JP3861119B2 - Receiver circuit - Google Patents

Receiver circuit Download PDF

Info

Publication number
JP3861119B2
JP3861119B2 JP19936597A JP19936597A JP3861119B2 JP 3861119 B2 JP3861119 B2 JP 3861119B2 JP 19936597 A JP19936597 A JP 19936597A JP 19936597 A JP19936597 A JP 19936597A JP 3861119 B2 JP3861119 B2 JP 3861119B2
Authority
JP
Japan
Prior art keywords
output
frequency
circuit
saw filter
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19936597A
Other languages
Japanese (ja)
Other versions
JPH1131989A (en
Inventor
隆裕 浅田
正泰 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP19936597A priority Critical patent/JP3861119B2/en
Publication of JPH1131989A publication Critical patent/JPH1131989A/en
Application granted granted Critical
Publication of JP3861119B2 publication Critical patent/JP3861119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、通信機端末の受信回路に関し、特に、フィルタを用いたスーパー・ヘテロダイン方式の受信回路に関する。
【0002】
【従来の技術】
図8は、従来のスーパー・ヘテロダイン方式の通信機端末の受信回路の構成を示すブロック図であり、受信回路200はLNA(ロー・ノイズ・アンプ)10とミキサー(乗算器)2と、帯域制限用SAWフィルタ3と、直交検波器4と、復調器6と、PLL(Phase-Locked Loop)9とを備えている。
【0003】
受信回路200に入力されたキャリア周波数帯の受信信号「Sin(ω0)t」はLNA1で増幅された後、中間周波数に周波数変換をするミキサー2に入力する。このミキサー2では、入力されたキャリア周波数帯の受信信号「Sin(ω0)t」とPLL9から入力される所定周波数の局部発振信号「Sin(△ω)t」とをミキシングすることにより中間周波数(IF)に周波数変換して、このIF信号「Sin(ω0±△ω)t」をSAWフィルタ3に出力する。
このIF信号は、SAWフィルタ3で帯域制限された後「Sin(ω0−△ω)t」、直交検波器4でI、Q信号を検波して、復調器6で復調して、データとクロックとして出力される。
【0004】
また、PLL9は、基準発振器13からの基準クロックと分周器11からの信号をPD12で位相差を検出して、その位相差に対応する信号をVCO10に出力する。VCO(電圧制御発振器)10は、この位相差に対応する信号に基づいて所定周波数の信号(局部発振信号)を発振する。分周器11は、図示しない制御部からの分周比信号Cに基づいてVCO10からの信号を分周する。これにより、分周比に基づいた所定周波数の信号がPLL9から出力される。
【0005】
上記従来のスーパー・ヘテロダイン方式の受信回路では、帯域外広帯域雑音の影響による受信感度特性の悪化や、隣接チャンネル干渉量の増大を避けるために中間(IF)周波数の帯域制限用のSAWフィルタはできるだけ厳しい特性のものを用いる必要がある。そこで、理想的には、図7(a)に示すようにSAWフィルタの入力信号71の波長λにほぼ一致する制限帯域が望ましいが、実際には、温度変化により図7(c),(d)に示すような中心周波数の変化(△ωfc1,△ωfc2)が生ずるので、この中心周波数変動分を考慮した上で図7(b)に示すような制限帯域に幅をもたせた制限帯域特性72を有するSAWフィルタを使用している。
【0006】
【発明が解決しようとする課題】
上述したように従来のSAWフィルタのように温度変化に基づく中心周波数の変化の方が、温度変化に基づく周波数特性(フィルタ特性)の変化より比較的大きいフィルタを用いたスーパー・ヘテロダイン方式の通信機端末の受信回路では、フィルタによる帯域制限は温度変化を考慮して制限帯域を理想より緩くとっているため、非線形回路であるミキサーからのスプリアスを十分に除去できない可能性があり、そのために帯域外広帯域雑音の影響による受感度特性の悪化や、隣接チャンネル干渉量の増大を招くという問題点があった。
【0007】
本発明は、上記問題点を解決するためになされたものであり、温度変化による周波数変化分の補償等を行なうことにより、従来より制限帯域を絞ったフィルタを用いた受信回路の提供を目的とする。
【0008】
【課題を解決するための手段】
図2は、SAWフィルタの温度変化による周波数変化の説明図であり、(a)に示すように入力信号21を中心周波数ω0、波長λとするとき、SAWフィルタの特性は(b)に示すように中心周波数ω0からλ1,λ2の幅を持っている。ここで、(d)に示すように温度変化によりSAWフィルタの帯域制限特性がΔ1だけ負の方向にずれた帯域制限特性22’となると、(a)に示す入力信号21は帯域制限特性22’からはずれてしまい、(f)に示すようにSAWフィルタの帯域制限特性がΔ2だけ正の方向にずれた帯域制限特性22”となると、入力信号21は帯域制限特性22’からはずれてしまう。ここで、SAWフィルタの温度特性は素材の温度特性に依存し、再現性が良いという特徴をもっているので、現在の温度を測定し、予め設定した温度テーブルとの対応づけにより中心周波数を補正することが可能となる。また、SAWフィルタの電気特性は素材上の電極の寸法に依存し、中心周波数の変化に比べて特性変化が小さいことが知られている。そこで、図2の(c),(e)に示すように、温度変化によって変化したSAWフィルタの中心周波数に合わせて入力信号21の中心周波数を△1あるいは△2ずらして入力信号21’,22”とするように受信回路を構成すればよい。
【0009】
これを補償するための受信回路は、ローカル信号生成回路を備え、受信波と該受信波に対応して生成されたローカル信号から中間周波数を得て、該中間周波数をSAWフィルタにより帯域制限してその出力を基に復調信号を得る受信回路において、温度変化に基づく前記SAWフィルタの周波数変化分を補償する補償信号を生成してローカル信号生成回路に与える補償回路を設けたことを特徴とする。
【0010】
なお、補償回路を、SAWフィルタの周辺温度を測定する温度センサーと、SAWフィルタについて温度と周波数変化値を対応付けて登録した温度テーブルと、温度センサーによる測定温度に対応する周波数変化値を温度テーブルから取り出して補償信号に変換して出力する制御電圧変換手段とから構成することができる。
【0011】
上記受信回路では必ずしもスペクトル周波数制御とフィルタ中心周波数制御が一致しない場合がある。この場合、図3に示すように温度変化分を考慮していない狭帯域のSAWフィルタ31の制限帯域からずれた分Δだけスペクトル32が歪み、パワーが小さくなる。そこで、図4(a)に示すようにスペクトル中心周波数ω0を基準にして周波数の上側のパワー(図4(b))と下側のパワー(図4(c))を比較することにより、周波数が上側か下側のどちらかにずれたかを検出し、検出値(レベルの差分)をフィードバックすることでフィルタ中心周波数をスペクトル中心周波数に一致させるように構成する。
【0012】
具体的には、発明の受信回路は、ローカル信号生成回路を備え、受信波と該受信波に対応して生成されたローカル信号から中間周波数を得て、該中間周波数をSAWフィルタにより帯域制限してその出力を基に復調信号を得る受信回路において、SAWフィルタの出力を基にスペクトル中心周波数を基準として該周波数の上下のレベル差を検出してローカル信号生成回路に与える制御電圧検出回路を設けたことを特徴とする。
【0013】
なお、制御電圧検出回路を、SAWフィルタの出力から分離された、上側帯波の高調波成分を制限する第1の帯域制限手段と下側帯波の高調波成分を制限する第2の帯域制限手段と、第1の帯域制限手段の出力を反転する反転手段と、第2の帯域制限手段の出力を90゜位相転換する位相転換手段と、第1の帯域制限手段の出力および位相転換手段の出力を加算する第1の加算手段と、位相転換手段の出力および反転手段の出力を加算する第2の加算手段と、第1の加算手段からの出力レベルを検出する第1のレベル検出手段と、第2の加算手段からの出力レベルを検出する第2のレベル検出手段と、第1のレベル検出手段および第2のレベル検出手段の出力を比較して差を得る比較手段とから構成することができる。
【0014】
【発明の実施の形態】
図1は本発明に基づく受信回路の構成例を示すブロック図であり、受信回路100はLNA(ロー・ノイズ・アンプ)1とミキサー(乗算器)2と、帯域制限用SAWフィルタ3と、直交検波器4と、制御電圧検出回路5と、復調器6と、補償回路7と、加算器8と、PLL9とを備えている。
補償回路7は制御電圧変換回路71,温度センサー72及び温度テーブル73からなり、SAWフィルタ3の温度変化による周波数変化を補償する(図3)。なお、図8と同一部分は同一符号を付して説明を省略する。
【0015】
〈第1の実施の形態〉
図1で、受信回路100に入力された受信波「Sin(ω0)t」はLNA1で増幅された後、ミキサー2に入力される。
更に、VCO10から所定周波数の局部発振信号(Sin(△ωL−△ωfc)t)がミキサー2に入力される。
ミキサー2で、LNA1の出力信号(増幅後の受信信号)とVCO10の出力信号(補償後のローカル周波数の信号)がミキシングされ、所定の中間周波数に変換される。
ミキサー2の出力信号はSAWフィルタ3で、
ωfc=(ω0−ΔωL )±Δωfc
として帯域制限された後、直交検波器4で上側帯波(以下、I成分)および下側帯波(以下、Q成分)に変換され、復調器6に入力する。ここで、ΔωL はローカル周波数、ΔωfcはSAWフィルタ3の温度による周波数変化分を示す。
【0016】
[補償回路]
補償回路7は、温度センサー72で受信回路(特にSAWフィルタ3の周辺)の温度を常に測定し、測定値をA/D(アナログ/デジタル)変換して、予めSAWフィルタ3の温度と周波数の関係(温度変化に対する周波数の変化Δ)を登録した温度テーブル73と対応させ、測定温度に対応する周波数変化分のデータを取り出して制御電圧変換器71に入力した後、D/A(デジタル/アナログ)変換し、SAWフィルタ3の温度変化による周波数変化分を補償した信号、
Sin(ΔωL±ωfc)t
として出力する。
補償回路7の出力は加算器8でPLL9の出力と加算されてVCO10にフィードバックされる。
上記構成により、温度変化によるSAWフィルタの周波数変化分を補正できるので、SAWフィルタの制限帯域特性をより狭く設定することができる。
【0017】
〈第2の実施の形態〉
本実施の形態は、SAWフィルタの中心周波数をスペクトル中心周波数に一致させることにより、温度変化によるSAWフィルタの中心周波数のずれを補正し、スペクトルの歪み(中心周波数のずれによって生ずる制限帯域のずれ)およびパワーの減退を防止する。
本実施の形態は、受信回路に、図1の補償回路7の代りに制御電圧検出回路5を設けた例であり、従って、補償回路7から加算器8への入力はなく、加算器8には制御電圧検出回路5の出力およびPLL9の出力が入力される。
図1で、受信回路100に入力された受信波Sin(ω0)tはLNA1で増幅された後、ミキサー2に入力される。
更に、ミキサー2には、入力された周波数に対してVCO10内で所定の中間周波数になるようにPLL9で選択されたローカル周波数が入力される。
ミキサー2で入力した受信周波数およびローカル周波数がミキシングされ、所定の中間周波数に変換される。
ミキサー2の出力信号はSAWフィルタ3で、帯域制限された後、直交検波器4でI/Q成分に変換され、制御電圧検出回路5に入力されて中心周波数が(SAWフィルタの温度変化がないものとして設定された値)ω0に補正されたI/Q成分が出力され、復調器6に入力される。
【0018】
[制御電圧検出回路]
図5および図6に制御電圧検出回路の構成例を示す。
図5および図6で、制御電圧検出回路5は、LPF(ローパスフィルタ)51,51’と、ヒルベルト(Hilbert)変換器52と、反転器53、加算器54,54’と、HPL(ハイパスフィルタ)55,55’と、レベル検出器56,56’および比較回路57から構成されている。
【0019】
図5で、直交検波器4から出力されたI成分信号、Sin((ω0−ΔωL )±Δωfc)t・Sin(ω0)tは、I項のLPF51で高調波成分が帯域制限される。LPF51の出力端では、周波数が希望周波数より+Δfc分高くずれたときには、+(1/2)・CosΔωtの信号成分が、周波数が希望周波数よりーΔfc分低くずれたときには、ー(1/2)・CosΔωtの信号成分が残る。
次に、I項ではLPF51の出力(上記残った信号成分)が加算器54に入力されると共に、反転回路(例えば、オペアンプ等)53で符号を反転され、加算器54’に入力される。
一方、直交検波器4から出力されたQ成分信号、Sin((ω0−ΔωL )±Δωfc)t・Cos(ω0)t’はQ項のLPF51’で高調波成分が帯域制限される。LPF51’の出力端では、周波数が希望周波数より+Δfc分高くずれたときには、+(1/2)・SinΔωtの信号成分が、周波数が希望周波数より−Δfc分低くずれたときには、−(1/2)・SinΔωtの信号成分が残る。
【0020】
次に、Q項ではヒルベルト変換器52で位相を90度変えることにより、±(1/2)・SinΔωtの信号を±(1/2)・Cosωtの信号に変換して加算器54’および加算器55に入力する。I項の加算器55の出力はスペクトルの歪みを強調するためにHPF55で低周波成分を除去し、レベル検出器56でレベル検出され、復調器6にI成分として入力されると共に、比較回路57に入力される。また、Q項の加算器55’の出力もスペクトルの歪みを強調するためにHPF55で低周波成分を除去し、レベル検出器56’でレベル検出され、復調器6にQ成分として入力されると共に、比較回路57に入力される。比較回路57ではレベルを比較した後、その差vcを制御電圧として加算器8に入力して、これをVCO10にフィードバックすることにより、中心周波数の誤差を小さくでき、スペクトルの歪みを小さくできる。なお、本実施の形態ではヒルベルト変換器52をQ項側に設けたが、図6に示すようにI項側に設けてもよい。この場合、ヒルベルト変換器52の出力信号(I項)は中心周波数が上下どちらにずれてもほ(1/2)・ΔSinωtとなる。
【0021】
<第3の実施の形態>
本実施の形態は、図1に示すように制御電圧検出回路5および補償回路7の両者を備えた例、すなわち、上述した第1の実施例と第2の実施例を組合せた例である。従って、直交変換器4の出力は制御電圧検出回路5に入力され、制御電圧検出回路5の出力のうち、I成分およびQ成分は復調器6に、制御電圧は加算器8に入力され、加算器8には、更に、補償回路7からの補償信号(SAWフィルタ3の温度変化による周波数変化分を補償した信号(制御電圧))が入力される。
【0022】
このように、第1実施例と第2実施例を組合せることにより、信号回路100は信号干渉に強い受信回路として構成される。
図1の受信回路100に入力された受信波Sin(ω0)tはLNA1で増幅された後、ミキサー2に入力される。
更に、ミキサー2には、入力された周波数に対してSAWフィルタ3の温度変化およびスペクトルの歪みを考慮した制御電圧(制御電圧検出回路5からのVCO特性および補償回路7からの補償信号の和)を用いたVCO10で所定の中間周波数になるように制御されたローカル信号Sin(ΔωL ±Δωfc)tが入力される。
ミキサー2で、LNA1の出力信号(増幅後の受信信号)とVCO10の出力信号がミキシングされ、所定の中間周波数に変換される。
【0023】
ミキサー2の出力信号はSAWフィルタ3で、帯域制限された信号Sin((ω0−ΔωL )±Δωfc)tとされ、直交検波器4でI成分とQ成分に分けられ、制御電圧検出回路5でスペクトルの歪みを検出し、検出結果はVCO特性を有する制御電圧として加算器8に入力される。また、加算器8には補償回路7からのSAWフィルタ3の温度変化を考慮した制御電圧が入力される。そして、これらの制御電圧の和がVCO10にフィードバックされる。
これにより、SAWフィルタ3の温度変化分を補償でき、また、中心周波数の誤差を小さくできるので、安定した信号特性が得られると共に受信感度が良く、隣接チャンネル干渉に強い受信回路が構成できる。
以上本発明の一実施例について説明したが、本発明は上記実施例に限定されるものではなく、種々の変形実施が可能であることはいうまでもない。
【0025】
【発明の効果】
以上説明したように、本発明によれば、制御電圧検出回路からの制御電圧をVCOにフィードバックして、フィルタ中心周波数をスペクトル周波数制御に一致させることにより、温度変化によるSAWフィルタの中心周波数のずれを補正するので、スペクトルの歪み(中心周波数のずれによって生ずる制限帯域のずれ)およびパワーの減退を防止できる。
【図面の簡単な説明】
【図1】本発明に基づく受信回路の構成例を示すブロック図である。
【図2】SAWフィルタの温度変化による周波数変化の説明図である。
【図3】スペクトル中心周波数の歪みの説明図である。
【図4】スペクトル中心周波数の歪み検出の説明図である。
【図5】制御電圧検出回路の構成例を示す図である。
【図6】制御電圧検出回路の構成例を示す図である。
【図7】SAWフィルタの温度変化による周波数変化の説明図である。
【図8】従来の受信回路の構成を示すブロック図である。
【符号の説明】
3 SAWフィルタ
5 制御電圧検出回路
7 補償回路
8 加算器(ローカル信号生成回路)
9 PLL(ローカル信号生成回路)
10 VCO(電圧制御発振器;ローカル信号生成回路)
51,51’ LPF(ローパスフィルタ;第1,第2の帯域制限手段)
52 ヒルベルト変換器(位相転換手段)
53 反転回路(反転手段)
56,56’ レベル検出器(レベル検出手段)
57 比較器(比較手段)
71 制御電圧変換回路(補償回路)
72 温度センサー(補償回路)
73 温度テーブル(補償回路)
100,200 受信回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a receiver circuit of a communication terminal, and more particularly to a super heterodyne receiver circuit using a filter.
[0002]
[Prior art]
FIG. 8 is a block diagram showing a configuration of a receiving circuit of a conventional super heterodyne communication device terminal. The receiving circuit 200 includes an LNA (low noise amplifier) 10, a mixer (multiplier) 2, a band limiter. SAW filter 3 for quadrature, quadrature detector 4, demodulator 6, and PLL (Phase-Locked Loop) 9.
[0003]
The received signal “Sin (ω0) t” in the carrier frequency band input to the receiving circuit 200 is amplified by the LNA 1 and then input to the mixer 2 that converts the frequency to an intermediate frequency. The mixer 2 mixes the received carrier frequency band received signal “Sin (ω0) t” and the local oscillation signal “Sin (Δω) t” having a predetermined frequency input from the PLL 9 to generate an intermediate frequency ( The IF signal “Sin (ω0 ± Δω) t” is output to the SAW filter 3 after frequency conversion to IF).
This IF signal is band-limited by the SAW filter 3 and then “Sin (ω0−Δω) t”, the I and Q signals are detected by the quadrature detector 4, demodulated by the demodulator 6, and the data and clock Is output as
[0004]
The PLL 9 detects the phase difference between the reference clock from the reference oscillator 13 and the signal from the frequency divider 11 by the PD 12 and outputs a signal corresponding to the phase difference to the VCO 10. A VCO (voltage controlled oscillator) 10 oscillates a signal having a predetermined frequency (local oscillation signal) based on a signal corresponding to the phase difference. The frequency divider 11 divides the signal from the VCO 10 based on a frequency division ratio signal C from a control unit (not shown). As a result, a signal having a predetermined frequency based on the frequency division ratio is output from the PLL 9.
[0005]
In the conventional super-heterodyne receiver circuit, a SAW filter for limiting the band of the intermediate (IF) frequency can be used as much as possible in order to avoid deterioration of reception sensitivity characteristics due to the influence of out-of-band broadband noise and increase in the amount of adjacent channel interference. It is necessary to use one with severe characteristics. Therefore, ideally, a limited band substantially matching the wavelength λ of the input signal 71 of the SAW filter as shown in FIG. 7A is desirable, but in practice, FIGS. ) Is generated (Δωfc 1 , Δωfc 2 ), so that the limited bandwidth shown in FIG. 7 (b) is widened in consideration of the variation in the center frequency. A SAW filter having characteristic 72 is used.
[0006]
[Problems to be solved by the invention]
As described above, a super heterodyne communication device using a filter in which the change in the center frequency based on the temperature change is relatively larger than the change in the frequency characteristic (filter characteristic) based on the temperature change as in the conventional SAW filter. In the receiver circuit of the terminal, the band limitation by the filter is less than ideal considering the temperature change, so there is a possibility that the spurious from the mixer, which is a non-linear circuit, may not be sufficiently removed. There has been a problem in that the sensitivity characteristic is deteriorated due to the influence of wideband noise and the amount of adjacent channel interference is increased.
[0007]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a receiving circuit using a filter having a narrower band than the conventional one by compensating for a frequency change due to a temperature change. To do.
[0008]
[Means for Solving the Problems]
FIG. 2 is an explanatory diagram of the frequency change due to the temperature change of the SAW filter. When the input signal 21 has the center frequency ω0 and the wavelength λ as shown in (a), the characteristics of the SAW filter are as shown in (b). Have a width of λ1 to λ2 from the center frequency ω0. Here, as shown in (d), when the band limiting characteristic of the SAW filter becomes a band limiting characteristic 22 ′ shifted in the negative direction by Δ1 due to the temperature change, the input signal 21 shown in (a) becomes the band limiting characteristic 22 ′. When the band limiting characteristic of the SAW filter becomes the band limiting characteristic 22 ″ shifted in the positive direction by Δ2 as shown in FIG. 8F, the input signal 21 is deviated from the band limiting characteristic 22 ′. Since the temperature characteristics of the SAW filter depend on the temperature characteristics of the material and have good reproducibility, it is possible to measure the current temperature and correct the center frequency by associating it with a preset temperature table. In addition, it is known that the electrical characteristics of the SAW filter depend on the size of the electrode on the material, and the characteristic change is small compared to the change of the center frequency. As shown in c) and (e), the input signal 21 is received by shifting the center frequency of the input signal 21 by Δ1 or Δ2 in accordance with the center frequency of the SAW filter that has changed due to the temperature change. A circuit may be configured.
[0009]
The receiving circuit for compensating for this includes a local signal generation circuit, obtains an intermediate frequency from the received wave and the local signal generated corresponding to the received wave, and limits the band of the intermediate frequency by a SAW filter. A receiving circuit that obtains a demodulated signal based on the output is provided with a compensation circuit that generates a compensation signal that compensates for a change in the frequency of the SAW filter based on a temperature change and applies the compensation signal to the local signal generation circuit.
[0010]
The compensation circuit includes a temperature sensor that measures the ambient temperature of the SAW filter, a temperature table in which the temperature and the frequency change value are registered in association with the SAW filter, and a frequency change value that corresponds to the temperature measured by the temperature sensor. And a control voltage converting means for converting to a compensation signal and outputting the compensation signal.
[0011]
The receiving circuit of the necessarily sometimes spectrum frequency control and filter center frequency control does not match. In this case, as shown in FIG. 3, the spectrum 32 is distorted by an amount Δ that deviates from the limited band of the narrow band SAW filter 31 that does not consider the temperature change, and the power is reduced. Therefore, as shown in FIG. 4 (a), by comparing the upper power (FIG. 4 (b)) and the lower power (FIG. 4 (c)) with respect to the spectrum center frequency ω0, the frequency is obtained. It is configured that the filter center frequency is matched with the spectrum center frequency by detecting whether the signal is shifted to the upper side or the lower side and feeding back the detected value (level difference).
[0012]
Specifically, the receiving circuit of the present invention includes a local signal generation circuit, obtains an intermediate frequency from a received wave and a local signal generated corresponding to the received wave, and band-limits the intermediate frequency by a SAW filter. In the receiving circuit for obtaining the demodulated signal based on the output, a control voltage detecting circuit for detecting the level difference between the upper and lower frequencies with reference to the spectrum center frequency based on the output of the SAW filter and supplying it to the local signal generating circuit. It is provided.
[0013]
The control voltage detection circuit includes a first band limiting unit that limits the harmonic component of the upper sideband and a second band limiting unit that limits the harmonic component of the lower sideband separated from the output of the SAW filter. Inverting means for inverting the output of the first band limiting means, phase changing means for changing the phase of the output of the second band limiting means by 90 °, output of the first band limiting means and output of the phase changing means First addition means for adding the output, second addition means for adding the output of the phase conversion means and the output of the inversion means, first level detection means for detecting the output level from the first addition means, The second level detecting means for detecting the output level from the second adding means, and the comparing means for comparing the outputs of the first level detecting means and the second level detecting means to obtain a difference. it can.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing a configuration example of a receiving circuit according to the present invention. A receiving circuit 100 includes an LNA (low noise amplifier) 1, a mixer (multiplier) 2, a band limiting SAW filter 3, and an orthogonal configuration. A detector 4, a control voltage detection circuit 5, a demodulator 6, a compensation circuit 7, an adder 8, and a PLL 9 are provided.
The compensation circuit 7 includes a control voltage conversion circuit 71, a temperature sensor 72, and a temperature table 73, and compensates for a frequency change due to a temperature change of the SAW filter 3 (FIG. 3). In addition, the same part as FIG. 8 attaches | subjects the same code | symbol, and abbreviate | omits description.
[0015]
<First Embodiment>
In FIG. 1, the received wave “Sin (ω0) t” input to the receiving circuit 100 is amplified by the LNA 1 and then input to the mixer 2.
Further, a local oscillation signal (Sin (ΔωL−Δωfc) t) having a predetermined frequency is input from the VCO 10 to the mixer 2.
The mixer 2 mixes the output signal of the LNA 1 (received signal after amplification) and the output signal of the VCO 10 (compensated local frequency signal) and converts them to a predetermined intermediate frequency.
The output signal of the mixer 2 is a SAW filter 3,
ωfc = (ω0−ΔωL) ± Δωfc
Is then converted into an upper sideband (hereinafter referred to as I component) and a lower sideband (hereinafter referred to as Q component) by the quadrature detector 4 and input to the demodulator 6. Here, ΔωL is a local frequency, and Δωfc is a frequency change due to the temperature of the SAW filter 3.
[0016]
[Compensation circuit]
The compensation circuit 7 always measures the temperature of the receiving circuit (especially around the SAW filter 3) with the temperature sensor 72, A / D (analog / digital) converts the measured value, and the temperature and frequency of the SAW filter 3 are previously measured. The relationship (frequency change Δ with respect to temperature change) is made to correspond to the registered temperature table 73, and data for the frequency change corresponding to the measured temperature is extracted and input to the control voltage converter 71, and then D / A (digital / analog) ) A signal that has been converted and compensated for the frequency change due to the temperature change of the SAW filter 3;
Sin (ΔωL ± ωfc) t
Output as.
The output of the compensation circuit 7 is added to the output of the PLL 9 by the adder 8 and fed back to the VCO 10.
With the above configuration, the frequency change of the SAW filter due to a temperature change can be corrected, so that the band limit characteristic of the SAW filter can be set narrower.
[0017]
<Second Embodiment>
In the present embodiment, the center frequency of the SAW filter is matched with the spectrum center frequency, thereby correcting the shift of the center frequency of the SAW filter due to temperature change, and the distortion of the spectrum (shift of the limit band caused by the shift of the center frequency). And prevent power loss.
The present embodiment is an example in which a control voltage detection circuit 5 is provided in the receiving circuit instead of the compensation circuit 7 in FIG. 1. Therefore, there is no input from the compensation circuit 7 to the adder 8. Are supplied with the output of the control voltage detection circuit 5 and the output of the PLL 9.
In FIG. 1, the received wave Sin (ω0) t input to the receiving circuit 100 is amplified by the LNA 1 and then input to the mixer 2.
Furthermore, the local frequency selected by the PLL 9 is input to the mixer 2 so as to be a predetermined intermediate frequency in the VCO 10 with respect to the input frequency.
The reception frequency and local frequency input by the mixer 2 are mixed and converted to a predetermined intermediate frequency.
The output signal of the mixer 2 is band-limited by the SAW filter 3, then converted to an I / Q component by the quadrature detector 4, and input to the control voltage detection circuit 5, and the center frequency is changed (the temperature of the SAW filter is not changed). The I / Q component corrected to ω 0 is output and input to the demodulator 6.
[0018]
[Control voltage detection circuit]
5 and 6 show configuration examples of the control voltage detection circuit.
5 and 6, the control voltage detection circuit 5 includes an LPF (low-pass filter) 51, 51 ′, a Hilbert converter 52, an inverter 53, adders 54, 54 ′, and an HPL (high-pass filter). ) 55 and 55 ′, level detectors 56 and 56 ′, and a comparison circuit 57.
[0019]
In FIG. 5, the harmonic component of the I component signal Sin ((ω0−ΔωL) ± Δωfc) t · Sin (ω0) t output from the quadrature detector 4 is band-limited by the LPF 51 of the I term. At the output end of the LPF 51, when the frequency is shifted higher by + Δfc than the desired frequency, the signal component of + (1/2) · CosΔωt is − (1/2) when the frequency is shifted by −Δfc lower than the desired frequency. -The signal component of CosΔωt remains.
Next, in the term I, the output of the LPF 51 (the remaining signal component) is input to the adder 54, and the sign is inverted by an inverting circuit (for example, an operational amplifier) 53 and input to the adder 54 ′.
On the other hand, the Q component signal Sin ((ω0−ΔωL) ± Δωfc) t · Cos (ω0) t ′ output from the quadrature detector 4 is band-limited by the LPF 51 ′ of the Q term. At the output end of the LPF 51 ′, when the frequency is shifted higher by + Δfc than the desired frequency, the signal component of + (1/2) · SinΔωt is − (1/2) when the frequency is shifted by −Δfc lower than the desired frequency. ). The signal component of SinΔωt remains.
[0020]
Next, in the Q term, by changing the phase by 90 degrees by the Hilbert transformer 52, the signal of ± (1/2) · SinΔωt is converted into the signal of ± (1/2) · Cosωt, and the adder 54 ′ and the addition Input to the device 55. The output of the adder 55 of the I term is removed by the HPF 55 to emphasize the spectral distortion, the level is detected by the level detector 56, input to the demodulator 6 as the I component, and compared with the comparison circuit 57. Is input. Further, the output of the Q term adder 55 'is also subjected to removal of a low frequency component by the HPF 55 in order to emphasize the distortion of the spectrum, detected by the level detector 56', and input to the demodulator 6 as a Q component. , Input to the comparison circuit 57. In the comparison circuit 57, after comparing the levels, the difference vc is input to the adder 8 as a control voltage and fed back to the VCO 10, whereby the error of the center frequency can be reduced and the distortion of the spectrum can be reduced. In the present embodiment, the Hilbert converter 52 is provided on the Q term side, but may be provided on the I term side as shown in FIG. In this case, the output signal (I term) of the Hilbert transformer 52 becomes ho be off-center frequency in either up or down pot (1/2) · ΔSinωt.
[0021]
<Third Embodiment>
This embodiment is an example in which both the control voltage detection circuit 5 and the compensation circuit 7 are provided as shown in FIG. 1, that is, an example in which the above-described first and second embodiments are combined. Therefore, the output of the orthogonal transformer 4 is input to the control voltage detection circuit 5, and the I component and Q component of the output of the control voltage detection circuit 5 are input to the demodulator 6, and the control voltage is input to the adder 8. Further, the compensation signal from the compensation circuit 7 (a signal (control voltage) in which the frequency change due to the temperature change of the SAW filter 3 is compensated) is input to the device 8.
[0022]
In this way, by combining the first and second embodiments, the signal circuit 100 is configured as a receiving circuit that is resistant to signal interference.
The received wave Sin (ω0) t input to the receiving circuit 100 in FIG. 1 is amplified by the LNA 1 and then input to the mixer 2.
Further, the mixer 2 has a control voltage (a sum of the VCO characteristic from the control voltage detection circuit 5 and the compensation signal from the compensation circuit 7) in consideration of the temperature change and spectrum distortion of the SAW filter 3 with respect to the input frequency. A local signal Sin (ΔωL ± Δωfc) t controlled to have a predetermined intermediate frequency is input by the VCO 10 using.
The mixer 2 mixes the output signal of the LNA 1 (the amplified received signal) and the output signal of the VCO 10 and converts them to a predetermined intermediate frequency.
[0023]
The output signal of the mixer 2 is a band-limited signal Sin ((ω0−ΔωL) ± Δωfc) t by the SAW filter 3, and is divided into an I component and a Q component by the quadrature detector 4, and the control voltage detection circuit 5 Spectral distortion is detected, and the detection result is input to the adder 8 as a control voltage having VCO characteristics. The adder 8 is supplied with a control voltage taking into account the temperature change of the SAW filter 3 from the compensation circuit 7. The sum of these control voltages is fed back to the VCO 10.
As a result, the temperature change of the SAW filter 3 can be compensated, and the error of the center frequency can be reduced, so that a stable signal characteristic can be obtained, the receiving sensitivity is good, and a receiving circuit resistant to adjacent channel interference can be configured.
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made.
[0025]
【The invention's effect】
As described above , according to the present invention , the control voltage from the control voltage detection circuit is fed back to the VCO, and the filter center frequency is matched with the spectral frequency control, so that the shift of the center frequency of the SAW filter due to temperature change is achieved. Therefore, it is possible to prevent spectral distortion (shift in the limit band caused by shift in the center frequency) and power reduction.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration example of a receiving circuit according to the present invention.
FIG. 2 is an explanatory diagram of a frequency change due to a temperature change of the SAW filter.
FIG. 3 is an explanatory diagram of distortion of a spectrum center frequency.
FIG. 4 is an explanatory diagram of distortion detection at a spectrum center frequency.
FIG. 5 is a diagram illustrating a configuration example of a control voltage detection circuit.
FIG. 6 is a diagram illustrating a configuration example of a control voltage detection circuit.
FIG. 7 is an explanatory diagram of a frequency change due to a temperature change of the SAW filter.
FIG. 8 is a block diagram showing a configuration of a conventional receiving circuit.
[Explanation of symbols]
3 SAW filter 5 Control voltage detection circuit 7 Compensation circuit 8 Adder (local signal generation circuit)
9 PLL (Local signal generator)
10 VCO (voltage controlled oscillator; local signal generation circuit)
51, 51 ′ LPF (low-pass filter; first and second band limiting means)
52 Hilbert converter (phase conversion means)
53 Inversion circuit (inversion means)
56, 56 'level detector (level detection means)
57 Comparator (comparison means)
71 Control voltage conversion circuit (compensation circuit)
72 Temperature sensor (compensation circuit)
73 Temperature table (compensation circuit)
100,200 receiving circuit

Claims (1)

ローカル信号生成回路を備え、受信波と該受信波に生成されたローカル信号をミキシングすることにより中間周波数を得て、該中間周波数をSAWフィルタにより帯域制限してその出力を基に復調信号を得る受信回路において、
前記SAWフィルタの出力を基にスペクトル中心周波数を基準として該周波数の上下のレベル差を検出して前記ローカル信号生成回路に与える制御電圧検出回路と、
前記制御電圧検出回路が、前記SAWフィルタの出力から分離された、上側帯波の高調波成分を制限する第1の帯域制限手段と下側帯波の高調波成分を制限する第2の帯域制限手段と、
第1の帯域制限手段の出力を反転する反転手段と、
第2の帯域制限手段の出力を90゜位相転換する位相転換手段と、
第1の帯域制限手段の出力および位相転換手段の出力を加算する第1の加算手段と、
位相転換手段の出力および反転手段の出力を加算する第2の加算手段と、
第1の加算手段からの出力レベルを検出する第1のレベル検出手段と、
第2の加算手段からの出力レベルを検出する第2のレベル検出手段と、
第1のレベル検出手段および第2のレベル検出手段の出力を比較して差を得る比較手段と
を有することを特徴とする受信回路。
A local signal generation circuit is provided, and an intermediate frequency is obtained by mixing the received wave and the local signal generated in the received wave, the intermediate frequency is band-limited by a SAW filter, and a demodulated signal is obtained based on the output. In the receiving circuit,
A control voltage detection circuit that detects a difference in level between the upper and lower frequencies with reference to the spectrum center frequency based on the output of the SAW filter, and supplies the level difference to the local signal generation circuit ;
The control voltage detection circuit separates the output of the SAW filter from the first band limiting means for limiting the harmonic component of the upper sideband and the second band limiting means for limiting the harmonic component of the lower sideband. When,
Inverting means for inverting the output of the first band limiting means;
Phase shifting means for phase shifting the output of the second band limiting means by 90 °;
First addition means for adding the output of the first band limiting means and the output of the phase shift means;
Second addition means for adding the output of the phase conversion means and the output of the inversion means;
First level detecting means for detecting an output level from the first adding means;
Second level detection means for detecting an output level from the second addition means;
Comparison means for comparing the outputs of the first level detection means and the second level detection means to obtain a difference;
Reception circuit characterized in that it comprises a.
JP19936597A 1997-07-09 1997-07-09 Receiver circuit Expired - Fee Related JP3861119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19936597A JP3861119B2 (en) 1997-07-09 1997-07-09 Receiver circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19936597A JP3861119B2 (en) 1997-07-09 1997-07-09 Receiver circuit

Publications (2)

Publication Number Publication Date
JPH1131989A JPH1131989A (en) 1999-02-02
JP3861119B2 true JP3861119B2 (en) 2006-12-20

Family

ID=16406553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19936597A Expired - Fee Related JP3861119B2 (en) 1997-07-09 1997-07-09 Receiver circuit

Country Status (1)

Country Link
JP (1) JP3861119B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2354403B (en) * 1999-09-16 2004-02-11 Ericsson Telefon Ab L M Communication systems
KR100433634B1 (en) * 2002-04-19 2004-05-31 한국전자통신연구원 Adaptive loop gain control circuit for voltage controlled oscillator

Also Published As

Publication number Publication date
JPH1131989A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
JP4555898B2 (en) Quadrature modulator and calibration method
TW494613B (en) Local oscillator leak cancellation circuit
US7925217B2 (en) Receiving circuit and method for compensating IQ mismatch
JP6131191B2 (en) Method and apparatus for reducing signal phase contamination
US20090131006A1 (en) Apparatus, integrated circuit, and method of compensating iq phase mismatch
US20050069056A1 (en) Receiver including an oscillation circuit for generating an image rejection calibration tone
KR100299281B1 (en) Automatic frequency control in fsk receiver
US20060055466A1 (en) Modulator and correction method thereof
US8849228B2 (en) Receiver capable of reducing local oscillation leakage and in-phase/quadrature-phase (I/Q) mismatch and an adjusting method thereof
JPH09505695A (en) Phase / frequency modulator
JP2002509685A (en) DC offset compensation for zero-IF quadrature demodulator
KR101261527B1 (en) Method and apparatus for compensating for mismatch occurred in radio frequency quadrature transceiver using direct-conversion scheme
TWI375403B (en) Signal generating apparatus and method thereof
JP3861119B2 (en) Receiver circuit
JP2001136223A (en) Demodulator and demodulating method
US20120294343A1 (en) RF I/Q Modulator with Sampling Calibration System
JP4016945B2 (en) Receiving machine
JP2005295376A (en) Error compensation circuit for orthogonal modulator
JP3898839B2 (en) Transmitter
KR0141110B1 (en) Color signal decoder
JP3919343B2 (en) Receiving machine
JP7143602B2 (en) Receiving device, receiving method
JPH1070582A (en) Transmitter
JPH104364A (en) Correcting device for phase noise of digital receiver
JP2003224614A (en) Digital demodulation circuit

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060202

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees