JP3863804B2 - Overcurrent protection device for inverter circuit - Google Patents

Overcurrent protection device for inverter circuit Download PDF

Info

Publication number
JP3863804B2
JP3863804B2 JP2002121752A JP2002121752A JP3863804B2 JP 3863804 B2 JP3863804 B2 JP 3863804B2 JP 2002121752 A JP2002121752 A JP 2002121752A JP 2002121752 A JP2002121752 A JP 2002121752A JP 3863804 B2 JP3863804 B2 JP 3863804B2
Authority
JP
Japan
Prior art keywords
overcurrent protection
resistor
overcurrent
circuit
inverter circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002121752A
Other languages
Japanese (ja)
Other versions
JP2003319551A (en
Inventor
純一 飯村
克実 大川
保広 小池
壮一 泉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002121752A priority Critical patent/JP3863804B2/en
Priority to CNB031232531A priority patent/CN100521437C/en
Priority to US10/422,556 priority patent/US7136269B2/en
Publication of JP2003319551A publication Critical patent/JP2003319551A/en
Priority to US11/533,211 priority patent/US7609498B2/en
Application granted granted Critical
Publication of JP3863804B2 publication Critical patent/JP3863804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はインバータ回路の過電流保護装置に関し、特に過電流保護レベルを可変にするインバータ回路の過電流保護装置に関する。
【0002】
【従来の技術】
まず、図5を参照して、インバータ回路装置およびその制御回路の動作を簡単に説明する。
【0003】
マイクロコンピュータあるいはDSPにより構成された制御回路1には回転速度設定信号に応じた周波数の基準信号が入力され、それぞれ120度の位相差を有する3つのパルス幅変調された正弦波とこのパルス幅変調された正弦波に対して180度位相が遅れた3つのパルスが生成されている。
【0004】
それぞれ120度の位相差を有する3つのパルス幅変調された正弦波はドライバ回路2を介して、インバータ回路を構成する上側アームのスイッチング素子Q1、Q2、Q3の制御電極に入力され、このスイッチング素子をオン・オフ制御する。
【0005】
また、このパルス幅変調された正弦波に対して180度位相が遅れたパルス幅変調された正弦波は同様に下側アームのスイッチング素子Q4、Q5、Q6をオン・オフ制御する。
【0006】
なお、スイッチング素子Q1、Q2、Q3、Q4、Q5、Q6に接続されたダイオードD1、D2、D3、D4、D5、D6は回生ダイオードである。
【0007】
従って、それぞれ120度の位相差を有する3つのパルス幅変調された正弦波とこのパルス幅変調された正弦波に対してそれぞれ180度位相が遅れた3つのパルス幅変調された正弦波によりオン・オフ制御されるインバータ回路の出力端子、すなわちスイッチング素子Q1とQ4、スイッチング素子Q2とQ5、スイッチング素子Q3とQ6の接続点U、V、Wには3相のパルス幅変調された正弦波電圧が得られ、モータMに流れる負荷電流は正弦波に近似したものとなる。
【0008】
モータの過負荷や直列スイッチング素子の同時オンなどに起因する過電流は過電流検出抵抗Rsおよび過電流検出回路3により過電流検出信号として検出され、制御回路1からこの過電流検出信号に基づいて一定期間パルス出力を停止する等の保護動作を行う。
【0009】
この過電流検出抵抗Rsは制御するモータの特性や容量により適切な抵抗値に選ばれ、例えば過電流保護レベルは10A〜50A程度に設定される必要がある。この過電流検出抵抗Rsを混成集積回路基板に組み込む場合には過電流保護レベルを可変にするために外付け抵抗として設計されなくてはならなかった。
【0010】
【発明が解決しようとする課題】
上述した過電流検出抵抗Rsは大電流が流れるので、出来るだけ混成集積回路の中に組み込みたい要望があり、これを実現すると設定する過電流保護レベルに応じて多数の混成集積回路を用意する必要があり、過電流保護レベル毎に多品種を揃えなくてはならない問題点を有していた。
【0011】
また、スイッチング素子、過電流検出抵抗Rs、ドライバ回路2は発熱を伴うので、金属基板等を用いた混成集積回路にモジュール化して取り扱い易くする要望も強いために、過電流保護レベルを可変にできなかった問題点もあった。
【0012】
【課題を解決するための手段】
本発明はかかる問題点に鑑みてなされ、過電流検出抵抗からの検出電圧を分圧抵抗で分圧して過電流検出回路で基準電圧と比較して過電流保護を行い、分圧抵抗の一方に直列あるいは並列に接続される外付け抵抗を設けて分圧比を変えて過電流保護レベルを調整可能とするインバータ回路の過電流保護装置を実現するものである。
【0013】
また、本発明では分圧抵抗も単一の混成集積回路基板に組み込み、外付け抵抗のみの追加で過電流保護レベルを調整可能とするインバータ回路の過電流保護装置を実現するものである。
【0014】
更に、本発明では外付け抵抗を分圧抵抗の一方に直列に接続して、過電流検出回路に入力される分圧電圧を大きくして過電流保護レベルを小さくするインバータ回路の過電流保護装置を実現するものである。
【0015】
更に、本発明では外付け抵抗は分圧抵抗の一方に並列に接続して、過電流検出回路に入力される分圧電圧を小さくして過電流保護レベルを大きくするインバータ回路の過電流保護装置を実現するものである。
【0016】
【発明の実施の形態】
図1に本発明のインバータ回路の過電流保護装置のブロック図を示す。
【0017】
本発明のインバータ回路は、インバータ回路を構成する上側アームのスイッチング素子Q1、Q2、Q3と、下側アームのスイッチング素子Q4、Q5、Q6と、各スイッチング素子の制御電極に入力され、このスイッチング素子をオン・オフ制御するドライバ回路2と、下側アームのスイッチング素子Q4、Q5、Q6に共通に直列に接続された過電流検出抵抗Rsと、インバータ回路の出力端子、すなわちスイッチング素子Q1とQ4、スイッチング素子Q2とQ5、スイッチング素子Q3とQ6の接続点U、V、Wに接続されたモータM等の負荷とで構成される。制御回路1からは前述したようにパルス幅変調された正弦波がドライブ回路2に出力され、インバータ回路の制御を行っている。
【0018】
本発明の特徴は過電流検出抵抗Rsに並列に設けた分圧抵抗R1、R2とその一方の分圧抵抗に直列あるいは並列に接続される外付け抵抗R3を設けたことにある。過電流検出抵抗Rsからの検出電圧は分圧抵抗により分圧された電圧が過電流検出回路3でその基準電圧と比較され、それを越えると過電流検出信号を出力し、制御回路1でドライブ回路2に供給されるパルス幅変調された正弦波を停止して保護動作を行う。
【0019】
すなわち、分圧抵抗R1、R2の分圧抵抗R2に直列に外付け抵抗R3を接続した場合は、分圧抵抗R1、R2の接続点の分圧比は外付け抵抗R3により上昇し、(R2+R3)/(R1+R2+R3)となる。これにより外付け抵抗R3が無い状態(0Ω)で、過電流保護レベルを例えば10Aに設定すると、外付け抵抗R3が直列に接続されると過電流保護レベルを例えば8Aに調整できる。このように過電流保護レベルは外付け抵抗R3の抵抗値を選択することで小さい方向に調整できる。
【0020】
また、分圧抵抗R1、R2の分圧抵抗R2に並列に外付け抵抗R3を接続した場合は、分圧抵抗R1、R2の接続点の分圧比は外付け抵抗R3により減少し、(R2・R3)/(R1・R2+R2・R3+R3・R1)となる。これにより外付け抵抗R3が無い状態で、過電流保護レベルを例えば10Aに設定すると、外付け抵抗R3が並列に接続されると過電流保護レベルを例えば12Aに調整できる。過電流保護レベルは外付け抵抗R3の抵抗値を選択することで大きい方向に調整できるが、過電流保護レベルを大きくするためにはスイッチング素子の特性アップ等の必要があり、スイッチング素子の特性から決まる上限値の範囲内で少しアップできる程度が便利である。
【0021】
図2に、更に、具体化された過電流保護レベルを小さくする本発明のインバータ回路の過電流保護装置の回路図を示す。
【0022】
スイッチング素子Q4、Q5、Q6はインバータ回路の下側アームを構成し、過電流検出抵抗Rsがスイッチング素子Q4、Q5、Q6に共通に直列に接続される。スイッチング素子Q4、Q5、Q6の制御電極にはドライバ回路2が接続され、インバータ回路を駆動するパルス幅変調された正弦波の制御信号が制御回路1から入力信号端子を介して供給されている。過電流検出抵抗Rsに並列に分圧抵抗R1、R2が接続され、分圧抵抗R2の一端は外部端子ISDに接続され、外部端子Vssとの間に外付け抵抗R3が接続される。すなわち、外付け抵抗R3を用いて分圧される電圧が調整可能になる特徴を有する。
【0023】
過電流検出回路3はコンパレータで構成され、一方の入力端子に基準電圧refを入力し、もう一方の入力端子には分圧抵抗R1、R2の接続点の分圧電圧を入力している。コンパレータの出力は過電流検出信号を出力するMOS半導体素子の制御電極に印可され、過電流検出信号が出力されるとこのMOS半導体素子はオンして制御回路1に保護動作信号FAULTを伝えると同時に、インバータ回路を制御する制御信号を一定期間ドライバ回路2に供給することを停止する保護動作を行う。
【0024】
上述したインバータ回路の過電流保護装置では、外付け抵抗R3の働きにより分圧抵抗R1、R2の接続点の分圧電圧を大きく調整できるので、過電流検出抵抗Rsを流れる電流が大きくなると、過電流検出回路3で直ちに基準電圧を超えるので過電流保護レベルを小さく調整できる。このために分圧抵抗R1、R2のみで例えば、10Aに設定した過電流保護レベルを外付け抵抗R3の追加で例えば、8Aに引き下げられる。
【0025】
図2において、外側の太い点線で囲まれた領域は単一の混成集積回路基板を示しており、内側の細い点線で囲まれた領域はドライバICを示している。すなわち、この混成集積回路基板にスイッチング素子Q1、Q2、Q3、Q4、Q5、Q6、過電流検出抵抗Rs、分圧抵抗R1、R2、ドライバ回路2と過電流検出回路3を内在するドライバICとが一体に組み込まれ、混成集積回路基板の外側では外付け抵抗R3が後から追加接続できる構成となっている。
【0026】
図3を参照して、過電流保護レベルと外付け抵抗R3との具体的な関係を示す。このインバータ回路の過電流保護装置では、過電流検出抵抗Rs(0.0167Ω)、分圧抵抗R1(22kΩ)、分圧抵抗R2(3.9kΩ)に設定されており、
外付け抵抗R3をショートした場合の過電流保護レベルは26.93Aになり、外付け抵抗R3を例えば2kΩに設定すると過電流保護レベルは19.18Aまで小さくできる。更に、外付け抵抗R3の抵抗値を大きくすると図示のように過電流保護レベルは小さくなる。
【0027】
図4に、更に具体化された過電流保護レベルを大きくする本発明のインバータ回路の過電流保護装置の回路図を示す。
【0028】
スイッチング素子Q4、Q5、Q6はインバータ回路の下側アームを構成し、過電流検出抵抗Rsがスイッチング素子Q4、Q5、Q6に共通に直列に接続される。スイッチング素子Q4、Q5、Q6の制御電極にはドライバ回路2が接続され、インバータ回路を駆動するパルス幅変調された正弦波の制御信号が制御回路1から入力信号端子を介して供給されている。過電流検出抵抗Rsに並列に分圧抵抗R1、R2が接続され、分圧抵抗R1、R2の接続点は外部端子ISDに接続され、外部端子Vssとの間に外付け抵抗R3が接続され、分圧抵抗R2と並列になる。すなわち、外付け抵抗R3を用いて分圧される電圧が調整可能になる特徴を有する。
【0029】
過電流検出回路3はコンパレータで構成され、一方の入力端子に基準電圧refを入力し、もう一方の入力端子には分圧抵抗R1、R2の接続点の分圧電圧を入力している。コンパレータの出力は過電流検出信号を出力するMOS半導体素子の制御電極に印可され、過電流検出信号が出力されるとこのMOS半導体素子はオンして制御回路1に保護動作信号FAULTを伝えると同時に、インバータ回路を制御する制御信号を一定期間ドライバ回路2に供給することを停止する保護動作を行う。
【0030】
上述したインバータ回路の過電流保護装置では、外付け抵抗R3の働きにより分圧抵抗R1、R2の接続点の分圧電圧を小さく調整できるので、過電流検出抵抗Rsを流れる電流が大きくなると、過電流検出回路3で基準電圧を超えるので過電流保護レベルを大きく調整できる。このために分圧抵抗R1、R2のみで例えば、10Aに設定した過電流保護レベルを外付け抵抗R3の追加で例えば、12Aに引き上げられる。
【0031】
なお図4において、図2と同様に単一の混成集積回路基板にスイッチング素子Q1、Q2、Q3、Q4、Q5、Q6、過電流検出抵抗Rs、分圧抵抗R1、R2、ドライバ回路と過電流検出回路を内在するドライバICとが一体に組み込まれ、混成集積回路基板の外側では外付け抵抗R3が後から追加接続できる構成となっている。
【0032】
【発明の効果】
本発明に依れば、過電流検出抵抗Rsからの検出電圧を分圧抵抗で分圧してコンパレータで基準電圧と比較して過電流保護を行い、分圧抵抗の一方に直列あるいは並列に接続される外付け抵抗を設けて分圧比を変えて過電流保護レベルを調整可能とするので、過電流検出抵抗Rsを混成集積回路基板に組み込んでも外付け抵抗で過電流保護レベルを調整できるインバータ回路の過電流保護装置を実現できる。
【0033】
また、本発明では外付け抵抗を分圧抵抗の一方に直列に接続するすることで、過電流保護レベルを小さく調整できる利点がある。特に直流モータを負荷とする場合には、過電流保護レベルを最初の初期値より小さくして直流モータの減磁を防止することが出来る。
【0034】
更に、本発明では外付け抵抗を分圧抵抗の一方に並列に接続するすることで、過電流保護レベルを大きく調整できる利点がある。これにより従来では混成集積回路基板に過電流検出抵抗Rsを組み込んだ時点で過電流保護レベルが一律に決められていたが、本発明では過電流保護レベルを大きく調整したり、あるいは前述の様に小さく調整できるので、インバータ回路装置の機種数を大幅に減らしても任意の過電流保護レベルに対応できる利点も有する。
【図面の簡単な説明】
【図1】本発明のインバータ回路の過電流保護装置を説明するブロック図である。
【図2】本発明のインバータ回路の過電流保護装置を説明する回路図である。
【図3】本発明のインバータ回路の過電流保護装置の過電流保護レベルを説明する特性図である。
【図4】本発明のインバータ回路の過電流保護装置を説明する回路図である。
【図5】従来のインバータ回路装置を説明するブロック図である。
【符号の説明】
Q1、Q2、Q3、Q4、Q5、Q6 スイッチング素子
Rs 過電流検出抵抗、
R1、R2 分圧抵抗
R3 外付け抵抗
1 制御回路
2 ドライバ回路
3 過電流検出回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an overcurrent protection device for an inverter circuit, and more particularly to an overcurrent protection device for an inverter circuit that makes an overcurrent protection level variable.
[0002]
[Prior art]
First, the operation of the inverter circuit device and its control circuit will be briefly described with reference to FIG.
[0003]
A control circuit 1 constituted by a microcomputer or DSP receives a reference signal having a frequency corresponding to the rotational speed setting signal, and has three pulse width modulated sine waves each having a phase difference of 120 degrees and the pulse width modulation. Three pulses that are 180 degrees out of phase with respect to the generated sine wave are generated.
[0004]
Three pulse width modulated sine waves each having a phase difference of 120 degrees are input to the control electrodes of the switching elements Q1, Q2 and Q3 of the upper arm constituting the inverter circuit via the driver circuit 2, and this switching element ON / OFF control.
[0005]
Further, the pulse width modulated sine wave whose phase is delayed by 180 degrees with respect to the pulse width modulated sine wave similarly controls the switching elements Q4, Q5, and Q6 of the lower arm on and off.
[0006]
The diodes D1, D2, D3, D4, D5, and D6 connected to the switching elements Q1, Q2, Q3, Q4, Q5, and Q6 are regenerative diodes.
[0007]
Therefore, three pulse width modulated sine waves each having a phase difference of 120 degrees and three pulse width modulated sine waves each delayed by 180 degrees relative to the pulse width modulated sine wave The output terminals of the inverter circuit to be controlled off, that is, the switching elements Q1 and Q4, the switching elements Q2 and Q5, and the connection points U, V, and W of the switching elements Q3 and Q6 have three-phase pulse width modulated sinusoidal voltages. The resulting load current flowing through the motor M approximates a sine wave.
[0008]
An overcurrent caused by an overload of the motor or simultaneous ON of the series switching elements is detected as an overcurrent detection signal by the overcurrent detection resistor Rs and the overcurrent detection circuit 3, and the control circuit 1 based on the overcurrent detection signal. Protection operation such as stopping pulse output for a certain period of time is performed.
[0009]
The overcurrent detection resistor Rs is selected to have an appropriate resistance value depending on the characteristics and capacity of the motor to be controlled. For example, the overcurrent protection level needs to be set to about 10A to 50A. When this overcurrent detection resistor Rs is incorporated in a hybrid integrated circuit board, it must be designed as an external resistor in order to make the overcurrent protection level variable.
[0010]
[Problems to be solved by the invention]
Since the above-described overcurrent detection resistor Rs carries a large current, there is a demand to incorporate it in the hybrid integrated circuit as much as possible. To realize this, it is necessary to prepare a large number of hybrid integrated circuits according to the overcurrent protection level to be set. There was a problem that a variety of products had to be prepared for each overcurrent protection level.
[0011]
In addition, since the switching element, overcurrent detection resistor Rs, and driver circuit 2 are accompanied by heat generation, there is a strong demand for modularization in a hybrid integrated circuit using a metal substrate or the like, so that the overcurrent protection level can be made variable. There was also a problem that did not exist.
[0012]
[Means for Solving the Problems]
The present invention has been made in view of such a problem, and the voltage detected from the overcurrent detection resistor is divided by a voltage dividing resistor, and the overcurrent detection circuit compares it with the reference voltage to perform overcurrent protection. The present invention realizes an overcurrent protection device for an inverter circuit in which an external resistor connected in series or in parallel is provided to change an overcurrent protection level by changing a voltage dividing ratio.
[0013]
Further, according to the present invention, an overcurrent protection device for an inverter circuit is realized in which a voltage dividing resistor is also incorporated in a single hybrid integrated circuit board and the overcurrent protection level can be adjusted by adding only an external resistor.
[0014]
Further, according to the present invention, an overcurrent protection device for an inverter circuit, in which an external resistor is connected in series with one of the voltage dividing resistors, and the divided voltage input to the overcurrent detection circuit is increased to reduce the overcurrent protection level. Is realized.
[0015]
Furthermore, in the present invention, the external resistor is connected in parallel to one of the voltage dividing resistors, and the overcurrent protection device for the inverter circuit increases the overcurrent protection level by reducing the divided voltage input to the overcurrent detection circuit. Is realized.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram of an overcurrent protection device for an inverter circuit according to the present invention.
[0017]
The inverter circuit of the present invention is inputted to the switching elements Q1, Q2, Q3 of the upper arm constituting the inverter circuit, the switching elements Q4, Q5, Q6 of the lower arm, and the control electrodes of the respective switching elements. A driver circuit 2 for controlling on / off of the power supply, an overcurrent detection resistor Rs connected in series to the switching elements Q4, Q5, and Q6 of the lower arm, and output terminals of the inverter circuit, that is, switching elements Q1 and Q4, It is comprised by load, such as the motor M connected to the connection points U, V, and W of switching element Q2 and Q5 and switching element Q3 and Q6. As described above, the control circuit 1 outputs a pulse width modulated sine wave to the drive circuit 2 to control the inverter circuit.
[0018]
A feature of the present invention resides in that voltage dividing resistors R1 and R2 provided in parallel to the overcurrent detection resistor Rs and an external resistor R3 connected in series or in parallel to one of the voltage dividing resistors are provided. The detected voltage from the overcurrent detection resistor Rs is compared with the reference voltage by the overcurrent detection circuit 3 when the voltage divided by the voltage dividing resistor is exceeded, and if it exceeds that, an overcurrent detection signal is output and driven by the control circuit 1 The pulse width modulated sine wave supplied to the circuit 2 is stopped to perform a protection operation.
[0019]
That is, when the external resistor R3 is connected in series with the voltage dividing resistor R2 of the voltage dividing resistors R1 and R2, the voltage dividing ratio at the connection point of the voltage dividing resistors R1 and R2 is increased by the external resistor R3, and (R2 + R3) / (R1 + R2 + R3). Thus, when the overcurrent protection level is set to 10 A, for example, in a state where there is no external resistor R3 (0Ω), the overcurrent protection level can be adjusted to 8 A, for example, when the external resistor R3 is connected in series. Thus, the overcurrent protection level can be adjusted in a small direction by selecting the resistance value of the external resistor R3.
[0020]
When the external resistor R3 is connected in parallel to the voltage dividing resistor R2 of the voltage dividing resistors R1 and R2, the voltage dividing ratio at the connection point of the voltage dividing resistors R1 and R2 is reduced by the external resistor R3. R3) / (R1 · R2 + R2 · R3 + R3 · R1). Accordingly, when the overcurrent protection level is set to 10 A, for example, without the external resistor R3, the overcurrent protection level can be adjusted to 12 A, for example, when the external resistor R3 is connected in parallel. The overcurrent protection level can be adjusted in a larger direction by selecting the resistance value of the external resistor R3. However, in order to increase the overcurrent protection level, it is necessary to improve the characteristics of the switching element. A degree that can be slightly increased within the range of the determined upper limit is convenient.
[0021]
FIG. 2 is a circuit diagram of an overcurrent protection device for an inverter circuit according to the present invention that further reduces the embodied overcurrent protection level.
[0022]
Switching elements Q4, Q5, and Q6 constitute the lower arm of the inverter circuit, and overcurrent detection resistor Rs is connected in series to switching elements Q4, Q5, and Q6 in common. A driver circuit 2 is connected to the control electrodes of the switching elements Q4, Q5, Q6, and a pulse width modulated sine wave control signal for driving the inverter circuit is supplied from the control circuit 1 through an input signal terminal. The voltage dividing resistors R1 and R2 are connected in parallel to the overcurrent detection resistor Rs, one end of the voltage dividing resistor R2 is connected to the external terminal ISD, and the external resistor R3 is connected to the external terminal Vss. That is, the voltage divided using the external resistor R3 can be adjusted.
[0023]
The overcurrent detection circuit 3 is configured by a comparator, and a reference voltage ref is input to one input terminal, and a divided voltage at a connection point of the voltage dividing resistors R1 and R2 is input to the other input terminal. The output of the comparator is applied to the control electrode of the MOS semiconductor element that outputs the overcurrent detection signal. When the overcurrent detection signal is output, the MOS semiconductor element is turned on and simultaneously transmits the protection operation signal FAULT to the control circuit 1. Then, a protection operation is performed to stop supplying a control signal for controlling the inverter circuit to the driver circuit 2 for a certain period.
[0024]
In the above-described overcurrent protection device for an inverter circuit, the divided voltage at the connection point of the voltage dividing resistors R1 and R2 can be greatly adjusted by the action of the external resistor R3. Therefore, if the current flowing through the overcurrent detection resistor Rs increases, Since the current detection circuit 3 immediately exceeds the reference voltage, the overcurrent protection level can be adjusted small. For this reason, the overcurrent protection level set to, for example, 10 A can be lowered to, for example, 8 A by adding the external resistor R 3 using only the voltage dividing resistors R 1 and R 2.
[0025]
In FIG. 2, a region surrounded by an outer thick dotted line indicates a single hybrid integrated circuit board, and a region surrounded by an inner thin dotted line indicates a driver IC. That is, a driver IC having switching elements Q1, Q2, Q3, Q4, Q5, Q6, overcurrent detection resistor Rs, voltage dividing resistors R1, R2, driver circuit 2 and overcurrent detection circuit 3 on the hybrid integrated circuit board Are integrally incorporated, and an external resistor R3 can be additionally connected later on the outside of the hybrid integrated circuit board.
[0026]
Referring to FIG. 3, a specific relationship between the overcurrent protection level and the external resistor R3 is shown. In the overcurrent protection device of this inverter circuit, the overcurrent detection resistor Rs (0.0167Ω), the voltage dividing resistor R1 (22 kΩ), and the voltage dividing resistor R2 (3.9 kΩ) are set.
When the external resistor R3 is short-circuited, the overcurrent protection level is 26.93A. When the external resistor R3 is set to 2 kΩ, for example, the overcurrent protection level can be reduced to 19.18A. Further, when the resistance value of the external resistor R3 is increased, the overcurrent protection level is decreased as shown in the figure.
[0027]
FIG. 4 shows a circuit diagram of an overcurrent protection device for an inverter circuit according to the present invention, which further increases the overcurrent protection level.
[0028]
Switching elements Q4, Q5, and Q6 constitute the lower arm of the inverter circuit, and overcurrent detection resistor Rs is connected in series to switching elements Q4, Q5, and Q6 in common. A driver circuit 2 is connected to the control electrodes of the switching elements Q4, Q5, Q6, and a pulse width modulated sine wave control signal for driving the inverter circuit is supplied from the control circuit 1 through an input signal terminal. The voltage dividing resistors R1 and R2 are connected in parallel to the overcurrent detection resistor Rs, the connection point of the voltage dividing resistors R1 and R2 is connected to the external terminal ISD, and the external resistor R3 is connected between the external terminal Vss, In parallel with the voltage dividing resistor R2. That is, the voltage divided using the external resistor R3 can be adjusted.
[0029]
The overcurrent detection circuit 3 is configured by a comparator, and a reference voltage ref is input to one input terminal, and a divided voltage at a connection point of the voltage dividing resistors R1 and R2 is input to the other input terminal. The output of the comparator is applied to the control electrode of the MOS semiconductor element that outputs the overcurrent detection signal. When the overcurrent detection signal is output, the MOS semiconductor element is turned on and simultaneously transmits the protection operation signal FAULT to the control circuit 1. Then, a protection operation is performed to stop supplying a control signal for controlling the inverter circuit to the driver circuit 2 for a certain period.
[0030]
In the overcurrent protection device for the inverter circuit described above, the divided voltage at the connection point of the voltage dividing resistors R1 and R2 can be adjusted to be small by the action of the external resistor R3. Therefore, if the current flowing through the overcurrent detection resistor Rs increases, Since the current detection circuit 3 exceeds the reference voltage, the overcurrent protection level can be largely adjusted. For this reason, the overcurrent protection level set to 10A, for example, is increased to 12A, for example, by adding the external resistor R3 only by the voltage dividing resistors R1 and R2.
[0031]
In FIG. 4, switching elements Q1, Q2, Q3, Q4, Q5, Q6, overcurrent detection resistor Rs, voltage dividing resistors R1, R2, driver circuit and overcurrent are formed on a single hybrid integrated circuit board as in FIG. A driver IC including a detection circuit is integrally incorporated, and an external resistor R3 can be additionally connected later on the outside of the hybrid integrated circuit board.
[0032]
【The invention's effect】
According to the present invention, the detection voltage from the overcurrent detection resistor Rs is divided by the voltage dividing resistor and compared with the reference voltage by the comparator to perform overcurrent protection, and is connected in series or in parallel to one of the voltage dividing resistors. Since the overcurrent protection level can be adjusted by changing the voltage dividing ratio by providing an external resistor, an inverter circuit that can adjust the overcurrent protection level with an external resistor even if the overcurrent detection resistor Rs is incorporated in the hybrid integrated circuit board. An overcurrent protection device can be realized.
[0033]
Further, the present invention has an advantage that the overcurrent protection level can be adjusted to be small by connecting an external resistor in series with one of the voltage dividing resistors. In particular, when a DC motor is used as a load, the overcurrent protection level can be made smaller than the initial initial value to prevent demagnetization of the DC motor.
[0034]
Further, the present invention has an advantage that the overcurrent protection level can be largely adjusted by connecting an external resistor in parallel with one of the voltage dividing resistors. Thus, in the past, the overcurrent protection level was uniformly determined at the time when the overcurrent detection resistor Rs was incorporated into the hybrid integrated circuit board. However, in the present invention, the overcurrent protection level is greatly adjusted, or as described above. Since the adjustment can be made small, there is an advantage that it can cope with any overcurrent protection level even if the number of models of the inverter circuit device is greatly reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating an overcurrent protection device for an inverter circuit according to the present invention.
FIG. 2 is a circuit diagram illustrating an overcurrent protection device for an inverter circuit according to the present invention.
FIG. 3 is a characteristic diagram illustrating an overcurrent protection level of an overcurrent protection device for an inverter circuit according to the present invention.
FIG. 4 is a circuit diagram illustrating an overcurrent protection device for an inverter circuit according to the present invention.
FIG. 5 is a block diagram illustrating a conventional inverter circuit device.
[Explanation of symbols]
Q1, Q2, Q3, Q4, Q5, Q6 Switching element Rs Overcurrent detection resistor,
R1, R2 Voltage dividing resistor R3 External resistor 1 Control circuit 2 Driver circuit 3 Overcurrent detection circuit

Claims (4)

スイッチング素子と、該スイッチング素子を駆動するドライブ回路と、該ドライブ回路に入力され負荷を制御する制御信号を発生する制御回路とを備えたインバータ回路装置において、
前記スイッチング素子、前記ドライブ回路、前記スイッチング素子に接続された過電流検出抵抗を単一の混成集積回路基板に組み込み、
前記過電流検出抵抗からの検出電圧を分圧抵抗で分圧して過電流検出回路で基準電圧と比較して過電流保護を行い、前記分圧抵抗の一方に直列あるいは並列に外付け抵抗を接続して分圧比を変えて前記過電流保護レベルを調整可能とすることを特徴としたインバータ回路の過電流保護装置。
In an inverter circuit device comprising a switching element, a drive circuit that drives the switching element, and a control circuit that generates a control signal that is input to the drive circuit and controls a load,
Incorporating the switching element, the drive circuit, an overcurrent detection resistor connected to the switching element into a single hybrid integrated circuit board,
The detection voltage from the overcurrent detection resistor is divided by a voltage dividing resistor and compared to a reference voltage by an overcurrent detection circuit to perform overcurrent protection, and an external resistor is connected in series or in parallel to one of the voltage dividing resistors An overcurrent protection device for an inverter circuit, wherein the overcurrent protection level can be adjusted by changing a voltage division ratio.
前記分圧抵抗も前記単一の混成集積回路基板に組み込まれたことを特徴とする請求項1に記載のインバータ回路の過電流保護装置。2. The overcurrent protection device for an inverter circuit according to claim 1, wherein the voltage dividing resistor is also incorporated in the single hybrid integrated circuit board. 前記外付け抵抗は前記分圧抵抗の一方に直列に接続され、前記過電流検出回路に入力される分圧電圧を大きくして過電流保護レベルを小さくすることを特徴とする請求項1または請求項2に記載のインバータ回路の過電流保護装置。The external resistor is connected in series to one of the voltage dividing resistors, and increases the divided voltage input to the overcurrent detection circuit to reduce the overcurrent protection level. Item 3. An overcurrent protection device for an inverter circuit according to Item 2. 前記外付け抵抗は前記分圧抵抗の一方に並列に接続され、前記過電流検出回路に入力される分圧電圧を小さくして過電流保護レベルを大きくすることを特徴とする請求項1または請求項2に記載のインバータ回路の過電流保護装置。The external resistor is connected in parallel to one of the voltage dividing resistors, and the divided voltage input to the overcurrent detection circuit is reduced to increase the overcurrent protection level. Item 3. An overcurrent protection device for an inverter circuit according to Item 2.
JP2002121752A 2002-04-24 2002-04-24 Overcurrent protection device for inverter circuit Expired - Fee Related JP3863804B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002121752A JP3863804B2 (en) 2002-04-24 2002-04-24 Overcurrent protection device for inverter circuit
CNB031232531A CN100521437C (en) 2002-04-24 2003-04-24 Mixed integrated circuit equiped with overcurrent protector
US10/422,556 US7136269B2 (en) 2002-04-24 2003-04-24 Inverted circuit overcurrent protection device and hybrid integrated circuit device with the same incorporated
US11/533,211 US7609498B2 (en) 2002-04-24 2006-09-19 Inverted circuit overcurrent protection device and hybrid integrated circuit device with the same incorporated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002121752A JP3863804B2 (en) 2002-04-24 2002-04-24 Overcurrent protection device for inverter circuit

Publications (2)

Publication Number Publication Date
JP2003319551A JP2003319551A (en) 2003-11-07
JP3863804B2 true JP3863804B2 (en) 2006-12-27

Family

ID=29537563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002121752A Expired - Fee Related JP3863804B2 (en) 2002-04-24 2002-04-24 Overcurrent protection device for inverter circuit

Country Status (1)

Country Link
JP (1) JP3863804B2 (en)

Also Published As

Publication number Publication date
JP2003319551A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
JP3580297B2 (en) Semiconductor device with current detection function
US7609498B2 (en) Inverted circuit overcurrent protection device and hybrid integrated circuit device with the same incorporated
JP2004040922A (en) Inverter circuit device with temperature detection circuit
US5267344A (en) Direct current power control circuit for use in conjunction with regulated input signal
JP2547553B2 (en) Power supply current limiting device for DC motor and electric motor equipped with such limiting device
JP2006067786A (en) Control circuit for rotating speed of fan motor, and voltage-regulating module thereof
US5537012A (en) DC motor control circuit and DC motor
JP3863805B2 (en) Overcurrent protection device for inverter circuit
US5489828A (en) Electric drive system in lift trucks
JP3913603B2 (en) Hybrid integrated circuit device incorporating overcurrent protection circuit
JP3863804B2 (en) Overcurrent protection device for inverter circuit
JP2005020919A (en) Controller for electric motor
JP2001275366A (en) Method of charging bootstrap capacitor
JP4080864B2 (en) PWM controller
JP2863449B2 (en) Control method of DC motor by pulse width modulation signal
JPH11316249A (en) Current detecting circuit and excess current protecting circuit
JP3376787B2 (en) Command converter for power converter
JP4216845B2 (en) 3-phase stepping motor drive circuit
JP3494664B2 (en) DC brushless motor and circuit breaker
JP2624524B2 (en) Motor overload detection device
US7538515B2 (en) Motor controller
JP2004194418A (en) Controller of electric motor
JP4234266B2 (en) Stepping motor drive circuit
JPH08186902A (en) Controller of motor for vehicle
JP3666263B2 (en) Power semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060929

R151 Written notification of patent or utility model registration

Ref document number: 3863804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees