が低下した低温排ガス〈10〉の一部を大気へ放出せずに、ガスタービン7の同軸上に設けた別の圧縮機14へ送って加圧したのち、熱再生器9に隣接して設けた熱交換器12でガスタービン7からの排ガス〈7〉と熱交換することにより加熱してから流動層炉4へ送ることによって、エネルギー効率をさらに高めている。
【0049】
発電システム200の構成については、図2に示すように、熱交換器10から煙突11への配管29を分岐するとともに、ガスタービン7の同軸上または独立した別の圧縮機14を配設している。分岐管30にはダンパ13を介設し、圧縮機14の吸気側に接続している。圧縮機14で圧縮して加圧した排ガス〈10〉を配管33にて熱交換器12に接続し、さらに配管34にて流動層炉4の底部に導いている。ガスタービン7からの排ガス〈7〉は熱再生器9にて圧縮機吸気(ガスタービン吸気)〈12〉を加熱したのち、熱交換器12へ送って加圧排ガスの加熱に使用される。それから、上記実施例と同様に乾燥器3へ送られ、バイオマスの乾燥用熱源として使用される。また、圧縮機吸気〈12〉は、熱再生器9を経由して全て燃焼器6へ送られ、バイオマス〈D〉のガス化ガス〈2〉と混合されて燃焼される。
【0050】
本例の発電システム200では、低温といえども常温の空気に比べて大きな熱エネルギーをもつ排ガスを流動化ガスとして使用するので、エネルギー効率がさらに向上する。その他の構成および作用については上記実施例と共通するので、共通する部材は同一の符号を用いて示し、その説明を省略する。
【0051】
上記においては2つの実施例を挙げて説明したが、下記のように実施することもできる。
(1)流動層炉4は流動層炉に限らず、たとえば噴流層炉を使用できる。
(2)流動層炉4でバイオマスをガス化する温度は、450℃〜750℃(好ましくは500℃〜700℃)の範囲で適宜設定することができる。もちろん、常圧でガス化することも可能である。
(3)熱機関としてガスタービン7に代えて、エンジン例えばスターリングエンジンを用い、ガス化した高温燃焼ガスを燃料としてエンジンを回転させて発電することもできる。この場合には、例えば流動層炉4(ガス化炉)に供給するバイオマスに含まれる水分を、前記スターリングエンジンの排ガスで蒸発させることができる。
(4)バイオマスのガス化は、部分燃焼反応させることにより行うほか、水蒸気下の存在下で水蒸気ガス化反応させることにより行うようにしてもよい。この場合、バイオマスの水蒸気ガス化に必要な水蒸気を、ガスタービンまたはスターリングエンジンの排ガス中に含まれる水蒸気を利用することができるし、バイオマスの含水を前記スターリングエンジンの排ガスの顕熱で蒸発させることにより供給するようにしてもよい。
【0052】
また、バイオマスのガス化を水蒸気の存在下で水蒸気ガス化反応により行う際、吸熱反応である水蒸気ガス化反応に必要な熱または、ガス化炉の温度を維持するために必要な熱の一部もしくは全部を、ガスタービンまたはスターリングエンジンの排気ガスのもつ顕熱でまかなうようにすることができる。
【0053】
【発明の効果】
以上に説明したことから明らかなように、本発明には、以下のような優れた効果がある。
(1)バイオマスガス化に必要十分な温度で(つまり450℃〜750℃程度の低温で)ガス化を実施することから、不要な熱量を与える必要がないため、冷ガス効率が向上する。
(2)バイオマスガス化を必要十分な温度で(低温で)ガス化を実施することから、ガス化炉や集塵装置などの設備コストが下がる。
(3)発生ガスをそのままの圧力・温度でガスタービンに導入するためタール成分除去に伴う発生ガスの顕熱減少がなくなり、発電効率が向上する。
(4)タール成分を除去せずに高温高圧のままタービンにて燃焼させるため、タール成分の持つ顕熱・潜熱を有効利用でき、冷ガス効率、発電効率が向上する。
(5)タール除去のための機器装置が不要となり、設備コストが下がる。また、運転操作、設備保全が容易となる。
(6)熱再生器によりガスタービン燃焼用空気を予熱することにより、発電効率が向上する。
(7)流動層炉(ガス化炉)の流動化ガスをガスタービン排ガスと熱交換させて予熱することにより、発電効率が向上する。
【図面の簡単な説明】
【図1】本発明の発電方法を適用した発電システムの実施例を示すシステム全体の系統図である。
【図2】本発明の他の実施例にかかる発電方法を適用した発電システムの別の実施例を示すシステム全体の系統図である。
【符号の説明】
1 サイロ
2 ホッパ
3 乾燥器
4 流動層炉(ガス化炉)
5 集塵器(集塵装置)
6 燃焼器(ガスタービン用燃焼器)
7 ガスタービン
7a 圧縮機(コンプレッサ)
8 発電機(ジェネレータ)
9 熱再生器
100・200 発電システム
Claims (7)
- バイオマスをガス化して得られるガスを用いて熱機関で発電する発電方法において、
熱機関としてガスタービンを用い、このガスタービンの膨張タービン入口圧力に対応した圧力で、かつ450℃〜750℃の温度範囲でガス化し、タール成分を含む生成ガスを乾式集塵処理を施したのち、そのままの温度・圧力状態で燃焼させて、生成した高温燃焼ガスを前記ガスタービンに導入して発電するとともに、
前記ガスタービンの燃焼空気用の圧縮機で圧縮された空気の一部をガス化炉のガス化用ガス化剤として用いることを特徴とする発電方法。 - バイオマスの水蒸気ガス化に必要な水蒸気を、前記ガスタービンの排ガスに含まれる水蒸気により供給することを特徴とする請求項1記載の発電方法。
- バイオマスのガス化を水蒸気の存在下で水蒸気ガス化反応により行う際、水蒸気ガス化反応に必要な熱および/または、ガス化炉の温度を維持するために必要な熱の一部もしくは全部を、前記ガスタービンの排気ガスのもつ顕熱でまかなうことを特徴とする請求項1記載の発電方法。
- バイオマスの水蒸気ガス化に必要な水蒸気を、バイオマスの含水をガスタービン排ガスの顕熱で蒸発することにより供給することを特徴とする請求項1〜3のいずれかに記載の発電方法。
- バイオマスをガス化して得られるガスを用いて発電する発電システムにおいて、
バイオマスを、450℃〜750℃の温度範囲でガス化するガス化炉と、このガス化炉による生成ガスをそのままの温度・圧力状態で乾式集塵する乾式集塵装置と、この集塵装置による集塵後のタール成分を含む生成ガスを完全燃焼させ高温燃焼ガスを発生させる燃焼器とを、これらの順番に接続することにより構成されバイオマスを燃料として燃焼させる燃焼システムと、この燃焼システムで生成したガスを膨張させるガスタービンと、このガスタービンにより駆動される発電機とを具備し、
前記ガスタービンの吸気空気を前記ガスタービンの燃焼空気用の圧縮機で加圧後に前記ガスタービンからの排ガスと熱交換させることにより加熱する熱再生器を設け、その加圧・加熱された空気の一部を、前記燃焼システムのガス化炉のガス化用ガス化剤として導き、前記ガス化炉での生成ガスを集塵器を通して送り込んで燃焼させる前記燃焼器へ前記加圧・加熱された空気の残りを直接に送ることを特徴とする発電システム。 - 大気に放出するガスタービン排ガスの一部を加圧する圧縮機を備え、前記圧縮機にて圧縮した前記排ガスをガス化用ガス剤として前記ガス化炉に送るように構成するとともに、
前記ガスタービンの排ガスと熱交換することにより、ガスタービン用燃焼空気、前記ガス化用ガス剤および水を加熱する熱交換器を備えることを特徴とする請求項5記載の発電システム。 - 前記ガス化炉に供給するバイオマスに含まれる水分を、前記ガスタービンの排ガスで蒸発させるための乾燥器を備えることを特徴とする請求項5〜7のいずれかに記載の発電システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002234427A JP3864190B2 (ja) | 2002-08-12 | 2002-08-12 | 発電方法と発電システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002234427A JP3864190B2 (ja) | 2002-08-12 | 2002-08-12 | 発電方法と発電システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004076968A JP2004076968A (ja) | 2004-03-11 |
JP3864190B2 true JP3864190B2 (ja) | 2006-12-27 |
Family
ID=32019242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002234427A Expired - Fee Related JP3864190B2 (ja) | 2002-08-12 | 2002-08-12 | 発電方法と発電システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3864190B2 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006125255A (ja) * | 2004-10-27 | 2006-05-18 | Ebara Corp | ガスタービン装置およびガスタービン発電システム |
US8087926B2 (en) * | 2005-12-28 | 2012-01-03 | Jupiter Oxygen Corporation | Oxy-fuel combustion with integrated pollution control |
JP2008215765A (ja) * | 2007-03-07 | 2008-09-18 | C Tekku:Kk | 外燃機関の燃焼方法 |
CN101624944B (zh) * | 2008-07-11 | 2014-09-24 | 何松滨 | 以再加热等温膨胀使理论效率达百分之六十的中型太阳能发动机和方法 |
JP5812575B2 (ja) * | 2010-04-05 | 2015-11-17 | 三菱重工業株式会社 | ボイラ設備 |
KR101197720B1 (ko) * | 2010-12-27 | 2012-11-05 | 삼양이엔피주식회사 | 기동/정지과정 중 우드칩 가스화기에서 생산된 타르합성가스 처리장치 및 처리방법 |
AT511684B1 (de) * | 2011-07-14 | 2013-12-15 | Rep Renewable Energy Products Gmbh | Vorrichtung und verfahren zum vergasen von biomasse |
RU2635566C2 (ru) * | 2011-08-04 | 2017-11-14 | Стивен Л. КАННИНГЕМ | Способ преобразования исходного топлива во вторичное топливо (варианты) |
KR101490236B1 (ko) | 2014-06-16 | 2015-02-04 | 삼양에코너지 주식회사 | 합성가스 생산 설비의 타르 제거용 이산화탄소 세정 장치 및 이를 운용하는 방법 |
JP6507006B2 (ja) * | 2015-03-26 | 2019-04-24 | 月島機械株式会社 | 流動層焼却設備 |
CN112358896A (zh) * | 2020-11-25 | 2021-02-12 | 青岛启迪能源与动力技术研究院 | 一种生物质气化斯特林发电系统 |
CN113817506A (zh) * | 2021-10-08 | 2021-12-21 | 中国船舶工业集团公司第七0八研究所 | 一种利用废热的船舶生物质气化以及制冷与发电系统 |
CN114592971B (zh) * | 2022-03-30 | 2024-01-19 | 西安热工研究院有限公司 | 生物质微型燃机与超临界二氧化碳耦合发电系统及方法 |
-
2002
- 2002-08-12 JP JP2002234427A patent/JP3864190B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004076968A (ja) | 2004-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6877322B2 (en) | Advanced hybrid coal gasification cycle utilizing a recycled working fluid | |
KR101899599B1 (ko) | 가스화 시스템으로부터의 열 회수 | |
JP3864190B2 (ja) | 発電方法と発電システム | |
US6148599A (en) | Process and apparatus for gasifying solid carbonaceous material having a high moisture content | |
US20110315096A1 (en) | Gasifier Hybrid combined cycle power plant | |
US7189270B2 (en) | Method and apparatus for gasification-based power generation | |
Paisley et al. | Biomass gasification for gas turbine-based power generation | |
EP2253807A1 (en) | Gas turbine cycle or combined steam-gas cycle for production of power from solid fuels and waste heat | |
US7749291B2 (en) | Three-stage gasification—biomass-to-electricity process with an acetylene process | |
CN106224099B (zh) | 一种双燃料热电联供注水正逆燃气轮机联合循环系统 | |
US4369624A (en) | High temperature gas turbine systems | |
US10280377B1 (en) | Pyrolysis and steam cracking system | |
Yan et al. | A future for biomass | |
CN215292691U (zh) | 一种与燃煤电站耦合的生物质气化发电系统 | |
CN101636473A (zh) | 干燥和气化方法 | |
CZ26344U1 (cs) | Zařízení pro výrobu elektřiny z pevných paliv, využívající plynovou turbínu | |
CN109945557B (zh) | 一种基于生物质能的制冷系统及工艺 | |
Fantozzi et al. | An IPRP (Integrated Pyrolysis Regenerated Plant) Microscale Demonstrative Unit in Central Italy | |
JP2011214818A (ja) | 流動層乾燥設備 | |
Steinwall | Integration of biomass gasification and evaporative gas turbine cycles | |
AU619025B2 (en) | Combined gas-turbine and steam-turbine power plant and method for utilization of the thermal energy of the fuel to improve the overall efficiency of the power-plant process | |
Bentzen et al. | Upscale of the two-stage gasification process | |
JPH11200882A (ja) | 汚泥発電設備 | |
RU2272914C1 (ru) | Газопаровая теплоэлектроцентраль | |
RU2137981C1 (ru) | Энерготехнологическая установка для термической переработки твердых отходов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060307 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060428 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060414 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060523 |
|
TRDD | Decision of grant or rejection written | ||
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060816 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060816 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3864190 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091013 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101013 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111013 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111013 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111013 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121013 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131013 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141013 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |