JP3863060B2 - Car body detection method and apparatus for portal type car wash machine - Google Patents

Car body detection method and apparatus for portal type car wash machine Download PDF

Info

Publication number
JP3863060B2
JP3863060B2 JP2002134742A JP2002134742A JP3863060B2 JP 3863060 B2 JP3863060 B2 JP 3863060B2 JP 2002134742 A JP2002134742 A JP 2002134742A JP 2002134742 A JP2002134742 A JP 2002134742A JP 3863060 B2 JP3863060 B2 JP 3863060B2
Authority
JP
Japan
Prior art keywords
vehicle body
body detection
respect
portal frame
wash machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002134742A
Other languages
Japanese (ja)
Other versions
JP2003327092A (en
Inventor
慎一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibuya Corp
Original Assignee
Shibuya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibuya Corp filed Critical Shibuya Corp
Priority to JP2002134742A priority Critical patent/JP3863060B2/en
Publication of JP2003327092A publication Critical patent/JP2003327092A/en
Application granted granted Critical
Publication of JP3863060B2 publication Critical patent/JP3863060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、門型洗車機における車体の検出技術に関する。より詳しくは、門型フレームに対する車体側面の相対的な位置関係を求めるための車体検出技術に関する。
【0002】
【従来の技術】
車体側面の検出に関しては、門型フレームの左右側部に設けた超音波センサや門型フレームの上部に車幅方向に移動可能に設けた反射型の光電センサを用いて車体の側面を認識する車体検出手段が知られている(特開平6−127346号公報、特開平9−309411号公報)。しかしながら、前者の従来技術の場合には、超音波センサが風や気温の影響を受けやすく、水滴の付着による誤動作も問題であった。また、後者の従来技術の場合には、検出手段を車幅方向に移動させるための機構や制御が複雑になるといった技術的な問題があった。
【0003】
【発明が解決しようとする課題】
本発明は、以上の従来技術の問題点に鑑みて発明したものであり、気温や風等による影響や、水滴の付着による誤動作を排除しやすく、しかも検出手段の車幅方向の移動を必要としない簡便で動作の安定した車体側面の検出技術を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明においては、鋭意研究の結果、車輪に着目して車体側面の位置を求めることにより前記課題を解決し得るとの結論に達した。請求項1の門型洗車機における車体検出方法に係る発明では、車体検出手段を車体の本体より下方に設置し、その車体検出手段により少なくとも左右2つの車輪のそれぞれの外側近傍の前端部と後端部を検出し、それらの検出データに基づいて門型フレームに対する車体側面の相対位置を求めるという技術手段を採用した。さらに、請求項2の発明では、左右一対の車輪に関する検出データに基づいて、前記各車輪の外側近傍の前端部と後端部との中点を演算し、それらの中点の位置に基づいて門型フレームに対する車体側面の相対位置を求めるという技術手段を採用し、請求項3の発明では、左右一対の車輪の外側近傍の前端部と後端部との中点を結んだ線に対して直交する方向を車体の前後方向として門型フレームに対する車体側面の相対位置を求めるという技術手段を採用した。また、請求項4の発明では、前輪と後輪に関するそれぞれの外側近傍の前端部と後端部を検出し、それらの検出データに基づいて、前輪及び後輪の外側近傍の前端部と後端部との中点を演算し、それらの中点の位置に基づいて門型フレームに対する車体側面の相対位置を求めるという技術手段を採用した。請求項5の門型洗車機における車体検出装置に係る発明では、車体検出手段を、車体本体より下位平面内に傾斜角を異ならせて車体を横切って配置した複数の光軸の透光遮光を検出する光電センサと、該光電センサによって検出した少なくとも左右2つの車輪のそれぞれの外側近傍の前端部と後端部に関する検出データに基づいて門型フレームに対する車体側面の相対位置を求める演算手段から構成するという技術手段を採用した。請求項6の発明では、前記光電センサとして、相対移動に直交する方向に対して大小の各傾斜角で左右対称に2対の光軸を配置した。
【0005】
【発明の実施の形態】
本発明は、車輪の外側近傍の前端部と後端部を検出することにより門型フレームに対する車体側面の相対位置を求める点で特徴を有するものであり、各種の車両に対して広く適用することができる。なお、ここで、車輪の外側近傍としたわけは、実際の検出位置はタイヤの肩部すなわちトレッド部の両端部の具体的形状やタイヤの減り具合いかんにより多少変動することから、この検出位置の変動に対応すべく近傍としたものであり、一般的には、前記検出位置はタイヤを構成するサイドウォール部の外表面より若干内側に入る。車体検出手段としては、光軸が車体本体より下位の平面内において門型フレームの相対移動に直交する方向に対して異なる傾斜角を有する投受光型センサの組合わせを用いて、車輪を構成するタイヤの外側近傍の前端部あるいは後端部の相対位置を検出することになる。すなわち、本発明では、例えば投光素子から発せられたビームが受光素子により受光された否かによって検出動作を行う投受光型の検出手段の使用が可能なことから、従来の超音波を用いた車体検出手段のように気温や風等による影響や水滴の付着による誤動作を排除しやすい。しかも、検出手段の車幅方向の移動を必要としないので、車幅方向に移動可能に設けた反射型の光電センサを用いた従来技術に比べても、簡便で動作が安定した使い勝手のよい車体検出手段が得られる。なお、投受光型のものであれば、投受光器とミラーからなる回帰反射型の光電センサなどの使用も可能である。
【0006】
【実施例】
以下、図面を用いて本発明の実施例に関して説明する。図1は本発明の実施例の要部を示した概略平面図であり、図2はその側面図である。図示のように、本実施例では、門型フレーム1側を移動可能に設置し、車体2を跨いだ状態で相対移動し得るように構成した。また、車体2の停車部分を移動可能な平台等にて構成し、車体2側を移動するように構成することも可能である。門型フレーム1の両側部3,4には、車体2の側面の位置を検出するための車体検出手段として、発光素子5〜8と受光素子9〜12との組合せからなる4組の投受光型の光電センサを設けた。
【0007】
図1に示したように、発光素子5〜8から発光されるビーム13〜16は、それぞれ門型フレーム1の相対移動と直交する方向に対して、ビーム13を所定の傾斜角で照射されるように設定するとともに、ビーム14はビーム13より小さい傾斜角をもって照射されるように設定した。また、ビーム15,16はビーム13,14に対して左右対称となる傾斜角で照射されるように設定した。本実施例では、発光素子5,6から発光されるビーム13,14は途中の点aで交差し、発光素子7,8から発光されるビーム15,16は点bで交差するように各発光素子の傾斜角を設定するとともに、それらの交点a、bが門型フレーム1の両側部3,4の内壁面17,18上に位置するように設定し、それらの内壁面17,18上の交点a,bを基準として車体2の側面までの相対位置を検出するようにした。なお、発光素子と受光素子とを交互に入替えて逆にしてもよい。
【0008】
また、門型フレーム1と車体2との前後方向の相対的な位置関係に関しては、例えば門型フレーム1上の前記交点aと交点bを結んだ車幅方向の直線上の適宜位置に基準点cを設定し、その基準点cを門型フレーム1側の基準位置として車体2との相対位置を演算するようにした。発光素子5〜8と受光素子9〜12の設置高さは、図2に示したように車体1の本体すなわちボディより下方の車輪の検出が可能な高さで、泥よけを検出しない高さ、例えば地上10cm程度とする。本実施例では、以上の発光素子5〜8と受光素子9〜12とからなる光電センサを用いて車輪の外側近傍の前端部及び後端部の位置を検出し、その検出データに基づいて車体2の側面位置を演算することになる。なお、前記光電センサは、車体2の本体より下方に垂下がる静電気除去用金具などに対しても反応することになるが、反応時間が非常に短いことから車輪と認識しないようにすればよい。
【0009】
次に、門型フレーム1に対する車体2の側面の相対位置に関する検出の仕方について詳細に説明する。本実施例では、前記門型フレーム1側を車体2を跨いだ状態で移動させながら、各受光素子9〜12における発光素子5〜8からのビーム13〜16の受光状態を連続的に検出し、その検出結果を前記基準点cの位置と関連させてデータ化し記憶することになる。図3は車体検出の経過を例示した説明図である。図中、Aaは、発光素子5からのビーム13が前輪19,20により遮られて受光素子9が受光しない遮光領域を示し、Abは、発光素子7からのビーム15が前輪19,20により遮られて受光素子11が受光しない遮光領域を示したものである。また、Baは、発光素子6からのビーム14が前輪19,20により遮られて受光素子10が受光しない遮光領域を示し、Bbは、発光素子8からのビーム16が前輪19,20により遮られて受光素子12が受光しない遮光領域を示したものである。同様に、Caは、発光素子5からのビーム13が後輪21,22により遮られて受光素子9が受光しない遮光領域を示し、Cbは後輪21,22により遮られて受光素子11が受光しない遮光領域、Daは後輪21,22により遮られて受光素子10が受光しない遮光領域、Dbは後輪21,22により遮られて受光素子12が受光しない遮光領域をそれぞれ示したものである。
【0010】
図4は前記図3の部分拡大図であり、前輪19,20によりビームが遮られる遮光領域Aa,Baの部分を拡大して示したものである。図示のように、前輪19の外側近傍の前端部Eの位置は、該前輪19による遮光がそれぞれ開始される際の発光素子5からのビーム13と発光素子6からのビーム14との交点により検出することができる。また、前輪20の外側近傍の後端部Hの位置は、該前輪20による遮光がそれぞれ終了して通光が開始される際の発光素子5からのビーム13と発光素子6からのビーム14との交点により検出することができる。同様に、前輪20の外側近傍の前端部Gの位置は、該前輪20による遮光が開始される際の他側に設置された発光素子7からのビーム15と発光素子8からのビーム16との交点により検出することができる。また、前輪19の後端部Fの位置は、該前輪19による遮光がそれぞれ終了して通光が開始される際の発光素子7からのビーム15と発光素子8からのビーム16との交点により検出することができる。以上により、前輪19の外側近傍の前端部E及び後端部Fと、前輪20の外側近傍の前端部G及び後端部Hの全ての位置検出が可能である。さらに、後輪21,22の外側近傍の前端部及び後端部の位置に関しても、以上と同様の手法を用いて、発光素子5からのビーム13と発光素子6からのビーム14との交点と、発光素子7からのビーム15と発光素子8からのビーム16との交点により検出が可能である。なお、ビーム14及びビーム16の門型フレーム1の相対移動に直交する方向に対する傾斜角は、少なくとも車輪が傾斜し得る角度よりも大きく設定している。
【0011】
次に、前輪19の外側近傍の前端部Eに関する具体的な位置の求め方を例にして、各車輪の外側近傍の前端部ないし後端部の具体的な位置の求め方に関して説明する。図5は前輪19の外側近傍の前端部Eで交差したビーム13,14の部分を更に拡大して示した図4の部分拡大図である。ここでは、図示のように、発光素子5から発光されるビーム13の門型フレーム1の内壁面17すなわち相対移動方向に対する角度をθa、発光素子6から発光されるビーム14の角度をθbとする。また、それらのビーム13,14相互間における前記交点aすなわち前記基準点cの相対的な移動距離をLa、前輪19の外側近傍の前端部Eから両ビーム13,14の交点aの移動方向すなわち門型フレーム1の一方の側部3の内壁面17に対して垂直に引いた直線Jの寸法すなわち内壁面17と前端部Eとの間の距離をLb、ビーム14と直線Jとの内壁面17における間隔をLcとする。
【0012】
図5に示した三角形に関しては、次の関係式が成立つ。
【数1】

Figure 0003863060
【数2】
Figure 0003863060
【0013】
以上の式(1)及び式(2)におけるKa及びKbは、角度θa及びθbが固定角であることから定数となる。したがって、直線Jの全長すなわち前端部Eの内壁面17からの距離Lbは、前記両ビーム13,14相互間における交点aすなわち基準点cの相対的な移動距離Laにより特定されることになる。同様に、前記ビーム14と直線Jとの間隔Lcも、両ビーム13,14相互間における交点aすなわち基準点cの相対的な移動距離Laにより特定されることになる。したがって、受光素子9,10によりビーム13,14がそれぞれ遮光領域Aa,Baへ突入する瞬間を検出するとともに、それらの突入時点における基準点cの位置を検出し、以上の検出データに基づいて基準点cの相対的な移動距離Laを演算して、前記式(1)に代入すれば、前輪19の外側近傍の前端部Eの内壁面17からの距離Lbが求められることになる。同様に、前記移動距離Laを前記式(2)に代入すれば、前記ビーム14と直線Jとの間隔Lcが求められる。以上により、前輪19の外側近傍の前端部Eの門型フレーム1に対する相対的な位置関係、すなわち前端部Eの門型フレーム1の内壁面17からの距離Lbと、門型フレーム1の移動方向に関する相対的な位置を求めることができる。
【0014】
さらに、図4に示したように、受光素子9,10によりビーム13,14がそれぞれ遮光領域Aa,Baから脱出する瞬間を検出するとともに、それらの脱出時点における基準点cの位置を検出し、以上の検出データに基づいて基準点cの相対的な移動距離Laを演算して、前記式(1)に代入すれば、前輪20の外側近傍の後端部Hの内壁面17からの距離Lbが求められる。同様に、前記移動距離Laを前記式(2)に代入すれば、前記ビーム14と直線Jとの間隔Lcが求められる。以上により、前輪20の外側近傍の後端部Hの門型フレーム1の内壁面17からの距離Lbと、門型フレーム1の移動方向に関する相対的な位置を求めることができる。
【0015】
同様に、他側の受光素子11,12により発光素子7,8からのビーム15,16がそれぞれ遮光領域Ab,Bbへ突入する瞬間あるいは脱出する瞬間を検出するとともに、それらの突入ないし脱出時点における基準点cの位置を検出し、以上の検出データに基づいて基準点cの相対的な移動距離Laを演算して、前記式(1)及び式(2)に代入すれば、前輪20の外側近傍の前端部G及び前輪19の後端部Fの位置が求められる。なお、この場合の前輪20の外側近傍の前端部G及び前輪19の後端部Fの位置は、他方の内壁面18からの距離として求められるが、内壁面17,18相互間の間隔が予め判っていることから、内壁面17からの距離Lbに換算することは容易である。以上により、前輪19の外側近傍の前端部E及び後端部Fと、前輪20の外側近傍の前端部G及び後端部Hの全ての門型フレーム1に対する相対位置が検出されたことになる。さらに、以上と同様の検出処理を後輪21,22にも適用すれば、それらの後輪21,22の外側近傍の前端部及び後端部の門型フレーム1に対する相対位置を検出することが可能である。因みに、相対的な移動距離Laに対する距離Lb及び間隔Lcの比率は変化しないことから、それらの間の長さの比率を予め決めておいてもよい。例えば、La:Lb:Lc=3:12:1などのように整数の比で表せるように光軸の角度θa,θbを設定すれば、演算の簡略化にも有効である。
【0016】
図6は車体2の前後方向の向きの求め方を示した説明図である。車体2の前後方向の向きを求めるには、先ず以上で求めた前輪19の前端部Eと後端部Fとの中点Mと、前輪20の前端部Gと後端部Hとの中点Nの位置を前記検出データに基づいて演算する。次に、それらの中点M,Nを結ぶ直線Pの中点Qを求めて該中点Qを通り直線Pに直交する直線Rを演算すれば、その直線Rが車体2の中心線を示し、車体2の前後方向の向きを示すことになる。
【0017】
図7は車体2の側面位置の求め方を示した説明図である。車体2の側面位置を求めるには、図6で説明した方法で求めた前輪19の外側近傍の中点M及び前輪20の外側近傍の中点Nの直線P延長上に、車体2の側面がそれらの車輪の外側に突出する寸法を勘案して車種毎あるいは一律に予め設定した補足分Sを加算して求めた寸法を車幅Wと推測した上、前記直線Rを中心として両側にW/2ずつの間隔をとった平行線を演算すれば、車体2の側面位置を示す車体側面ラインX,Yを求めることが可能である。以上により、車体2の側面位置を示す車体側面ラインX,Yが求められたことになるが、更に後輪21,22に対しても同様の手法によりそれらの中点を求め、両中点の外側に前記補足分Sを加算して前記車体側面ラインX,Yを修正するように構成すれば、より高精度の検出結果が得られる。なお、前記車体側面ラインX,Yの前後方向の範囲に関しては、別途検出される車形データ等により特定されることになる。
【0018】
なお、後輪21,22の向きは常に車体2の前後方向の向きと平行であることから、前記実施例のほか、対角線上の2つの車輪を選んだり、あるいは後輪21,22を選択して、以上の検出及び演算処理を実施することにより、車体2の側面位置を求めることも可能である。この場合には、一方の後輪21あるいは22の向きから直ちに車体2の前後方向の向きが検出できることから、車体2の向きに関する演算処理がより簡便になる。
【0019】
以上のようにして、門型フレーム1に対する車体2の側面位置に関する検出データとして得られた車体側面ラインX,Yは、洗車作業におけるノズル等の制御データとしてきわめて有効である。例えば、洗浄ノズルや乾燥ノズルを車体2の側面に沿うように移動させるための制御データとして使用が可能である。特に、乾燥工程においては、乾燥ノズルを車体2の表面に接近して移動させるようにすれば乾燥効果をアップしやすいことから、前記車体側面ラインX,Yは乾燥ノズルの制御データとしてきわめて有効である。また、前記車体側面ラインX,Yを使用すれば、ノズルから車体2の側面までの距離がわかるので、噴射流の圧力制御に関する制御データとしても使用できる。なお、前述の車体2の側面位置に関する検出作業は、一般的には門型フレーム1の最初の相対移動において実施することになる。しかる後、その検出作業で得られた前記車体側面ラインX,Yを洗浄工程や乾燥工程のノズルの制御データとして使用することになるが、ノズルを車体2の側面にあまり接近させる必要のない洗浄工程に関しては、前記門型フレーム1の最初の相対移動における車体2の側面位置に関する検出作業と並行して実施することも可能である。この場合には、前輪19,20に関する検出データが得られてから車体2の側面に対する洗浄ノズルの制御データとして使用できるようになる。他方、その後の門型フレーム1の相対移動における乾燥工程等においては、後輪21,22に関する検出データも含めて使用が可能になることから、より精度の高い検出データに基づくノズル制御が可能になる。なお、図8に示したように、車体2の上面を洗浄する際の上面洗浄ノズルの車幅方向の移動範囲を規制するための制御データとして使用することも可能である。
【0020】
以上ように、本発明によれば、車輪の位置や方向に拘束されることなく、門型フレームに対する車体側面の相対位置の検出が可能なことから、停車位置に関する自由度が大きく、また車体が門型フレームに対して偏ったり傾いた状態で停車しても構わないし、車輪が車体に対して傾いた状態で停車しても構わない。したがって、車両の門型フレームに対する停車状態に関する自由度が大幅に拡大されることになる。なお、車両の停車状態が規制され、門型フレームに対して車体及び車輪が必ず相対移動方向と平行になるように停車される場合には、例えばビーム13,14の組合わせからなる1対の光軸を用いて車体側面の相対位置の検出が可能である。すなわち、ビーム13,14を用いて一方の前輪19の前端部Eの位置と他方の前輪20の後端部Hの位置を検出すれば、車体2とそれらの前輪19,20が相対移動方向と平行であるという条件と組合わせることにより、簡便に車体側面の相対位置を演算することができる。なお、この場合には、前輪に替えて後輪の前端部及び後端部を検出することによっても、同様に車体側面の相対位置の演算が可能である。また、車輪の端面すなわちトレッド面が相対移動方向に対して直交する方向にあることから、ビーム14に関する傾斜角は省略することも可能である。
【0021】
【発明の効果】
本発明によれば、次の効果を得ることができる。
(1)車輪の外側近傍の前端部及び後端部を介して門型フレームに対する車体側面の相対位置の検出を行うようにしたので、投受光型の検出手段の使用が可能となり、気温や風等による影響や、水滴の付着による誤動作を排除しやすい。
(2)検出手段の車幅方向の移動は必要としないので、簡便で動作の安定した門型フレームに対する車体側面の相対位置の検出が可能である。
(3)車輪の位置や方向に拘束されることなく、門型フレームに対する車体側面の相対位置の検出が可能なことから、門型フレームに対する停車位置の自由度が大きく、しかも車体が門型フレームに対して偏ったり傾いた状態で停車しても構わないし、車輪が車体に対して傾いた状態で停車しても構わないことから、車両の門型フレームに対する停車状態に関する自由度が大幅に拡大される。
【図面の簡単な説明】
【図1】 本発明の実施例の要部を示した概略平面図である。
【図2】 同実施例の側面図である。
【図3】 車体検出の経過を例示した説明図である。
【図4】 図3の遮光領域Aa,Baの部分を拡大して示した部分拡大図である。
【図5】 図4の前端部Eで交差したビーム13,14の部分を更に拡大して示した部分拡大図である。
【図6】 車体の前後方向の向きの求め方を示した説明図である。
【図7】 車体の側面位置の求め方を示した説明図である。
【図8】 本発明の適用例を示した概略平面図である。
【符号の説明】
1…門型フレーム、2…車体、3,4…門型フレームの両側部、5〜8…発光素子、9〜12…受光素子、13〜16…ビーム、17,18…両側部の内壁面、19,20…前輪、21,22…後輪、a,b…ビームの交点、c…門型フレームに関する基準点、Aa,Ab,Ba,Bb…前輪による遮光領域、Ca,Cb,Da,Db…後輪による遮光領域、E…前端部、F…後端部、G…前端部、H…後端部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle body detection technique in a portal type car wash machine. More specifically, the present invention relates to a vehicle body detection technique for obtaining a relative positional relationship of a vehicle body side surface with respect to a portal frame.
[0002]
[Prior art]
Regarding the detection of the side of the vehicle body, the side surface of the vehicle body is recognized using an ultrasonic sensor provided on the left and right sides of the portal frame or a reflective photoelectric sensor provided on the upper part of the portal frame so as to be movable in the vehicle width direction. Vehicle detection means are known (Japanese Patent Laid-Open Nos. 6-127346 and 9-309411). However, in the case of the former prior art, the ultrasonic sensor is easily affected by wind and temperature, and malfunction due to adhesion of water droplets has also been a problem. In the case of the latter prior art, there has been a technical problem that the mechanism and control for moving the detection means in the vehicle width direction are complicated.
[0003]
[Problems to be solved by the invention]
The present invention was invented in view of the above-mentioned problems of the prior art, and it is easy to eliminate the effects of temperature, wind, etc., and malfunctions due to adhesion of water droplets, and also requires movement of the detection means in the vehicle width direction. An object of the present invention is to provide a vehicle body side surface detection technique that is simple and stable in operation.
[0004]
[Means for Solving the Problems]
In the present invention, as a result of intensive studies, it has been concluded that the above-mentioned problem can be solved by finding the position of the side surface of the vehicle body while paying attention to the wheels. In the invention relating to the vehicle body detection method in the portal type car wash machine according to claim 1, the vehicle body detection means is installed below the main body of the vehicle body, and the vehicle body detection means causes the front end portion and the rear part of at least the two left and right wheels near the outside. The technical means of detecting the end portion and obtaining the relative position of the side surface of the vehicle body with respect to the portal frame based on the detected data was adopted. Furthermore, in the invention of claim 2, based on the detection data relating to the pair of left and right wheels, a midpoint between the front end portion and the rear end portion in the vicinity of the outside of each wheel is calculated, and based on the position of the midpoint The technical means for obtaining the relative position of the side surface of the vehicle body with respect to the portal frame is employed. In the invention of claim 3, the line connecting the midpoints of the front end portion and the rear end portion in the vicinity of the outside of the pair of left and right wheels is used. The technical means of obtaining the relative position of the side surface of the vehicle body with respect to the portal frame with the orthogonal direction as the longitudinal direction of the vehicle body was adopted. According to the invention of claim 4, the front end and the rear end near the outside of the front wheel and the rear wheel are detected, and the front end and the rear end near the outside of the front wheel and the rear wheel are detected based on the detected data. The technical means of calculating the midpoint of the vehicle and calculating the relative position of the side of the vehicle body with respect to the portal frame based on the position of the midpoint. In the invention relating to the vehicle body detection device in the gate-type car wash machine according to claim 5, the vehicle body detection means is configured to perform light-shielding of a plurality of optical axes arranged across the vehicle body with different inclination angles in a plane lower than the vehicle body. A photoelectric sensor to be detected, and calculation means for obtaining a relative position of the side surface of the vehicle body with respect to the portal frame based on detection data relating to the front end portion and the rear end portion of each of at least two left and right wheels detected by the photoelectric sensor. The technical means to do was adopted. In the invention of claim 6, as the photoelectric sensor, two pairs of optical axes are arranged symmetrically at respective inclination angles that are large and small with respect to the direction orthogonal to the relative movement.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is characterized in that the relative position of the side surface of the vehicle body with respect to the portal frame is obtained by detecting the front end portion and the rear end portion in the vicinity of the outside of the wheel, and is widely applied to various vehicles. Can do. Here, the reason for the vicinity of the outside of the wheel is that the actual detection position varies somewhat depending on the specific shape of the shoulder portion of the tire, that is, the both ends of the tread portion, and how the tire is reduced. Generally, the detection position is slightly inside the outer surface of the sidewall portion constituting the tire. As the vehicle body detection means, a wheel is configured by using a combination of light emitting and receiving sensors having different inclination angles with respect to the direction orthogonal to the relative movement of the portal frame in a plane lower than the vehicle body. The relative position of the front end portion or the rear end portion in the vicinity of the outer side of the tire is detected. That is, in the present invention, for example, a light emitting / receiving type detecting means that performs a detecting operation depending on whether or not a beam emitted from the light projecting element is received by the light receiving element can be used. It is easy to eliminate the influence of temperature, wind, etc., and malfunction due to the attachment of water droplets as in the vehicle body detection means. Moreover, since the detection means does not need to move in the vehicle width direction, the vehicle body is simple and stable in operation and easy to use compared to the conventional technique using a reflective photoelectric sensor that is movably provided in the vehicle width direction. A detection means is obtained. In addition, if it is a light projection / reception type, it is also possible to use a retroreflective photoelectric sensor comprising a light projection / reception unit and a mirror.
[0006]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic plan view showing a main part of an embodiment of the present invention, and FIG. 2 is a side view thereof. As shown in the figure, in this embodiment, the portal frame 1 side is movably installed so that it can be relatively moved while straddling the vehicle body 2. It is also possible to configure the stationary part of the vehicle body 2 with a movable flat stand or the like so as to move on the vehicle body 2 side. On both side portions 3 and 4 of the portal frame 1, four sets of light projecting and receiving light composed of combinations of light emitting elements 5 to 8 and light receiving elements 9 to 12 are provided as vehicle body detecting means for detecting the position of the side surface of the vehicle body 2. A type photoelectric sensor was provided.
[0007]
As shown in FIG. 1, the beams 13 to 16 emitted from the light emitting elements 5 to 8 are each irradiated with the beam 13 at a predetermined inclination angle with respect to the direction orthogonal to the relative movement of the portal frame 1. In addition, the beam 14 was set to be irradiated with an inclination angle smaller than that of the beam 13. Further, the beams 15 and 16 were set so as to be irradiated at an inclination angle that is symmetrical with respect to the beams 13 and 14. In this embodiment, the beams 13 and 14 emitted from the light emitting elements 5 and 6 intersect at a point a, and the beams 15 and 16 emitted from the light emitting elements 7 and 8 intersect at a point b. The inclination angle of the element is set, and the intersections a and b are set so as to be positioned on the inner wall surfaces 17 and 18 of the both side portions 3 and 4 of the portal frame 1, and on the inner wall surfaces 17 and 18. The relative position to the side surface of the vehicle body 2 is detected based on the intersection points a and b. It should be noted that the light emitting element and the light receiving element may be interchanged and reversed.
[0008]
The relative positional relationship between the portal frame 1 and the vehicle body 2 in the front-rear direction is, for example, a reference point at an appropriate position on a straight line in the vehicle width direction connecting the intersection point a and the intersection point b on the portal frame 1. c is set, and the relative position with respect to the vehicle body 2 is calculated using the reference point c as a reference position on the side of the portal frame 1. The installation heights of the light emitting elements 5 to 8 and the light receiving elements 9 to 12 are high enough to detect the main body of the vehicle body 1, that is, the wheels below the body as shown in FIG. For example, it is about 10 cm above the ground. In the present embodiment, the position of the front end portion and the rear end portion in the vicinity of the outside of the wheel is detected using the photoelectric sensor composed of the light emitting elements 5 to 8 and the light receiving elements 9 to 12, and the vehicle body is based on the detected data. The side surface position of 2 is calculated. The photoelectric sensor also reacts to static electricity removal fittings or the like that hang downward from the main body of the vehicle body 2. However, since the reaction time is very short, the photoelectric sensor may not be recognized as a wheel.
[0009]
Next, how to detect the relative position of the side surface of the vehicle body 2 with respect to the portal frame 1 will be described in detail. In this embodiment, the light receiving state of the beams 13 to 16 from the light emitting elements 5 to 8 in each of the light receiving elements 9 to 12 is continuously detected while moving the gate frame 1 side across the vehicle body 2. The detection result is converted into data and stored in association with the position of the reference point c. FIG. 3 is an explanatory diagram illustrating the course of vehicle body detection. In the figure, Aa indicates a light shielding region where the beam 13 from the light emitting element 5 is blocked by the front wheels 19 and 20 and the light receiving element 9 does not receive light, and Ab indicates that the beam 15 from the light emitting element 7 is blocked by the front wheels 19 and 20. The light-shielding area where the light-receiving element 11 does not receive light is shown. Ba represents a light shielding region in which the beam 14 from the light emitting element 6 is blocked by the front wheels 19 and 20 and the light receiving element 10 does not receive light. Bb represents the beam 16 from the light emitting element 8 by the front wheels 19 and 20. This shows a light shielding area where the light receiving element 12 does not receive light. Similarly, Ca indicates a light shielding region where the beam 13 from the light emitting element 5 is blocked by the rear wheels 21 and 22 and the light receiving element 9 does not receive light, and Cb is blocked by the rear wheels 21 and 22 and the light receiving element 11 receives light. The light shielding area Da is blocked by the rear wheels 21 and 22 so that the light receiving element 10 does not receive light, and Db is the light shielding area blocked by the rear wheels 21 and 22 where the light receiving element 12 does not receive light. .
[0010]
FIG. 4 is a partially enlarged view of FIG. 3 and shows enlarged portions of the light shielding areas Aa and Ba where the beams are blocked by the front wheels 19 and 20. As shown in the figure, the position of the front end E near the outside of the front wheel 19 is detected by the intersection of the beam 13 from the light emitting element 5 and the beam 14 from the light emitting element 6 when the light shielding by the front wheel 19 is started. can do. Further, the position of the rear end portion H in the vicinity of the outside of the front wheel 20 is such that the beam 13 from the light emitting element 5 and the beam 14 from the light emitting element 6 when the light shielding by the front wheel 20 is finished and light transmission is started. It can be detected by the intersection of Similarly, the position of the front end G in the vicinity of the outside of the front wheel 20 is determined between the beam 15 from the light emitting element 7 and the beam 16 from the light emitting element 8 installed on the other side when the light shielding by the front wheel 20 is started. It can be detected by the intersection. Further, the position of the rear end portion F of the front wheel 19 is determined by the intersection of the beam 15 from the light emitting element 7 and the beam 16 from the light emitting element 8 when the light shielding by the front wheel 19 is finished and light transmission is started. Can be detected. As described above, all positions of the front end portion E and the rear end portion F near the outside of the front wheel 19 and the front end portion G and the rear end portion H near the outside of the front wheel 20 can be detected. Further, with respect to the positions of the front end portion and the rear end portion in the vicinity of the outside of the rear wheels 21 and 22, the intersection of the beam 13 from the light emitting element 5 and the beam 14 from the light emitting element 6 is determined using the same method as described above. The detection is possible by the intersection of the beam 15 from the light emitting element 7 and the beam 16 from the light emitting element 8. The inclination angle of the beam 14 and the beam 16 with respect to the direction orthogonal to the relative movement of the portal frame 1 is set to be at least larger than the angle at which the wheel can be inclined.
[0011]
Next, a method for obtaining a specific position of the front end portion or the rear end portion in the vicinity of the outer side of each wheel will be described with reference to an example of how to obtain a specific position for the front end portion E in the vicinity of the outer side of the front wheel 19. FIG. 5 is a partially enlarged view of FIG. 4 further showing the portions of the beams 13 and 14 intersecting at the front end E near the outside of the front wheel 19. Here, as shown in the figure, the angle of the beam 13 emitted from the light emitting element 5 with respect to the inner wall surface 17 of the portal frame 1, that is, the relative movement direction is θa, and the angle of the beam 14 emitted from the light emitting element 6 is θb. . Further, the relative movement distance of the intersection point a between the beams 13 and 14, that is, the reference point c is La, and the movement direction of the intersection point a between the beams 13 and 14 from the front end E near the outside of the front wheel 19, that is, The dimension of the straight line J drawn perpendicularly to the inner wall surface 17 of one side 3 of the portal frame 1, that is, the distance between the inner wall surface 17 and the front end E is Lb, and the inner wall surface between the beam 14 and the straight line J The interval at 17 is Lc.
[0012]
Regarding the triangle shown in FIG. 5, the following relational expression is established.
[Expression 1]
Figure 0003863060
[Expression 2]
Figure 0003863060
[0013]
Ka and Kb in the above formulas (1) and (2) are constants because the angles θa and θb are fixed angles. Accordingly, the total length of the straight line J, that is, the distance Lb from the inner wall surface 17 of the front end E is specified by the relative moving distance La of the intersection point a between the beams 13 and 14, that is, the reference point c. Similarly, the distance Lc between the beam 14 and the straight line J is specified by the relative moving distance La of the intersection point a between the beams 13 and 14, that is, the reference point c. Therefore, the moments when the beams 13 and 14 enter the light shielding areas Aa and Ba are detected by the light receiving elements 9 and 10, respectively, and the position of the reference point c at the time of entry is detected, and the reference is based on the above detection data. If the relative movement distance La of the point c is calculated and substituted into the equation (1), the distance Lb from the inner wall surface 17 of the front end E near the outside of the front wheel 19 is obtained. Similarly, if the moving distance La is substituted into the equation (2), the distance Lc between the beam 14 and the straight line J can be obtained. As described above, the relative positional relationship of the front end E near the outside of the front wheel 19 with respect to the portal frame 1, that is, the distance Lb of the front end E from the inner wall surface 17 of the portal frame 1, and the moving direction of the portal frame 1. Relative position can be determined.
[0014]
Furthermore, as shown in FIG. 4, the light receiving elements 9 and 10 detect the moment when the beams 13 and 14 escape from the light shielding areas Aa and Ba, respectively, and detect the position of the reference point c at the time of the escape, If the relative movement distance La of the reference point c is calculated based on the above detection data and substituted into the equation (1), the distance Lb from the inner wall surface 17 of the rear end H near the outside of the front wheel 20. Is required. Similarly, if the moving distance La is substituted into the equation (2), the distance Lc between the beam 14 and the straight line J can be obtained. As described above, the distance Lb from the inner wall surface 17 of the portal frame 1 of the rear end H in the vicinity of the outside of the front wheel 20 and the relative position in the moving direction of the portal frame 1 can be obtained.
[0015]
Similarly, the moments when the beams 15 and 16 from the light-emitting elements 7 and 8 enter or exit the light-shielding regions Ab and Bb are detected by the other light-receiving elements 11 and 12, respectively, and at the time when they enter or exit. If the position of the reference point c is detected, the relative movement distance La of the reference point c is calculated based on the above detection data, and is substituted into the equations (1) and (2), the outer side of the front wheel 20 The positions of the front end G in the vicinity and the rear end F of the front wheel 19 are obtained. In this case, the positions of the front end portion G near the outside of the front wheel 20 and the rear end portion F of the front wheel 19 are obtained as distances from the other inner wall surface 18, but the interval between the inner wall surfaces 17 and 18 is predetermined. Since it is known, it is easy to convert the distance Lb from the inner wall surface 17. Thus, the relative positions of the front end portion E and the rear end portion F near the outside of the front wheel 19 and the front end portion G and the rear end portion H near the outside of the front wheel 20 with respect to all the portal frames 1 are detected. . Furthermore, if the same detection process as described above is applied to the rear wheels 21 and 22, it is possible to detect the relative positions of the front end portion and the rear end portion of the rear wheels 21 and 22 near the outside of the portal frame 1. Is possible. Incidentally, since the ratio of the distance Lb and the distance Lc to the relative movement distance La does not change, the ratio of the length between them may be determined in advance. For example, if the optical axis angles θa and θb are set so as to be expressed by an integer ratio such as La: Lb: Lc = 3: 12: 1, it is effective for simplifying the calculation.
[0016]
FIG. 6 is an explanatory view showing how to obtain the front-rear direction of the vehicle body 2. In order to determine the front-rear direction of the vehicle body 2, first, the midpoint M between the front end E and the rear end F of the front wheel 19 and the midpoint between the front end G and the rear end H of the front wheel 20 obtained above. The position of N is calculated based on the detection data. Next, if a midpoint Q of the straight line P connecting the midpoints M and N is obtained and a straight line R passing through the midpoint Q and orthogonal to the straight line P is calculated, the straight line R indicates the center line of the vehicle body 2. The direction of the vehicle body 2 in the front-rear direction is indicated.
[0017]
FIG. 7 is an explanatory diagram showing how to determine the side surface position of the vehicle body 2. In order to determine the side surface position of the vehicle body 2, the side surface of the vehicle body 2 is positioned on the straight line P extension of the midpoint M near the outside of the front wheel 19 and the midpoint N near the outside of the front wheel 20 obtained by the method described with reference to FIG. In consideration of the dimensions projecting outside the wheels, the size obtained by adding the supplementary amount S set in advance for each vehicle type or uniformly is estimated as the vehicle width W, and W / By calculating parallel lines at intervals of two, it is possible to obtain vehicle body side lines X and Y indicating the side surface position of the vehicle body 2. As described above, the vehicle body side lines X and Y indicating the side surface position of the vehicle body 2 are obtained. Further, the midpoints of the rear wheels 21 and 22 are obtained by the same method, and both the midpoints are obtained. If the vehicle body side lines X and Y are corrected by adding the supplement S to the outside, a more accurate detection result can be obtained. The range in the front-rear direction of the vehicle body side lines X and Y is specified by vehicle shape data detected separately.
[0018]
In addition, since the direction of the rear wheels 21 and 22 is always parallel to the front-rear direction of the vehicle body 2, in addition to the embodiment, two wheels on the diagonal line are selected, or the rear wheels 21 and 22 are selected. Thus, the side surface position of the vehicle body 2 can also be obtained by performing the above detection and calculation processing. In this case, since the front-rear direction of the vehicle body 2 can be detected immediately from the direction of one of the rear wheels 21 or 22, the arithmetic processing relating to the direction of the vehicle body 2 becomes easier.
[0019]
As described above, the vehicle body side lines X and Y obtained as detection data relating to the side surface position of the vehicle body 2 with respect to the portal frame 1 are extremely effective as control data for nozzles and the like in the car wash operation. For example, it can be used as control data for moving the cleaning nozzle and the drying nozzle along the side surface of the vehicle body 2. In particular, in the drying process, if the drying nozzle is moved closer to the surface of the vehicle body 2, the drying effect can be easily improved. Therefore, the vehicle body side lines X and Y are extremely effective as control data for the drying nozzle. is there. Further, if the vehicle body side lines X and Y are used, the distance from the nozzle to the side surface of the vehicle body 2 can be known, so that it can also be used as control data relating to the pressure control of the injection flow. Note that the above-described detection operation related to the side surface position of the vehicle body 2 is generally performed in the first relative movement of the portal frame 1. Thereafter, the vehicle body side lines X and Y obtained in the detection operation are used as nozzle control data for the cleaning process and the drying process, but the cleaning does not require the nozzle to be very close to the side surface of the vehicle body 2. Regarding the process, it is also possible to carry out in parallel with the detection work related to the side surface position of the vehicle body 2 in the initial relative movement of the portal frame 1. In this case, after the detection data regarding the front wheels 19 and 20 is obtained, it can be used as control data for the cleaning nozzle for the side surface of the vehicle body 2. On the other hand, since it becomes possible to use detection data relating to the rear wheels 21 and 22 in the drying process in the relative movement of the portal frame 1 thereafter, nozzle control based on detection data with higher accuracy is possible. Become. In addition, as shown in FIG. 8, it is also possible to use it as control data for regulating the movement range of the upper surface cleaning nozzle in the vehicle width direction when the upper surface of the vehicle body 2 is cleaned.
[0020]
As described above, according to the present invention, since the relative position of the side surface of the vehicle body with respect to the portal frame can be detected without being restricted by the position and direction of the wheel, the degree of freedom regarding the stop position is large, and the vehicle body The vehicle may be stopped in a state of being biased or inclined with respect to the portal frame, or the vehicle may be stopped in a state where the wheels are inclined with respect to the vehicle body. Therefore, the degree of freedom regarding the stop state of the vehicle with the portal frame is greatly expanded. In addition, when the stop state of the vehicle is regulated and the vehicle body and the wheel are always stopped parallel to the relative movement direction with respect to the portal frame, for example, a pair of beams 13 and 14 are combined. The relative position of the vehicle body side surface can be detected using the optical axis. That is, if the position of the front end E of one front wheel 19 and the position of the rear end H of the other front wheel 20 are detected using the beams 13 and 14, the vehicle body 2 and the front wheels 19 and 20 are moved in the relative movement direction. By combining with the condition of being parallel, the relative position of the side surface of the vehicle body can be calculated easily. In this case, the relative position of the side surface of the vehicle body can be similarly calculated by detecting the front end portion and the rear end portion of the rear wheel instead of the front wheel. Further, since the end face of the wheel, that is, the tread surface is in a direction orthogonal to the relative movement direction, the inclination angle with respect to the beam 14 can be omitted.
[0021]
【The invention's effect】
According to the present invention, the following effects can be obtained.
(1) Since the relative position of the side surface of the vehicle body with respect to the portal frame is detected via the front end and the rear end in the vicinity of the outside of the wheel, it is possible to use light emitting / receiving type detection means, and It is easy to eliminate the influence by the etc. and the malfunction by the adhesion of water drops.
(2) Since it is not necessary to move the detection means in the vehicle width direction, it is possible to detect the relative position of the side surface of the vehicle body with respect to the portal frame that is simple and stable in operation.
(3) Since the relative position of the side surface of the vehicle body with respect to the portal frame can be detected without being constrained by the position and direction of the wheels, the degree of freedom of the stopping position with respect to the portal frame is great, and the vehicle body is the portal frame. The vehicle can be parked in a state where it is biased or inclined with respect to the vehicle, or the vehicle can be parked in a state in which the wheels are tilted with respect to the vehicle body. Is done.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a main part of an embodiment of the present invention.
FIG. 2 is a side view of the same embodiment.
FIG. 3 is an explanatory view exemplifying the progress of vehicle body detection.
4 is a partially enlarged view showing an enlarged portion of light shielding regions Aa and Ba in FIG. 3; FIG.
5 is a partially enlarged view showing a further enlarged portion of beams 13 and 14 intersecting at the front end E of FIG. 4; FIG.
FIG. 6 is an explanatory diagram showing how to obtain the front-rear direction of the vehicle body.
FIG. 7 is an explanatory diagram showing how to determine the side position of the vehicle body.
FIG. 8 is a schematic plan view showing an application example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Portal frame, 2 ... Vehicle body, 3, 4 ... Both sides of portal frame, 5-8 ... Light emitting element, 9-12 ... Light receiving element, 13-16 ... Beam, 17, 18 ... Inner wall surface of both sides , 19, 20 ... front wheels, 21, 22 ... rear wheels, a, b ... intersections of beams, c ... reference points for the gate-type frame, Aa, Ab, Ba, Bb ... light-shielding areas by the front wheels, Ca, Cb, Da, Db: Shading area by rear wheel, E: Front end, F ... Rear end, G ... Front end, H ... Rear end

Claims (6)

車体に対して門型フレームを該車体を跨いだ状態で相対移動させながら前記門型フレーム側に設けた車体検出手段により車体を検出する門型洗車機における車体検出方法において、前記車体検出手段を車体の本体より下方に設置し、その車体検出手段により少なくとも左右2つの車輪のそれぞれの外側近傍の前端部と後端部を検出し、それらの検出データに基づいて門型フレームに対する車体側面の相対位置を求めるようにしたことを特徴とする門型洗車機における車体検出方法。In a vehicle body detection method in a portal type car wash machine for detecting a vehicle body by means of a vehicle body detection means provided on the side of the portal frame while moving the gate frame relative to the vehicle body while straddling the vehicle body, the vehicle body detection means comprises: Installed below the main body of the vehicle body, the vehicle body detection means detects the front and rear end portions of at least the two left and right wheels, and detects the relative position of the side surface of the vehicle body with respect to the portal frame based on the detected data. A vehicle body detection method for a gate type car wash machine, characterized in that a position is obtained. 左右一対の車輪に関する検出データに基づいて、前記各車輪の外側近傍の前端部と後端部との中点を演算し、それらの中点の位置に基づいて門型フレームに対する車体側面の相対位置を求める請求項1に記載の門型洗車機における車体検出方法。Based on the detection data relating to the pair of left and right wheels, the midpoint between the front end and the rear end near the outside of each wheel is calculated, and the relative position of the side of the vehicle body with respect to the portal frame based on the position of the midpoint The vehicle body detection method in the portal type car wash machine according to claim 1, wherein: 左右一対の車輪に関する検出データに基づいて、前記各車輪の外側近傍の前端部と後端部との中点を演算し、それらの中点を結んだ線に対して直交する方向を車体の前後方向として門型フレームに対する車体側面の相対位置を求める請求項1又は2に記載の門型洗車機における車体検出方法。Based on the detection data on the pair of left and right wheels, the midpoint of the front end and the rear end near the outside of each wheel is calculated, and the direction orthogonal to the line connecting the midpoints is The vehicle body detection method in the gate type car wash machine according to claim 1 or 2, wherein a relative position of the side surface of the vehicle body with respect to the gate type frame is obtained as a direction. 前輪と後輪に関するそれぞれの外側近傍の前端部と後端部を検出し、それらの検出データに基づいて、前輪及び後輪の外側近傍の前端部と後端部との中点を演算し、それらの中点の位置に基づいて門型フレームに対する車体側面の相対位置を求める請求項1〜3のいずれか一項に記載の門型洗車機における車体検出方法。The front end and the rear end near the outside of each front wheel and rear wheel are detected, and based on the detected data, the midpoint between the front end and the rear end near the outside of the front and rear wheels is calculated, The vehicle body detection method in the gate type car wash machine according to any one of claims 1 to 3, wherein a relative position of the side surface of the vehicle body with respect to the portal frame is obtained based on the position of the middle point. 車体に対して門型フレームを該車体を跨いだ状態で相対移動させながら前記門型フレーム側に設けた車体検出手段により車体を検出する門型洗車機における車体検出装置において、前記車体検出手段は、車体本体より下位平面内に傾斜角を異ならせて車体を横切って配置した複数の光軸の透光遮光を検出する光電センサと、該光電センサによって検出した少なくとも左右2つの車輪のそれぞれの外側近傍の前端部と後端部に関する検出データに基づいて門型フレームに対する車体側面の相対位置を求める演算手段から構成したことを特徴とする門型洗車機における車体検出装置。In a vehicle body detection device in a gate type car wash machine that detects a vehicle body by vehicle body detection means provided on the gate frame side while moving the gate frame relative to the vehicle body in a state of straddling the vehicle body, the vehicle body detection means includes: A photoelectric sensor for detecting light transmission / shielding of a plurality of optical axes arranged across the vehicle body at different inclination angles in a lower plane than the vehicle body, and an outer side of each of at least two left and right wheels detected by the photoelectric sensor A vehicle body detection apparatus for a gate-type car wash machine, characterized in that the vehicle-body detection apparatus comprises a calculation means for obtaining a relative position of a side surface of the vehicle body with respect to a portal frame based on detection data relating to the front and rear end portions in the vicinity. 前記光電センサは相対移動に直交する方向に対して大小の各傾斜角で左右対称に2対の光軸を配置した請求項5に記載の門型洗車機における車体検出装置。6. The vehicle body detection device for a gate-type car wash machine according to claim 5, wherein the photoelectric sensor has two pairs of optical axes symmetrically arranged at respective inclination angles large and small with respect to a direction orthogonal to relative movement.
JP2002134742A 2002-05-09 2002-05-09 Car body detection method and apparatus for portal type car wash machine Expired - Lifetime JP3863060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134742A JP3863060B2 (en) 2002-05-09 2002-05-09 Car body detection method and apparatus for portal type car wash machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134742A JP3863060B2 (en) 2002-05-09 2002-05-09 Car body detection method and apparatus for portal type car wash machine

Publications (2)

Publication Number Publication Date
JP2003327092A JP2003327092A (en) 2003-11-19
JP3863060B2 true JP3863060B2 (en) 2006-12-27

Family

ID=29697254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134742A Expired - Lifetime JP3863060B2 (en) 2002-05-09 2002-05-09 Car body detection method and apparatus for portal type car wash machine

Country Status (1)

Country Link
JP (1) JP3863060B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5926028B2 (en) * 2011-10-28 2016-05-25 エムケー精工株式会社 Car wash machine

Also Published As

Publication number Publication date
JP2003327092A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP4904347B2 (en) Parking device
JPH0944240A (en) Guide device for moving vehicle
JP2015210734A5 (en)
NO326649B1 (en) Method and apparatus for geometric painting and speed determination of vehicles
JP2000298007A (en) Method and instrument for measuring width of vehicle
CN203489844U (en) System for measuring size of outer profile of vehicle based on machine vision and laser light screen
EP2762892A1 (en) Vehicle speed calculator
JP3863060B2 (en) Car body detection method and apparatus for portal type car wash machine
JP7178437B2 (en) vehicle
JP3533269B2 (en) Vehicle position detection system
JP6742762B2 (en) Vehicle stop assist device and car wash device including the same
KR101227083B1 (en) Runaway flatness measuring method and device
JP2950974B2 (en) Moving object position detection device
JPH0783827A (en) Road surface condition detecting device for use in vehicle
JP2573958B2 (en) Beam light detection device for rice transplanter guidance
JP7363469B2 (en) Positional relationship detection system
JP2786516B2 (en) Work vehicle traveling method
JP7380196B2 (en) Positional relationship detection device
JPH07132869A (en) Inclination angle measuring device for running motorcycle
JP7347204B2 (en) Positional relationship detection device and positional relationship detection method
JP2506158B2 (en) Work vehicle guidance system using beam light
JPH01290009A (en) Image pickup type shift detector for guidance of traveling vehicle
JPH04145316A (en) Wheel alignment measuring device
JPH05165517A (en) Method for controlling unmanned working vehicle
JPH0695296B2 (en) Beam light guide device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6