JP3862540B2 - Nanometal fine particle-containing carbon thin film electrode and method for producing the same - Google Patents

Nanometal fine particle-containing carbon thin film electrode and method for producing the same Download PDF

Info

Publication number
JP3862540B2
JP3862540B2 JP2001314980A JP2001314980A JP3862540B2 JP 3862540 B2 JP3862540 B2 JP 3862540B2 JP 2001314980 A JP2001314980 A JP 2001314980A JP 2001314980 A JP2001314980 A JP 2001314980A JP 3862540 B2 JP3862540 B2 JP 3862540B2
Authority
JP
Japan
Prior art keywords
carbon
thin film
metal
sputtering
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001314980A
Other languages
Japanese (ja)
Other versions
JP2003121407A (en
Inventor
修 丹羽
ティアンヤン ユウ
勉 堀内
雅人 富田
滋 廣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001314980A priority Critical patent/JP3862540B2/en
Publication of JP2003121407A publication Critical patent/JP2003121407A/en
Application granted granted Critical
Publication of JP3862540B2 publication Critical patent/JP3862540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はナノ金属微粒子含有炭素薄膜電極及びその製造方法、詳しくは生体、医療、環境、食品などの分析に用いる電気化学分析用の電極、或いは電気化学センサーに関し、更に詳しくは、フローインジェクション分析装置、液体クロマトグラフィ装置キャピラリー電気泳動分析装置、あるいは、酵素を用いたバイオセンサーの検出用電極に用いることにより高い感度を実現できるナノ金属微粒子含有炭素薄膜電極及びその製造方法に関するものである。
【0002】
【従来の技術】
溶液中の電気化学反応を利用した電気化学測定法は、溶液中の水素イオン濃度、電解質、微量金属イオン検出、生体中の伝達物質、ホルモンなどの生理活性物質、食品中の成分分析など多くの分析に利用されている。
【0003】
電気化学測定法では、電位を測定するポテンシオメトリック法と、電流を測定するアンペロメトリック法あるいは、電位を掃引しながら電流を測定するボルタンメトリ法などに分けられる。アンペロメトリやボルタンメトリに代表される電流測定法では、電極を測定対象となる溶液に接触させ、この溶液に電圧を印加して該溶液に電気化学反応を生じさせ、この結果生じる電流等の電気的変化を前記電極により検出する方法である。
【0004】
電気化学測定に用いる電極材料としては、金、白金、パラジウムなどの貴金属、水銀、銅、ニッケルなどの金属、グラッシーカーボン、結晶性カーボンなどの炭素材料、酸化スズ、インジウム−スズ酸化物などの半導体が用いられる。
【0005】
炭素材料は、ボロン−ドープダイヤモンドを始め、一般的に金属材料に比較し電位窓が広く幅広い種類の分子の測定に利用できることから、高速液体クロマトグラフィやキャピラリー電気泳動装置などの検出器用電極として多く利用されている。一方、金属材料についても、炭素材料に無い電気化学特性を示す。
【0006】
白金電極は、過酸化水素などを低い電位で酸化することができる。グルコース酸化酵素、コレステロール酸化酵素など種々の酸化酵素が基質を分解して過酸化水素を生成するため、センサー用の電極として広く電気化学分析に用いられている。
【0007】
一方、銅やニッケルの電極では、通常炭素膜などでは、酸化が難しい、グルコース、ラクトースなどの糖類やアミノ酸を電極触媒的に酸化することができるため、上記物質を分離検出する高速液体クロマトグラフィ検出器などへ利用されつつある。
【0008】
近年、生体中のホルモン、伝達分子の計測、単一細胞計測、あるいは水中の内分泌系撹乱物質の測定など極微量の試料を高感度に測定することが要求されている。一般に、電気化学測定に用いる電極を微小化すると、電極への物質拡散が律速の場合、電極上への分子の拡散が球状拡散となり電流密度が増加する。微小電極での電流応答は、微小電極の形状を円形と仮定すると、(式1)の様に表される。
【0009】
I=4nrDFC (式1)
ここで、nは電気化学反応で電極と分子(イオン)間を移動する電子数、rは電極の半径、Fはファラデー定数、Cは測定対象物質の濃度、Dは測定対象物質の拡散係数である。式1から、電極半径rが半分になると、電流は1/2になることがわかる。
【0010】
同時に電極面積は1/4になるので、電極半径が1/2になると、電流密度は2倍になる。高い電流密度は高感度測定に有利であるが、反面単一の電極では、電流の絶対値が低下する。高い電流密度と測定可能な電流値を実現するため、微小電極を多数配置したマイクロアレイ電極が報告されている。
【0011】
マイクロアレイ電極を作製する方法として、フォトリソグラフィ法、測定対象と直接反応しないカーボンなどの導電性基板上への金属の真空蒸着、メッキなどが用いられており、高速液体クロマトグラフィなどの検出器として使用するとバルク電極に比較し、低い検出限界が得られることが報告されている。
【0012】
高速液体クロマトグラフィなどの汎用的な電気化学検出器としてグラッシーカーボンなどの炭素電極が用いられている。一方、金属電極はその電位窓は炭素に比べ狭いものの、分析対象物質によっては、高い感度を示す。グルコース、コレステロール、グルタミン酸など種々の生体物質は、それぞれ対応する酸化酵素により酸化分解され、過酸化水素を生成する。
【0013】
白金電極は過酸化水素に対する過電圧が小さいため、低い電位で過酸化水素を電気化学的に酸化し検出できる。また、銅やニッケルなどでは、アルカリ水溶液中で電極触媒作用によりグルコース、ラクトース、フラクトースなどの糖類やアミノ酸を電極で直接酸化する性質を有する。これら金属を微小化することにより、高感度な電気化学検出用電極を実現できることが期待される。
【0014】
【発明が解決しようとする課題】
微小な金属アレイ電極を作製する手段として、フォトリソグラフィ法では、作製可能な電極サイズがサブミクロンレベルに留まる。一方、電子線リソグラフィ法を用いると、より微細なアレイ電極の作製が可能である。しかしながら、基板上に多数の電極パタンを露光するには、かなり時間がかかる。
【0015】
リソグラフィ法を使用しない方法として、炭素電極上にメッキ法、或いは真空蒸着、スパッタ法などにより、微小な金属微粒子を堆積させ、アレイ電極を作製することができる。しかしながら、この様なプロセスで作製した電極は、基板として用いた炭素電極などと、金属微粒子の密着性が悪く、微粒子が剥離し電極特性が低下する問題点がある。
【0016】
一方、導電性の炭素膜を得る方法としてパイ共役系を有する高分子を真空中で加熱分解し、導電性の炭素膜を得る方法が開発されている。R.L.McCreeryらは、白金を分子構造に含むポリジアセチレンの前駆体溶液を基板にスピンコートしこれを熱分解することにより0.8〜1.6nmオーダーの白金が分散した炭素薄膜電極の作製に成功している(例えばH.D.Hutton et
al.,Chem.Mater.,1993,5,1727−38)。
【0017】
この膜では、白金のナノメータオーダーの結晶が多数グラファイト薄膜に埋め込まれており、白金の含有率により微粒子(ナノメータオーダーの結晶)サイズも制御できる。
【0018】
更に、ナノメータオーダーの結晶は、バルクの白金に比較し水素還元能などの触媒活性に優れることも報告されている。この方法では、白金パーティクル分散炭素膜の作製自体は基板上に前駆体溶液をスピンコートし、熱分解させるだけで済むが、前駆体の合成が必要である。
【0019】
また、加熱時に600℃以上の温度にするため、使用できる基板が限定される。更に白金以外の金属微小アレイ電極は、同じ前駆体分子を使用することが困難などの問題点があった。
【0020】
本発明は、上記の事情に鑑みてなされたものであって、例えば、過酸化水素や糖類など金属電極を用いた測定に適した測定対象物質を高感度に測定できるナノ金属微粒子含有炭素薄膜電極及びその製造方法を提供することにある。
【0021】
【課題を解決するための手段】
上記問題を解決するために、本発明は次の様なナノ金属微粒子含有炭素薄膜電極及びその製造方法を開発した。すなわち、請求項1に記載のナノ金属微粒子含有炭素薄膜電極は、少なくとも一部が測定対象となる溶液に接触されて該溶液の電気化学反応により生じる電気的変化を検出するナノ金属微粒子含有炭素薄膜電極であって、ナノメータのサイズの金属微粒子が均一に分散したアモルファスのナノ金属微粒子含有炭素薄膜であることを特徴とする。
【0022】
また、請求項1のナノ金属微粒子含有炭素薄膜電極が、スパッタ法(RFスパッタ法、DCスパッタ法、電子サイクロトロン共鳴(ECR)スパッタ法)により作製されてなることを特徴とする。
【0023】
このナノ金属微粒子含有炭素薄膜電極では、炭素と金属を同時にスパッタすることによりナノメータオーダーの金属微粒子が分散したナノ金属微粒子含有炭素薄膜を容易に作製することができる。各金属微粒子は微小電極として働くため、フォトリソグラフィ技術で作製する電極に比べより小さい電極を得ることができ、高感度化に有利である。
【0024】
また、共スパッタする金属を選択することにより白金、金、銀、パラジウム、イリジウム、銅、ニッケル、チタンなど種々の金属微粒子含有炭素膜を容易に得ることができる。この方法では、金属原子を含む有機分子前駆体から作製する方法に比較し、より汎用性が高く多くの金属に容易に応用できるのみならず、微小化することによる電極触媒作用の向上などの特性は保持されている。
【0025】
例えば、後述の実施例1に記載した白金ナノ金属微粒子が分散されたナノ金属微粒子含有炭素薄膜では、過酸化水素をバルク白金電極に比べ高い効率で酸化することができる。過酸化水素は、グルコース、乳酸、コレステロール、グルタミン酸、モノアミンなど幅広い生体分子を選択的に分解する酸化酵素の基質との反応生成物であるため、本発明の電極表面を種々の酸化酵素で修飾することにより、種々の高感度な酵素センサーを実現できる。
【0026】
また、ニッケルや銅微粒子が分散されたナノ金属微粒子含有炭素薄膜では、電極触媒作用により、低い電位で糖類やアミン酸などを酸化し、電流信号により定量できる。これらの電極においても微小化による感度や電極触媒作用の向上が期待できる。
【0027】
更に、スパッタ法を用いて作製するため膜の平坦性が優れ、低温で作製できるので、種々の基板上に膜を形成することができる。
【0028】
【実施例】
以下、本発明の電気化学測定用のナノ金属微粒子含有炭素薄膜電極及びその製造方法の各実施の形態について説明する。
【0029】
【実施例1】
本発明の第1の実施の形態に係わるナノ金属微粒子含有炭素薄膜電極をRFあるいはDCスパッタ装置を用いて酸化膜付きシリコン基板上に形成する方法について説明する。
【0030】
ターゲットとして純度の高い円形平板のカーボンターゲットを用い、その上にナノ粒子を形成させるための金属ペレット(白金)(メタルターゲット)を配置した。カーボンターゲットの表面とメタルターゲットの表面積の比を変えることにより炭素と金属の含有比を調整した。スパッタ条件は、アルゴンガス圧0.01Torr、基板温度200℃、ターゲット電圧1kVとし、膜厚40nmになるまでスパッタを行った。
【0031】
次にこのナノ金属微粒子含有炭素薄膜の構造を透過式電子顕微鏡により観察した。その結果、図1に示すようにナノ金属微粒子含有炭素薄膜は、均一な炭素薄膜のマトリックスに直径2〜3nmの白金ナノ微粒子が分散されていることが分かった。
【0032】
更に、カーボンターゲット上をカバーする白金ペレット(メタルターゲット)の量により、得られたナノ金属微粒子含有炭素薄膜中の白金ナノ粒子の量を制御できることが分かった。炭素と白金の面積比(R)が93:7の時、白金の含有量6.5%、Rが96.5:3.5では、白金含有量2.9%、Rが99:1では白金含有量1.3%で、ほぼ仕込み量と等しい白金含有量が得られた。
【0033】
また、原子間力顕微鏡(AFM:stomic force microscope)によりナノ金属微粒子含有炭素薄膜表面を観察したところ平坦性もかなり良好であることが分かった。このナノ金属微粒子含有炭素薄膜電極を電極直径が3mmになるようにテープで溶液から絶縁化し、銀/塩化銀参照電極及び白金対向電極と共にリン酸緩衝生理食塩水溶液に浸漬した。
【0034】
次に溶液に過酸化水素を加え、濃度1mMに調整した。作用電極(ナノ金属微粒子含有炭素薄膜電極)の電位を−0.2〜0.8Vの範囲で掃引速度50mV/sで変化させサイクリックボルタモグラム(CV)測定を行った。また、比較のために、同一面積を有するグラッシーカーボン(GC)電極とバルク白金電極の測定も行った。結果を図2に示す。
【0035】
図中、Aは本発明による白金ナノ金属微粒子含有炭素薄膜電極(7%)、Bはバルク白金電極、Cはグラッシーカーボン電極上での1mM過酸化水素のサイクリックボルタモグラムである。上述のように電位掃引速度:50mV/s、電極直径:3mmである。また、図中、aは、1mM過酸化水素を含むリン酸緩衝溶液、bはリン酸緩衝溶液(過酸化水素なし)でのCVである。
【0036】
GC電極(C)では過酸化水素による酸化側での電流の増加は殆ど観測されず過酸化水素がGC電極上で測定範囲では酸化されないことを示している。一方、バルク白金電極(B)では、酸化電流の増加が観測され過酸化水素がバルク白金電極上で酸化されていることが分かる。
【0037】
次にナノ金属微粒子含有炭素薄膜(A)では、前記バルク白金電極と同様な酸化電流が観測されるが、増加した電流の絶対値はバルク白金電極に比較してかなり大きい。両者のみかけの電極面積が等しく白金含有量が6.5%であることを考慮すると、白金電極面積に換算して、ナノ金属微粒子含有炭素薄膜電極では単位面積あたりバルク白金電極より大きな電流値が得られていることになる。
【0038】
この結果は、白金ナノ金属微粒子含有炭素薄膜中の白金ナノパーティクルの活性が大きく過酸化水素からの電子移動速度が速いことを示している。また、電位掃引によるバックグラウンド電流も白金に比べ小さいことが確認された。
【0039】
次に酸素の還元電流を測定しバルク白金電極と比較した。その結果を図3に示す。図中、Aは白金ナノ金属微粒子含有炭素薄膜電極(7%)、Bはバルク白金電極における酸素の電気化学還元電流を示す。図中、aは飽和酸素溶液、bはアルゴンにより脱気した場合である。電位掃引速度:100mV/s、電極直径:3mmである。
【0040】
本発明の白金ナノ金属微粒子含有炭素薄膜ではバルクの白金電極に比較し、白金ドープ量が6.5%と少ないのに関わらず大きな還元電流が得られることが分かった。
【0041】
この白金ナノ金属微粒子含有炭素薄膜電極を薄層フローセルに組み込み、シリンジポンプにより流速8μl/minで送液を行い、銀/塩化銀電極に対して0.6Vの電位を印加した。50μMの過酸化水素溶液を1.5μlづつ注入するとシャープな酸化電流が得られた。次に、0.5mMの硫酸中で酸素の還元電流を測定した。酸素の還元に関しては、図3で示したように、バルクの白金電極では、まず表面の白金酸化物の還元が観測され、その後酸素の還元が観測されるのに対して、白金ナノ金属微粒子含有炭素薄膜電極では、顕著な酸化膜の還元は観測されず、大きな酸素の還元ピークが得られた。
【0042】
この結果より白金ナノ金属微粒子含有炭素薄膜電極は、酸素の還元能においても優れた特性を示すことが分かった。多くの電気化学バイオセンサーが酸化酵素を用いて、酵素反応による酸素の消費か過酸化水素の生成量を測定しているため、本発明の白金ナノ金属微粒子含有炭素薄膜電極は、バイオセンサー用の電極として極めて優れた特性を有していることが分かった。
【0043】
この方法では白金以外にもパラジウム、イリジウム、銅、ニッケルなど多くの金属ナノ微粒子が分散した炭素膜を作製することができる。
【0044】
【実施例2】
実施例1と同様な方法により、炭素ターゲット上にニッケルのペレットを配置して膜形成を行った。基板は2インチのシリコン基板を使用し、スパッタ条件は、実施例1と同様にアルゴンガス圧0.01Torr、基板温度200℃、ターゲット電圧1kVとし、膜厚40nmになるまでスパッタを行った。また、基板に−20〜−200Vのバイアスを印加した。
【0045】
得られたナノ金属微粒子含有炭素薄膜を基板より剥がし、透過型電子顕微鏡(TEM)で観察を行ったところ炭素の膜中にナノメートルサイズのニッケルの微粒子が多数分散していることが確認された。
【0046】
このニッケルナノ金属微粒子含有炭素薄膜を電極の直径が4mmになるようにテープで絶縁し、銀/塩化銀参照電極、対抗電極とともに0.1M水酸化ナトリウム水溶液に浸漬しCV測定を行った。同様に1mMグルコースを含む水酸化ナトリウム水溶液中でも測定を行い両者の応答を比較した。結果を図4に示す。
【0047】
図中、Aはニッケルナノ金属微粒子含有炭素薄膜電極(4%含有)、Bはバルクニッケル電極上での1mMグルコースの酸化反応のサイクリックボルタモグラムである。電位掃引速度:50mV/s、電極直径:3mmである。また、図中、aは1mMグルコースを含む0.1M水酸化ナトリウム溶液、bは0.1M水酸化ナトリウム溶液のみの結果を示している。
【0048】
1mMグルコース添加により0.5V付近の酸化電流が著しく増加し、グルコースがニッケルナノ金属微粒子含有炭素薄膜電極上で酸化されていることが分かる。同様な実験をL−グルタミン酸やアスパラギン酸などのアミノ酸を用いて行ったところ、同様に酸化電流の増加が得られ、バルクの銅電極に比べ高い効率を示した。
【0049】
次にニッケルナノ金属微粒子含有炭素薄膜電極を薄層フローセルに組み込み、0.6V(vs銀/塩化銀電極)の電位を印加して1mMのグルコースを繰り返し注入したところ再現性良いピークが得られた。
【0050】
【実施例3】
実施例1と同様な方法により、炭素ターゲット上に銅のペレットを配置して膜形成を行った。基板は2インチのシリコン基板を使用し、実施例2と同条件でナノ金属微粒子含有炭素薄膜を作製した。得られたナノ金属微粒子含有炭素薄膜を基板より剥がし、透過型電子顕微鏡(TEM)で観察を行ったところ炭素の膜中にナノメートルサイズの銅の微粒子が多数分散していることが確認された(図5)。
【0051】
この銅ナノ金属微粒子含有炭素薄膜を電極の直径が4mmになるようにテープで絶縁し、銀/塩化銀参照電極、対抗電極とともに0.1M水酸化ナトリウム水溶液に浸浸しCV測定を行った。同様に10mMグルコースを含む水酸化ナトリウム水溶液中でも測定を行い両者の応答を比較した。10mMグルコース添加により0.4〜0.5V付近の酸化電流が著しく増加し、グルコースが銅ナノ金属微粒子含有炭素薄膜電極上で酸化されていることが分かった。
【0052】
同様な実験をL−グルタミン酸やアスパラギン酸などのアミノ酸を用いて行ったところ、同様に酸化電流の増加が得られ、バルクの銅電極に比べ高い効率を示した。次に銅ナノ金属微粒子含有炭素薄膜電極を薄層フローセルに組み込み、0.6V(vs銀/塩化銀電極)の電位を印加して1mMのグルコースを繰り返し注入したところ再現性良いピークが得られた。
【0053】
【実施例4】
図6に示すように、ECRスパッタ法装置内に長方形のカーボンターゲット1と長方形の白金のメタルターゲット2を六角形のバッキングプレート3内壁に張り合わせ、六角形のターゲットを設置した。
【0054】
すなわち単数個または複数個の長方形のカーボンターゲット1と単数個または複数個の長方形のメタルターゲット2とを断面が多角形よりなる筒状のバッキングプレート3の内壁に張り合わせたものをスパッタターゲットTとしてECRスパッタ装置内に設置して、ECRスパッタ法により該炭素と金属とをスパッタし、金属微粒子を含む炭素薄膜を形成するものである。図6中、(a)はカーボンターゲット1とメタルターゲット2の構造を示す斜視図であり、(b)はバッキングプレート(銅)が設けられたときの構造を示す平面図である。
【0055】
内面の表面積に占めるカーボンと白金の比は白金4.2%に対し、炭素95.8%とした。このスパッタターゲットを用いて、2インチシリコン基板上に白金ナノ金属微粒子含有炭素薄膜の作製を行った。
【0056】
ECRスパッタの条件はアルゴンガス圧:5×10-4torr、基板温度は室温、マイクロ波パワー:500W、ターゲット電圧:700Vとし、基板セルフバイアス−20〜−200Vの範囲で条件を変えてナノ金属微粒子含有炭素薄膜を作製した。実験に用いた炭素薄膜は基板バイアス:−40Vとし、所定時間スパッタを行って40nmの白金ナノ金属微粒子含有炭素薄膜を得た。
【0057】
一方、ターゲットとして図7に示す様に中空円筒形のカーボンターゲット1と中空円筒形の白金ターゲット2を縦方向に重ね合わせ、両ターゲット1,2を円筒形の一体のバッキングプレート3にボンディングしたターゲットT(図7a)を用いる方法、すなわち外径および内径が全て同一な、単数個または複数個の円筒形のカーボンターゲット1と単数個または複数個の円筒形のメタルターゲット2とを積み重ね、これらの円筒形ターゲットの外壁が円筒形のバッキングプレート3の内壁に接するように挿入したものを用いる方法でも良好なナノ金属微粒子含有炭素薄膜が得られた。このスパッタターゲットTは、図より明らかなように、メタルターゲット1とカーボンターゲット2は電気的に直接一体化している。
【0058】
また、中空円筒形のカーボンターゲット1と中空円筒形の白金のメタルターゲット2をそれぞれ、別の中空円筒形のバッキングプレート3にボンディングし、バッキングプレート3にボンディングされた2つのスパッタターゲットT、T’を絶縁体を介して縦方向に重ね合わせて、両ターゲットT、T’に独立に電源を接続する方法(図7b)、すなわち外径および内径が全て同一な、単数個または複数個のカーボンターゲット1と単数個または複数個の円筒形のメタルターゲット2とをそれぞれ円筒形のバッキングプレート3に挿入して形成し、前記カーボンターゲット1とメタルターゲット2を絶縁体を介して積み重ねたものをスパッタターゲットを使用しても良好なナノ金属微粒子含有炭素薄膜が得られた(メタルターゲット1、カーボンターゲット2が絶縁体により分離しており、独立にパワー制御可能な構造となっている)。
【0059】
特に図7bのスパッタターゲットでは、白金及び炭素に印加する電圧を独立に変化させることにより、白金の含有量を任意に制御できることが分かった。この白金ナノ金属微粒子含有炭素薄膜電極を用いて実施例1と同様な測定を行ったところ過酸化水素の電気化学的酸化反応、酸素の還元反応共にバルク白金より大きな電流値を示した。
【0060】
【発明の効果】
以上説明した様に、本発明のナノ金属微粒子含有炭素薄膜電極及びその製造方法によれば、バルクの金属電極に比較し、大きな電流密度が得られ、高感度測定に有用である。また、酵素反応に伴い消費あるいは生成する酸素や、過酸化水素、グルコースなどの糖類やアミノ酸など種々の生体分子の測定に幅広く応用可能である。従って、バイオセンサや微小分析システム、フローインジェクション分析、キャピラリー電気泳動、高速液体クロマトグラフィの検出器として極めて利用価値が大きい。
【図面の簡単な説明】
【図1】白金ナノ微粒子を含むナノ金属微粒子含有炭素薄膜の透過型電子顕微鏡(TEM)写真。
【図2】作用電極(ナノ金属微粒子含有炭素薄膜電極)の電位を−0.2〜0.8Vの範囲で掃引速度50mV/sで変化させ測定したサイクリックボルタモグラム。
【図3】実施例1のナノ金属微粒子含有炭素薄膜電極とバルク白金電極の酸素の還元電流を測定した図。
【図4】実施例2の本発明によるニッケルナノ金属微粒子含有炭素薄膜電極とバルクニッケル電極で測定したサイクリックボルタモグラム。
【図5】銅ナノ微粒子粒子を含むナノ金属微粒子含有炭素薄膜のTEM写真。
【図6】実施例4に示す白金ナノ金属微粒子含有炭素薄膜を作製するためのECRスパッタ用のターゲットの構造。
【図7】実施例4に示す白金ドープ炭素膜を作製するためのECRスパッタ用の異なる構造のターゲットの模式図。
【符号の説明】
1 カーボンターゲット
2 メタルターゲット
3 バッキングプレート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nano-metal fine particle-containing carbon thin film electrode and a method for producing the same, and more particularly to an electrode for electrochemical analysis or an electrochemical sensor used for analysis of living body, medical, environment, food, etc. More particularly, a flow injection analyzer The present invention relates to a carbon thin film electrode containing nanometal particles that can realize high sensitivity when used in a detection electrode of a biochromatography apparatus using a liquid chromatography apparatus or a capillary electrophoresis analyzer, or an enzyme, and a method for producing the same.
[0002]
[Prior art]
There are many electrochemical measurement methods using electrochemical reactions in solution, such as hydrogen ion concentration in solution, electrolytes, detection of trace metal ions, biologically active substances such as transmitter substances, hormones, and components in foods. It is used for analysis.
[0003]
Electrochemical measurement methods can be classified into a potentiometric method for measuring potential, an amperometric method for measuring current, or a voltammetry method for measuring current while sweeping the potential. In the current measurement method represented by amperometry or voltammetry, an electrode is brought into contact with a solution to be measured, and a voltage is applied to the solution to cause an electrochemical reaction, resulting in an electrical change such as current. Is detected by the electrode.
[0004]
Electrode materials used for electrochemical measurements include noble metals such as gold, platinum and palladium, metals such as mercury, copper and nickel, carbon materials such as glassy carbon and crystalline carbon, semiconductors such as tin oxide and indium-tin oxide. Is used.
[0005]
Carbon materials, such as boron-doped diamond, generally have a wider potential window than metal materials and can be used to measure a wide variety of molecules, so they are widely used as detector electrodes for high-performance liquid chromatography and capillary electrophoresis devices. Has been. On the other hand, metal materials also exhibit electrochemical properties that are not found in carbon materials.
[0006]
The platinum electrode can oxidize hydrogen peroxide or the like at a low potential. Various oxidases such as glucose oxidase and cholesterol oxidase decompose the substrate to produce hydrogen peroxide, and are therefore widely used for electrochemical analysis as sensor electrodes.
[0007]
On the other hand, with a copper or nickel electrode, it is difficult to oxidize with a carbon film or the like. Sugars and amino acids such as glucose and lactose can be electrocatalytically oxidized. It is being used for such as.
[0008]
In recent years, it has been required to measure a very small amount of sample with high sensitivity, such as measurement of hormones and transfer molecules in living bodies, single cell measurement, or measurement of endocrine disrupting substances in water. In general, when the electrode used for electrochemical measurement is miniaturized, when the material diffusion to the electrode is rate limiting, the diffusion of molecules on the electrode becomes spherical diffusion and the current density increases. The current response at the microelectrode is expressed as (Equation 1) assuming that the microelectrode has a circular shape.
[0009]
I = 4 nrDFC (Formula 1)
Here, n is the number of electrons moving between the electrode and the molecule (ion) by electrochemical reaction, r is the radius of the electrode, F is the Faraday constant, C is the concentration of the measurement target substance, and D is the diffusion coefficient of the measurement target substance. is there. From Equation 1, it can be seen that when the electrode radius r is halved, the current is halved.
[0010]
At the same time, the electrode area is reduced to 1/4, so that when the electrode radius is reduced to 1/2, the current density is doubled. A high current density is advantageous for high-sensitivity measurement, but a single electrode reduces the absolute value of the current. In order to realize a high current density and a measurable current value, a microarray electrode in which a large number of microelectrodes are arranged has been reported.
[0011]
As a method for producing a microarray electrode, photolithography, vacuum deposition of metal on a conductive substrate such as carbon that does not directly react with a measurement object, plating, etc. are used. When used as a detector for high performance liquid chromatography, etc. It has been reported that lower detection limits can be obtained compared to bulk electrodes.
[0012]
A carbon electrode such as glassy carbon is used as a general-purpose electrochemical detector such as high performance liquid chromatography. On the other hand, although the potential window of a metal electrode is narrower than that of carbon, high sensitivity is exhibited depending on the substance to be analyzed. Various biological substances such as glucose, cholesterol and glutamic acid are oxidatively decomposed by corresponding oxidases to produce hydrogen peroxide.
[0013]
Since the platinum electrode has a small overvoltage against hydrogen peroxide, it can be detected by electrochemically oxidizing hydrogen peroxide at a low potential. In addition, copper, nickel, and the like have a property of directly oxidizing sugars and amino acids such as glucose, lactose, and fructose at an electrode by an electrocatalytic action in an alkaline aqueous solution. It is expected that a highly sensitive electrode for electrochemical detection can be realized by miniaturizing these metals.
[0014]
[Problems to be solved by the invention]
As a means for producing a minute metal array electrode, in the photolithography method, the electrode size that can be produced remains at the submicron level. On the other hand, when an electron beam lithography method is used, a finer array electrode can be produced. However, it takes a considerable time to expose a large number of electrode patterns on the substrate.
[0015]
As a method not using the lithography method, an array electrode can be produced by depositing fine metal fine particles on a carbon electrode by a plating method, vacuum deposition, sputtering method or the like. However, the electrode produced by such a process has a problem that the adhesion of metal fine particles to the carbon electrode used as a substrate is poor, and the fine particles are peeled off to deteriorate electrode characteristics.
[0016]
On the other hand, as a method for obtaining a conductive carbon film, a method for obtaining a conductive carbon film by thermally decomposing a polymer having a pi-conjugated system in a vacuum has been developed. R. L. McCreeley et al. Succeeded in producing a carbon thin film electrode in which platinum in the order of 0.8 to 1.6 nm is dispersed by spin-coating a precursor solution of polydiacetylene containing platinum in a molecular structure on a substrate and thermally decomposing it. (E.g. HD Huton et
al. , Chem. Mater. 1993, 5, 1727-38).
[0017]
In this film, a number of platinum nanometer-order crystals are embedded in a graphite thin film, and the size of fine particles (nanometer-order crystals) can be controlled by the platinum content.
[0018]
Furthermore, it has been reported that nanometer-order crystals are superior in catalytic activity such as hydrogen reduction ability compared to bulk platinum. In this method, the platinum particle-dispersed carbon film itself can be prepared by simply spin-coating the precursor solution on the substrate and thermally decomposing it, but synthesis of the precursor is necessary.
[0019]
Further, since the temperature is set to 600 ° C. or higher during heating, usable substrates are limited. Furthermore, metal microarray electrodes other than platinum have problems such as difficulty in using the same precursor molecule.
[0020]
The present invention has been made in view of the above circumstances, and for example, a nano-metal fine particle-containing carbon thin film electrode capable of highly sensitively measuring a measurement target substance suitable for measurement using a metal electrode such as hydrogen peroxide or saccharide. And a manufacturing method thereof.
[0021]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has developed the following nanometal fine particle-containing carbon thin film electrode and a method for producing the same. That is, the nanometal fine particle-containing carbon thin film electrode according to claim 1, wherein at least a part of the carbon thin film electrode is brought into contact with a solution to be measured, and an electrical change caused by an electrochemical reaction of the solution is detected. The electrode is an amorphous nanometal fine particle-containing carbon thin film in which nanometer-sized metal fine particles are uniformly dispersed.
[0022]
The carbon thin film electrode containing nano metal fine particles according to claim 1 is produced by sputtering (RF sputtering, DC sputtering, electron cyclotron resonance (ECR) sputtering).
[0023]
With this nanometal fine particle-containing carbon thin film electrode, a nanometal fine particle-containing carbon thin film in which nanometer-order metal fine particles are dispersed can be easily produced by simultaneously sputtering carbon and metal. Since each metal fine particle works as a microelectrode, it is possible to obtain a smaller electrode as compared with an electrode manufactured by a photolithography technique, which is advantageous for high sensitivity.
[0024]
Further, by selecting a metal to be co-sputtered, various metal fine particle-containing carbon films such as platinum, gold, silver, palladium, iridium, copper, nickel, titanium can be easily obtained. This method is more versatile and can be easily applied to many metals compared to the method of producing from an organic molecular precursor containing metal atoms, but also has characteristics such as improved electrode catalysis by miniaturization. Is retained.
[0025]
For example, in the nanometal fine particle-containing carbon thin film in which platinum nanometal fine particles are dispersed as described in Example 1 described later, hydrogen peroxide can be oxidized with higher efficiency than a bulk platinum electrode. Since hydrogen peroxide is a reaction product with an oxidase substrate that selectively decomposes a wide range of biomolecules such as glucose, lactic acid, cholesterol, glutamic acid, and monoamine, the electrode surface of the present invention is modified with various oxidases. Thus, various highly sensitive enzyme sensors can be realized.
[0026]
In addition, the nanometal fine particle-containing carbon thin film in which nickel and copper fine particles are dispersed can oxidize saccharides and amic acid at a low potential by the electrocatalytic action, and can be quantified by a current signal. These electrodes can also be expected to improve sensitivity and electrode catalysis due to miniaturization.
[0027]
Further, since the film is manufactured using a sputtering method, the film has excellent flatness and can be manufactured at a low temperature, so that the film can be formed over various substrates.
[0028]
【Example】
Hereinafter, each embodiment of the nano metal fine particle containing carbon thin film electrode for electrochemical measurement of this invention and its manufacturing method is described.
[0029]
[Example 1]
A method of forming the nanometal fine particle-containing carbon thin film electrode according to the first embodiment of the present invention on a silicon substrate with an oxide film using an RF or DC sputtering apparatus will be described.
[0030]
A high-purity circular flat carbon target was used as a target, and metal pellets (platinum) (metal target) for forming nanoparticles were placed thereon. The content ratio of carbon and metal was adjusted by changing the ratio of the surface area of the carbon target to the surface area of the metal target. The sputtering conditions were argon gas pressure 0.01 Torr, substrate temperature 200 ° C., target voltage 1 kV, and sputtering was performed until the film thickness reached 40 nm.
[0031]
Next, the structure of the nanometal fine particle-containing carbon thin film was observed with a transmission electron microscope. As a result, as shown in FIG. 1, the nanometal fine particle-containing carbon thin film was found to have platinum nanoparticles having a diameter of 2 to 3 nm dispersed in a uniform carbon thin film matrix.
[0032]
Furthermore, it was found that the amount of platinum nanoparticles in the obtained nanometal fine particle-containing carbon thin film can be controlled by the amount of platinum pellets (metal target) covering the carbon target. When the area ratio (R) of carbon to platinum is 93: 7, the platinum content is 6.5%, the R is 96.5: 3.5, the platinum content is 2.9%, and the R is 99: 1. With a platinum content of 1.3%, a platinum content almost equal to the charged amount was obtained.
[0033]
Further, when the surface of the carbon thin film containing nanometal particles was observed with an atomic force microscope (AFM), it was found that the flatness was considerably good. The nanometal fine particle-containing carbon thin film electrode was insulated from the solution with a tape so that the electrode diameter was 3 mm, and immersed in a phosphate buffered saline solution together with a silver / silver chloride reference electrode and a platinum counter electrode.
[0034]
Next, hydrogen peroxide was added to the solution to adjust the concentration to 1 mM. Cyclic voltammogram (CV) measurement was performed by changing the potential of the working electrode (carbon thin film electrode containing nano metal fine particles) in the range of −0.2 to 0.8 V at a sweep rate of 50 mV / s. For comparison, a glassy carbon (GC) electrode and a bulk platinum electrode having the same area were also measured. The results are shown in FIG.
[0035]
In the figure, A is a carbon thin film electrode (7%) containing platinum nanometal particles according to the present invention, B is a bulk platinum electrode, and C is a cyclic voltammogram of 1 mM hydrogen peroxide on a glassy carbon electrode. As described above, the potential sweep rate is 50 mV / s, and the electrode diameter is 3 mm. In the figure, a is a phosphate buffer solution containing 1 mM hydrogen peroxide, and b is a CV in a phosphate buffer solution (without hydrogen peroxide).
[0036]
In the GC electrode (C), almost no increase in current on the oxidation side due to hydrogen peroxide was observed, indicating that hydrogen peroxide was not oxidized in the measurement range on the GC electrode. On the other hand, in the bulk platinum electrode (B), an increase in the oxidation current is observed, and it can be seen that hydrogen peroxide is oxidized on the bulk platinum electrode.
[0037]
Next, in the nanometal fine particle-containing carbon thin film (A), an oxidation current similar to that of the bulk platinum electrode is observed, but the absolute value of the increased current is considerably larger than that of the bulk platinum electrode. Considering that the apparent electrode area of both is the same and the platinum content is 6.5%, the carbon thin film electrode containing nanometal particles has a larger current value per unit area than the bulk platinum electrode in terms of the platinum electrode area. It has been obtained.
[0038]
This result shows that the activity of the platinum nanoparticles in the carbon thin film containing platinum nanometal particles is large and the electron transfer rate from hydrogen peroxide is high. It was also confirmed that the background current due to the potential sweep was smaller than that of platinum.
[0039]
Next, the reduction current of oxygen was measured and compared with a bulk platinum electrode. The result is shown in FIG. In the figure, A represents a carbon thin film electrode containing platinum nanometal fine particles (7%), and B represents an electrochemical reduction current of oxygen at a bulk platinum electrode. In the figure, a is a case where a saturated oxygen solution and b are degassed with argon. Potential sweep rate: 100 mV / s, electrode diameter: 3 mm.
[0040]
It was found that the carbon thin film containing platinum nanometal fine particles of the present invention can provide a large reduction current regardless of the platinum doping amount being as small as 6.5% as compared with the bulk platinum electrode.
[0041]
This platinum nanometal fine particle-containing carbon thin film electrode was incorporated into a thin layer flow cell, and liquid was fed by a syringe pump at a flow rate of 8 μl / min, and a potential of 0.6 V was applied to the silver / silver chloride electrode. When a 50 μM hydrogen peroxide solution was injected in 1.5 μl increments, a sharp oxidation current was obtained. Next, the reduction current of oxygen was measured in 0.5 mM sulfuric acid. Regarding the reduction of oxygen, as shown in FIG. 3, in the bulk platinum electrode, first, the reduction of the platinum oxide on the surface is observed, and then the reduction of oxygen is observed. In the carbon thin film electrode, no significant reduction of the oxide film was observed, and a large oxygen reduction peak was obtained.
[0042]
From these results, it was found that the platinum nanometal fine particle-containing carbon thin film electrode showed excellent characteristics in terms of oxygen reducing ability. Since many electrochemical biosensors use oxidase to measure oxygen consumption or hydrogen peroxide production by enzymatic reaction, the carbon thin film electrode containing platinum nanometal particles of the present invention is suitable for biosensors. It turned out that it has the very outstanding characteristic as an electrode.
[0043]
In this method, it is possible to produce a carbon film in which many metal nanoparticles such as palladium, iridium, copper, and nickel are dispersed in addition to platinum.
[0044]
[Example 2]
In the same manner as in Example 1, nickel pellets were placed on the carbon target to form a film. As a substrate, a 2-inch silicon substrate was used, and sputtering was performed under the same sputtering conditions as in Example 1, with an argon gas pressure of 0.01 Torr, a substrate temperature of 200 ° C., a target voltage of 1 kV, and a film thickness of 40 nm. Further, a bias of −20 to −200 V was applied to the substrate.
[0045]
The obtained nanometal fine particle-containing carbon thin film was peeled off from the substrate and observed with a transmission electron microscope (TEM). As a result, it was confirmed that many nanometer-sized nickel fine particles were dispersed in the carbon film. .
[0046]
This nickel nanometal fine particle-containing carbon thin film was insulated with a tape so that the electrode diameter was 4 mm, and immersed in a 0.1 M sodium hydroxide aqueous solution together with a silver / silver chloride reference electrode and a counter electrode, and CV measurement was performed. Similarly, the measurement was performed in an aqueous sodium hydroxide solution containing 1 mM glucose, and the responses were compared. The results are shown in FIG.
[0047]
In the figure, A is a carbon thin film electrode containing nickel nanometal particles (containing 4%), and B is a cyclic voltammogram of oxidation reaction of 1 mM glucose on a bulk nickel electrode. Potential sweep rate: 50 mV / s, electrode diameter: 3 mm. Moreover, in the figure, a shows the result of 0.1 M sodium hydroxide solution containing 1 mM glucose, and b shows the result of only 0.1 M sodium hydroxide solution.
[0048]
It can be seen that the addition of 1 mM glucose markedly increased the oxidation current in the vicinity of 0.5 V, and glucose was oxidized on the carbon film electrode containing nickel nanometal particles. When a similar experiment was performed using amino acids such as L-glutamic acid and aspartic acid, an increase in oxidation current was obtained in the same manner, indicating a higher efficiency than that of a bulk copper electrode.
[0049]
Next, when a carbon thin film electrode containing nickel nanometal fine particles was incorporated in a thin layer flow cell, a potential of 0.6 V (vs silver / silver chloride electrode) was applied and 1 mM glucose was repeatedly injected, and a peak with good reproducibility was obtained. .
[0050]
[Example 3]
By the same method as in Example 1, a copper pellet was placed on the carbon target to form a film. A 2-inch silicon substrate was used as the substrate, and a nanometal fine particle-containing carbon thin film was produced under the same conditions as in Example 2. The obtained nanometal fine particle-containing carbon thin film was peeled off from the substrate and observed with a transmission electron microscope (TEM). As a result, it was confirmed that many nanometer-sized copper fine particles were dispersed in the carbon film. (FIG. 5).
[0051]
The carbon nanometal fine particle-containing carbon thin film was insulated with a tape so that the electrode had a diameter of 4 mm, and immersed in a 0.1 M sodium hydroxide aqueous solution together with a silver / silver chloride reference electrode and a counter electrode, and CV measurement was performed. Similarly, measurement was performed in an aqueous sodium hydroxide solution containing 10 mM glucose, and the responses of both were compared. The addition of 10 mM glucose significantly increased the oxidation current in the vicinity of 0.4 to 0.5 V, and it was found that glucose was oxidized on the carbon thin film electrode containing copper nanometal particles.
[0052]
When a similar experiment was performed using amino acids such as L-glutamic acid and aspartic acid, an increase in oxidation current was obtained in the same manner, indicating a higher efficiency than that of a bulk copper electrode. Next, a carbon thin film electrode containing copper nano metal fine particles was incorporated into a thin layer flow cell, and a potential of 0.6 V (vs silver / silver chloride electrode) was applied to repeatedly inject 1 mM glucose, and a peak with good reproducibility was obtained. .
[0053]
[Example 4]
As shown in FIG. 6, a rectangular carbon target 1 and a rectangular platinum metal target 2 were bonded to the inner wall of a hexagonal backing plate 3 in an ECR sputtering apparatus, and a hexagonal target was installed.
[0054]
That is, the ECR is formed by bonding a single or a plurality of rectangular carbon targets 1 and a single or a plurality of rectangular metal targets 2 to the inner wall of a cylindrical backing plate 3 having a polygonal cross section. It is installed in a sputtering apparatus, and the carbon and metal are sputtered by ECR sputtering to form a carbon thin film containing metal fine particles. 6A is a perspective view showing the structure of the carbon target 1 and the metal target 2, and FIG. 6B is a plan view showing the structure when a backing plate (copper) is provided.
[0055]
The ratio of carbon to platinum occupying the surface area of the inner surface was 95.8% carbon with respect to 4.2% platinum. Using this sputter target, a carbon thin film containing platinum nanometal particles was produced on a 2-inch silicon substrate.
[0056]
The conditions of ECR sputtering are argon gas pressure: 5 × 10 −4 torr, substrate temperature is room temperature, microwave power: 500 W, target voltage: 700 V, and nanometal by changing the conditions in the range of substrate self-bias −20 to −200 V A fine particle-containing carbon thin film was prepared. The carbon thin film used for the experiment was set to a substrate bias of −40 V, and sputtering was performed for a predetermined time to obtain a carbon thin film containing 40 nm of platinum nanometal particles.
[0057]
On the other hand, as shown in FIG. 7, as a target, a hollow cylindrical carbon target 1 and a hollow cylindrical platinum target 2 are stacked in the vertical direction, and both targets 1 and 2 are bonded to a cylindrical integral backing plate 3. A method using T (FIG. 7a), that is, stacking a single or a plurality of cylindrical carbon targets 1 and a single or a plurality of cylindrical metal targets 2 having the same outer diameter and inner diameter, A good nanometal fine particle-containing carbon thin film was also obtained using a method in which the outer wall of the cylindrical target was inserted so as to contact the inner wall of the cylindrical backing plate 3. In this sputter target T, as is apparent from the figure, the metal target 1 and the carbon target 2 are electrically integrated directly.
[0058]
Further, a hollow cylindrical carbon target 1 and a hollow cylindrical platinum metal target 2 are bonded to another hollow cylindrical backing plate 3, and two sputter targets T and T ′ bonded to the backing plate 3 are bonded. Is a method in which power is independently connected to both targets T and T ′ (FIG. 7b), that is, one or more carbon targets having the same outer diameter and inner diameter. 1 and a single or a plurality of cylindrical metal targets 2 are inserted into a cylindrical backing plate 3 and formed by stacking the carbon target 1 and the metal target 2 via an insulator. The carbon film containing fine nano metal particles was obtained even when using (Metal Target 1, Carbon Target 2 are separated by an insulator, and has a power controllable structure independently).
[0059]
In particular, in the sputter target of FIG. 7b, it was found that the platinum content can be arbitrarily controlled by independently changing the voltage applied to platinum and carbon. When the same measurement as in Example 1 was performed using this platinum nanometal fine particle-containing carbon thin film electrode, both the electrochemical oxidation reaction of hydrogen peroxide and the reduction reaction of oxygen showed a larger current value than that of bulk platinum.
[0060]
【The invention's effect】
As explained above, according to the nanometal fine particle-containing carbon thin film electrode and the method for producing the same of the present invention, a large current density is obtained as compared with a bulk metal electrode, which is useful for high sensitivity measurement. In addition, it can be widely applied to the measurement of various biomolecules such as oxygen consumed or generated by enzyme reaction, saccharides such as hydrogen peroxide and glucose, and amino acids. Therefore, it is extremely useful as a detector for biosensors, microanalysis systems, flow injection analysis, capillary electrophoresis, and high performance liquid chromatography.
[Brief description of the drawings]
FIG. 1 is a transmission electron microscope (TEM) photograph of a carbon thin film containing nano metal particles including platinum nanoparticles.
FIG. 2 is a cyclic voltammogram measured by changing the potential of the working electrode (nanometallic fine particle-containing carbon thin film electrode) at a sweep rate of 50 mV / s in the range of −0.2 to 0.8V.
FIG. 3 is a graph showing the measurement of the oxygen reduction current of the nanometal fine particle-containing carbon thin film electrode and bulk platinum electrode of Example 1.
4 is a cyclic voltammogram measured using a nickel thin film-containing carbon thin film electrode and a bulk nickel electrode according to the present invention in Example 2. FIG.
FIG. 5 is a TEM photograph of carbon nanoparticle-containing carbon thin film containing copper nanoparticle particles.
6 shows a structure of a target for ECR sputtering for producing a carbon film containing platinum nanometal fine particles shown in Example 4. FIG.
7 is a schematic diagram of targets having different structures for ECR sputtering for producing the platinum-doped carbon film shown in Example 4. FIG.
[Explanation of symbols]
1 Carbon target 2 Metal target 3 Backing plate

Claims (10)

少なくとも一部が測定対象となる溶液に接触されて該溶液の電気化学反応により生じる電気的変化を検出する電気化学測定用のナノ金属微粒子含有炭素薄膜電極であって、ナノメータのサイズのナノ金属微粒子が均一に分散したアモルファスのナノ金属微粒子含有炭素薄膜であることを特徴とするナノ金属微粒子含有炭素薄膜電極。  A carbon thin film electrode containing nanometal particles for electrochemical measurement, wherein at least a part is brought into contact with a solution to be measured and an electrical change caused by an electrochemical reaction of the solution is detected, the nanometal particle having a nanometer size A carbon thin film electrode containing nano metal fine particles, wherein the carbon thin film contains amorphous nano metal fine particles dispersed uniformly. 前記ナノ金属微粒子含有炭素薄膜がスパッタ法により形成されてなることを特徴とする請求項1記載のナノ金属微粒子含有炭素薄膜電極。  2. The carbon thin film electrode containing nano metal fine particles according to claim 1, wherein the carbon thin film containing nano metal fine particles is formed by sputtering. 前記ナノ金属微粒子含有炭素薄膜を構成するナノ金属微粒子は白金、金、銀、パラジウム、イリジウム、銅、ニッケル、チタンの一種以上であることを特徴とする請求項1または2記載のナノ金属微粒子含有炭素薄膜電極。  3. The nanometal fine particle-containing composition according to claim 1, wherein the nanometal fine particle constituting the nanometal fine particle-containing carbon thin film is one or more of platinum, gold, silver, palladium, iridium, copper, nickel, and titanium. Carbon thin film electrode. RFスパッタあるいはDCスパッタ装置内にカーボンターゲットを設置する工程、カーボンターゲット上に該ターゲットの一部を覆うようにメタルターゲットを配置する工程、スパッタリングにより、該炭素と金属をスパッタし、ナノ金属微粒子を含むナノ金属微粒子含有炭素薄膜を絶縁性基板上に形成することを特徴とするナノ金属微粒子含有炭素薄膜電極の製造方法。A step of installing a carbon target in an RF sputtering or DC sputtering device, a step of placing a metal target on the carbon target so as to cover a part of the target, sputtering the carbon and metal, and sputtering nano metal fine particles A method for producing a nanometal fine particle-containing carbon thin film electrode , comprising: forming a nanometal fine particle-containing carbon thin film on an insulating substrate. 単数個または複数個の長方形のカーボンターゲットと単数個または複数個の長方形のメタルターゲットとを断面が多角形よりなる筒状のバッキングプレートの内壁に張り合わせたものをスパッタターゲットとしてECRスパッタ装置内に設置して、ECRスパッタ法により該炭素と金属とをスパッタし、金属微粒子を含むナノ金属微粒子含有炭素薄膜を絶縁性基板上に形成することを特徴とするナノ金属微粒子含有炭素薄膜電極の製造方法。A single or multiple rectangular carbon target and one or multiple rectangular metal targets bonded to the inner wall of a cylindrical backing plate with a polygonal cross section are installed in the ECR sputtering system as a sputtering target. to, sputtering and the carbon and metal by ECR sputtering method of nano metal particles containing carbon film electrode and forming a nano-metal particles containing carbon film containing metal fine particles on an insulating substrate. 外径および内径が全て同一な、単数個または複数個の円筒形のカーボンターゲットと単数個または複数個の円筒形のメタルターゲットとを積み重ね、これらの円筒形ターゲットの外壁が円筒形のバッキングプレートの内壁に接するように挿入したものをスパッタターゲットとしてECRスパッタ装置内に設置して、ECRスパッタ法により該炭と金属とをスパッタし、金属微粒子を含むナノ金属微粒子含有炭素薄膜を絶縁性基板上に形成することを特徴とするナノ金属微粒子含有炭素薄膜電極の製造方法。Stack one or more cylindrical carbon targets with the same outer diameter and inner diameter and one or more cylindrical metal targets, and the outer wall of these cylindrical targets is a cylindrical backing plate. and placed in ECR sputtering apparatus which was inserted so as to be in contact with the inner wall as a sputtering target, and sputtering a carbon-metal by ECR sputtering, the nano metal particles containing carbon film containing metal fine particles on an insulating substrate A process for producing a carbon thin film electrode containing nano-metal fine particles, characterized in that it is formed into a thin film. 外径および内径が全て同一な、単数個または複数個のカーボンターゲットと単数個または複数個の円筒形のメタルターゲットとをそれぞれ円筒形のバッキングプレートに挿入して形成し、前記カーボンターゲットとメタルターゲットを絶縁体を介して積み重ねたものをスパッタターゲットとしてECRスパッタ装置内に設置して、ECRスパッタ法により該炭素と金属とをスパッタし、金属微粒子を含むナノ金属微粒子含有炭素薄膜を絶縁性基板上に形成することを特徴とするナノ金属微粒子含有炭素薄膜電極の製造方法。  The carbon target and the metal target are formed by inserting one or more carbon targets and one or more cylindrical metal targets having the same outer diameter and inner diameter into a cylindrical backing plate, respectively. Are stacked in an ECR sputtering apparatus using a stack of insulators as a sputtering target, the carbon and metal are sputtered by an ECR sputtering method, and a nano metal fine particle-containing carbon thin film containing metal fine particles is formed on an insulating substrate. A process for producing a carbon thin film electrode containing nano-metal fine particles, characterized in that it is formed into a thin film. 前記メタルターゲットとカーボンターゲットに印加する電圧を独立に制御することによってナノ金属微粒子含有炭素薄膜のナノ金属微粒子含有量を制御することを特徴とする請求項7記載のナノ金属微粒子含有炭素薄膜電極の製造方法。  The nanometal fine particle-containing carbon thin film electrode according to claim 7, wherein the nanometal fine particle content of the nanometal fine particle-containing carbon thin film is controlled by independently controlling a voltage applied to the metal target and the carbon target. Production method. RFスパッタ法、DCスパッタ法、ECRスパッタ法において、絶縁性基板にDCあるいはRFバイアスを印加することを特徴とする請求項4〜8記載のいずれかのナノ金属微粒子含有炭素薄膜電極の製造方法。  9. The method for producing a carbon thin film electrode containing nano metal fine particles according to claim 4, wherein DC or RF bias is applied to the insulating substrate in RF sputtering, DC sputtering, or ECR sputtering. カーボンターゲットとメタルターゲットの表面積の比によってナノ金属微粒子含有炭素薄膜のナノ金属微粒子含有量を制御することを特徴とする請求項4〜9記載のいずれかのナノ金属微粒子含有炭素薄膜電極の製造方法。  The method for producing a carbon thin film electrode containing nano metal fine particles according to any one of claims 4 to 9, wherein the nano metal fine particle content of the carbon thin film containing nano metal fine particles is controlled by a ratio of a surface area of the carbon target and the metal target. .
JP2001314980A 2001-10-12 2001-10-12 Nanometal fine particle-containing carbon thin film electrode and method for producing the same Expired - Fee Related JP3862540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001314980A JP3862540B2 (en) 2001-10-12 2001-10-12 Nanometal fine particle-containing carbon thin film electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001314980A JP3862540B2 (en) 2001-10-12 2001-10-12 Nanometal fine particle-containing carbon thin film electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003121407A JP2003121407A (en) 2003-04-23
JP3862540B2 true JP3862540B2 (en) 2006-12-27

Family

ID=19133213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001314980A Expired - Fee Related JP3862540B2 (en) 2001-10-12 2001-10-12 Nanometal fine particle-containing carbon thin film electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP3862540B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513093B2 (en) * 2004-09-24 2010-07-28 独立行政法人産業技術総合研究所 Carbon electrode for electrochemical measurement and manufacturing method thereof
KR100604229B1 (en) 2004-12-29 2006-07-28 학교법인고려중앙학원 Fabrication method of gas sensors by using networked GaN nanowires
JP3940817B2 (en) 2005-05-30 2007-07-04 松下電器産業株式会社 Electrochemical electrode in which nickel-containing nanostructure having dendritic structure is applied to the active layer and method for producing the same
US20070095661A1 (en) 2005-10-31 2007-05-03 Yi Wang Method of making, and, analyte sensor
CN100386621C (en) * 2005-12-05 2008-05-07 扬州大学 Method for manufacturing nano carbon disk electrode with radius less than 500nm
CN101802597B (en) 2007-09-18 2013-08-21 究极酵素国际股份有限公司 Enzyme electrode
US8568578B2 (en) 2007-11-07 2013-10-29 Nec Corporation Electrode for electrochemical measurement apparatus and electrode for biosensor
KR101475697B1 (en) * 2009-09-29 2015-01-02 (주) 더바이오 Polymer matrix for capillary electrophoresis-based single-strand conformation polymorphism analysis and capillary electrophoresis-based single-strand conformation polymorphism analysis method using the same
JP6194443B2 (en) * 2012-12-28 2017-09-13 理研計器株式会社 Working electrode for electrochemical gas sensor and manufacturing method thereof
JP6433740B2 (en) * 2014-09-25 2018-12-05 国立研究開発法人産業技術総合研究所 Gold nanoparticle-containing carbon thin film electrode for electrochemical measurement and arsenic ion electrochemical detection method using the electrode
JP6404069B2 (en) * 2014-10-01 2018-10-10 国立研究開発法人産業技術総合研究所 Alloy nanoparticle-containing carbon electrode, apparatus including the electrode, and method of manufacturing the electrode
CN110006974B (en) * 2019-03-26 2023-12-19 西北工业大学深圳研究院 High-efficiency flexible enzyme-free glucose biosensing electrode and preparation method thereof
JP2021043087A (en) * 2019-09-12 2021-03-18 株式会社ニコン Electrochemical sensor electrode, electrochemical sensor, and electrochemical analyzer
WO2022210176A1 (en) * 2021-03-31 2022-10-06 日東電工株式会社 Electrode
US20230250542A1 (en) * 2022-02-10 2023-08-10 Nitto Denko Corporation Electrode

Also Published As

Publication number Publication date
JP2003121407A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
JP3862540B2 (en) Nanometal fine particle-containing carbon thin film electrode and method for producing the same
Yang et al. A novel nonenzymatic glucose sensor based on functionalized PDDA-graphene/CuO nanocomposites
Yang et al. Platinum nanowire nanoelectrode array for the fabrication of biosensors
Sriprachuabwong et al. Inkjet-printed graphene-PEDOT: PSS modified screen printed carbon electrode for biochemical sensing
EP1511885B1 (en) Electrosynthesis of nanofibers and nano-composite films
Mahadeva et al. Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite
KR101188172B1 (en) Electrochemical biosensor and method of fabricating the same
Zhu et al. Enzyme-free glucose biosensor based on low density CNT forest grown directly on a Si/SiO2 substrate
Zou et al. Prussian blue electrodeposited on MWNTs–PANI hybrid composites for H2O2 detection
Asgari et al. Methanol electrooxidation on the nickel oxide nanoparticles/multi-walled carbon nanotubes modified glassy carbon electrode prepared using pulsed electrodeposition
Singer et al. Nanostructured nickel oxide electrodes for non-enzymatic electrochemical glucose sensing
Ivandini et al. Pt-implanted boron-doped diamond electrodes and the application for electrochemical detection of hydrogen peroxide
Barsan et al. Development and characterization of a new conducting carbon composite electrode
CN103792271A (en) Hydrogen peroxide non-enzyme electrochemical sensor and preparation method thereof
Liu et al. Construction of a non-enzymatic glucose sensor based on copper nanoparticles/poly (o-phenylenediamine) nanocomposites
Pak et al. Cobalt-copper bimetallic nanostructures prepared by glancing angle deposition for non-enzymatic voltammetric determination of glucose
Chou et al. Fabrication and characteristic analysis for enzymatic glucose biosensor modified by graphene oxide and magnetic beads based on microfluidic framework
Wang et al. Facile fabrication of biosensors based on Cu nanoparticles modified as-grown CVD graphene for non-enzymatic glucose sensing
Chou et al. A sensitive potentiometric biosensor using MBs-AO/GO/ZnO membranes-based arrayed screen-printed electrodes for AA detection and remote monitoring
CN110988080B (en) Flexible oxygen-enriched bio-enzyme electrode and flexible bio-enzyme sensor based on same
JP4513093B2 (en) Carbon electrode for electrochemical measurement and manufacturing method thereof
CN112305050A (en) Application of hydrogen peroxide reduction electrocatalyst in selective detection of hydrogen peroxide
Tan et al. Direct amperometric detection of glucose on a multiple-branching carbon nanotube forest
Zhao et al. Synthesis of Ta/Ni microcavity array film for highly sensitive uric acid detection
Stanley et al. Vertically aligned TiO2 nanotube arrays decorated with CuO mesoclusters for the nonenzymatic sensing of glucose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060926

R150 Certificate of patent or registration of utility model

Ref document number: 3862540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees