JP3859732B2 - Solid phase hepatocyte proliferating agent - Google Patents

Solid phase hepatocyte proliferating agent Download PDF

Info

Publication number
JP3859732B2
JP3859732B2 JP25013192A JP25013192A JP3859732B2 JP 3859732 B2 JP3859732 B2 JP 3859732B2 JP 25013192 A JP25013192 A JP 25013192A JP 25013192 A JP25013192 A JP 25013192A JP 3859732 B2 JP3859732 B2 JP 3859732B2
Authority
JP
Japan
Prior art keywords
growth factor
glycosaminoglycan
hepatocyte
hhgf
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25013192A
Other languages
Japanese (ja)
Other versions
JPH06145065A (en
Inventor
恵巳 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Seikagaku Corp
Original Assignee
Mitsubishi Chemical Corp
Seikagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Seikagaku Corp filed Critical Mitsubishi Chemical Corp
Priority to JP25013192A priority Critical patent/JP3859732B2/en
Publication of JPH06145065A publication Critical patent/JPH06145065A/en
Application granted granted Critical
Publication of JP3859732B2 publication Critical patent/JP3859732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は肝実質細胞増殖剤に関するものであり、詳しくは、グリコサミノグリカン、グルカンまたはその誘導体と肝実質細胞増殖因子を結合することにより、該増殖因子が固相化された肝実質細胞増殖剤に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、種々の細胞増殖因子がクロ−ニングされているが、それらの中で、ヘパリンに強い親和性を有する一群の増殖因子が見出されている。これをヘパリン結合性増殖因子と総称するが、この中には線維芽細胞増殖因子(以下FGFと略す)、ケラチノサイト増殖因子(KGF)、プレイオトロフィン、顆粒球/マクロファ−ジ・コロニ−形成刺激因子(GM−CSF)、インタ−ロイキン3及び7、血管内皮細胞増殖因子(VEGF)等、種々の既知または未同定の増殖因子が含まれる(実験医学、9(14)、1772−1776(1991))。 これらの因子は、ヘパリンやヘパラン硫酸に代表されるグリコサミノグリカンと結合することが知られており、中でもFGFは、ヘパラン硫酸プロテオグリカンとの結合により細胞表面や細胞外基質に貯蔵されること、及びFGFの有する生物学的活性がヘパリンによって調節され得ることが確認された(Cell、64、841−848(1991))。
【0003】
大工原らは、肝実質細胞を生体内より取り出して生体外においてその増殖を促進させうるヒト由来の蛋白性因子、即ちヒト肝実質細胞増殖因子(hHGF)を劇症肝炎患者血漿より見いだし(特開昭63−22526号公報)、さらに喜多村らはhHGF蛋白質のアミノ酸配列およびそれをコードする遺伝子(cDNA)配列(特開平3−72883号公報)、さらにこのcDNAを用いたhHGF蛋白質の生産方法および形質転換体を発明するに至った(特開平3−285693号公報)。かかる発明により生産されるhHGF蛋白質は、生体外において肝実質細胞の増殖を促進する働きが認められている。また、hHGFに限らずHGF蛋白質は、ヘパリンに強い親和性を有する上記ヘパリン結合性増殖因子の一種であることが判明している。
【0004】
一方、一般に細胞の増殖や運動性の調節には、液性因子のみならず、細胞に隣接する細胞外基質(ECM)が重要な役割を果たすと考えられている。ECMを構成する主成分は、コラ−ゲン、エラスチンなどの繊維状蛋白質、フィブロネクチオン、ラミニンなどの接着性蛋白質、そしてグリコサミノグリカン糖鎖をもつプロテオグリカンなどの複合糖質である。このうち、生体材料からプロテオグリカンを調製するのは容易でなく、ECM中のグリコサミノグリカンの生理的意義や増殖因子との相互作用について解析が遅れていた。
【0005】
プロテオグリカンはグリコサミノグリカンと蛋白質との共有結合化合物の総称であるが、近年、各種グリコサミノグリカンを、天然コア蛋白質の代わりに他の蛋白質やリン脂質に共有結合させたプロテオグリカンのモデル化合物が作成されている(ネオプロテオグリカン;J.Biol.Chem.、264(14)、8012−8018(1989),特開平4−80201号および同4−80202号各公報)。このネオプロテオグリカンは、効率よくグリコサミノグリカン糖鎖を培養皿に固相化する方法を初めて可能にした。
【0006】
従来の技術では、hHGF等のヘパリン結合性増殖因子も含め、種々の増殖因子を溶液中に添加してその作用を見ることは可能であったが、該増殖因子を活性を保持した状態で固相化できなかったために、固相化した増殖因子の作用については解析されていない。また、増殖因子を生体内に投与した場合、該増殖因子を作用局所にとどめておくことは、技術的に困難であった。
【0007】
【課題を解決するための手段】
本発明者は、HGFのグリコサミノグリカンへの結合性を利用して、該増殖因子を固相化し、その作用を検討することを試みた。その結果、興味深いことに、HGFはグリコサミノグリカンを介して固相化され、肝実質細胞に対して増殖刺激と成り得ることが判明し本発明を完成するに至った。
【0008】
すなわち本発明の要旨は、グリコサミノグリカン、グルカンまたはその誘導体に肝実質細胞増殖因子を結合してなることを特徴とする固相化された肝実質細胞増殖剤に存する。
以下、本発明につき詳細に説明する。
本発明で使用する肝実質細胞増殖因子(HGF)は、生体材料から精製して得られたもの及び組換え法によりそのcDNAを発現させて得られたもののいずれのものも使用できる。ヒトHGF(hHGF)の具体例としては、特開昭63−22526号公報に記載された方法に従い劇症肝炎患者血漿から蛋白化学的に分離精製することによって、或は、特開平3−285693号公報に記載された方法に従いhHGFをコ−ドするcDNAを含む発現ベクタ−を構築し、CHO細胞等の宿主中で発現させることによって得られるものが挙げられる。かかるhHGFは、約0.5〜2ng/mlの濃度で肝実質細胞の増殖活性を示しはじめ、約5〜10ng/mlの濃度で最高の増殖誘導活性に到達する。
【0009】
本発明において、上記HGFを固相化する担体として、グリコサミノグリカン、グルカンまたはその誘導体が使用される。グリコサミノグリカンとは、ヘキソサミンを構成糖として含む多糖の総称であり、具体的にはヒアルロン酸、コンドロイチン、テイクロン酸、コロミン酸、コンドロイチン硫酸A、コンドロイチン硫酸B(デルマタン硫酸)、コンドロイチン硫酸C、コンドロイチン硫酸DおよびE(コンドロイチンポリ硫酸)、ヘパリン、ケラト硫酸(ケラタン硫酸)、ヘパリチン硫酸(ヘパラン硫酸)、ポリアセチルガラクトサミンリン酸等の酸性グリコサミノグリカンや、キチン、ガラクトサミノグリカン等が挙げられる。一方、グルカンとはグルコースを構成糖として含む多糖の総称であり、具体的にはデキストラン、デキストラン硫酸、ラミナラン、リヘナン、セルロース、アミロース、アミロペクチン等が挙げられ、本発明においてはデキストランまたはデキストラン硫酸が好ましい。これらは既知の方法を用いて適宜調製することができる。
【0010】
また、かかるグリコサミノグリカンまたはグルカンの誘導体としては特に制限はされないが、本発明においてはグリコサミノグリカンまたはグルカンと共有結合しうる蛋白質、またはリン脂質との誘導体であることが好ましい。蛋白質としては、アルブミン等の生体内蛋白質が、リン脂質としては、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジルグリセロール、ジホスファチジルグリセロール等のグリセロリン脂質や、スフィンゴミエリン等のスフィンゴリン脂質等が挙げられる。これらの蛋白誘導体は、いわゆるネオプロテオグリカンの製法として既知の方法(例えば,J.Biol.Chem.,264(14),8012−8018(1989)に記載の方法)により調製することができ、またリン脂質誘導体は特開平4−80201号、同4−80202号公報等に記載の方法に準じて調製することができる。
【0011】
本発明において、HGFはグリコサミノグリカン、グルカンまたはその誘導体に結合される。このとき、HGFはもともとヘパリン結合性であることから両者を混合することにより容易に結合されるが、その性質を損なわない範囲においてリン酸緩衝−生理食塩水等を共存させても差し支えない。またHGFとグリコサミノグリカン、グルカンまたはその誘導体とは、モル比で1:1〜1:1000の割合で結合させることが好ましい。さらに本発明においては、グリコサミノグリカン、グルカンまたはその誘導体を予めコラーゲン、エラスチン、フィブロネクチン、ラミニン、ビトロネクチン、カドヘリン等の細胞接着性蛋白質(以下、「培養基質」と略す)上に結合させておくと、より安定に固相化することができるので好ましい。その際、グリコサミノグリカン、グルカンまたはその誘導体を直接、或は間接的に培養基質にコ−トし、その上にHGFを溶液の状態で添加して固相化してもよいし、培養基質の代わりに例えばシ−ト状の高分子基材を用いてもよい。かかる高分子基材としては、生体に適合する材料であれば特に制限はされない。培養基質を用いる場合は、これを更に高分子基材上に結合させて使用してもよい。かくして固相化されたHGFは、細胞或は組織にさらすことによって、局所にて該増殖因子本来の生理活性を誘導することができる。
【0012】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明するがその要旨を越えない限り、以下の実施例に限定されるものではない。
実施例1:ネオプロテオグリカンで固相化したhHGFの肝実質細胞増殖誘導能
担体の調製:直径2.3cmのウェルを有するマルチウェル プラスチック ディッシュ(コ−ニング社)に、まずウシ由来I型コラ−ゲン溶液(10μg/ml、コ−ケン社)をコ−トして培養基質とし、次いで合成グリコサミノグリカン脂質誘導体(GAG−PE)としてヘパリン−フォスファチジルエタノ−ルアミン(Hep−PE)を10μg/mlの濃度でコ−トして固相化の担体とした(Hep−PEは、特開平4−80201号公報の実施例1に記載の方法に準じて調製した)。対照実験として合成グリコサミノグリカン脂質誘導体をコ−トしないウェルも用意した。
【0013】
hHGFの固相化:リコンビナントhHGF(特開平3−285693号公報に記載の方法に準じて調製)を最終濃度10ng/mlとなるよう1%ウシ血清アルブミン(BSA)含有の10mMリン酸緩衝−生理食塩水、pH7.4(PBS(−))にて調製し、上記担体中に添加した。4℃にて6時間反応後、溶液を除き、担体をPBS(−)にて5回洗浄した。比較実験として担体をさらに1MNaClで2回洗浄したウェルも用意した。
【0014】
細胞の調製:セグレン(Seglen)の方法(Methods in Cell Biology,vol13,p29,Academic Press,New York(1976))に従い、ウィスタ−系雄ラット(体重200g)より、0.05%コラゲナ−ゼ(タイプI,シグマ社)を用いて肝実質細胞を単離した。この肝実質細胞を、上記担体及びhHGFをコ−トしたマルチウェル プラスチック ディッシュ(コ−ニング社)に2.5×104個/0.25ml/cm2の濃度でまき込み、5%炭酸ガス含有空気気相下、37℃で単層培養した(Tanaka et al.,J.Biochem.84,937−946(1978))。培養培地としては5%牛胎児血清(FCS,フィルトロン社)、10-8Mインスリン、10-8Mデキサメサゾン及び60μg/mlゲンタマイシンを添加したウィリアムスE(WE)培地(フロ−ラボラトリ−ズ社、以下「基本培地」と略す)を使用した。
【0015】
細胞増殖誘導活性の測定:培養開始2時間後に新たな基本培地に交換し、さらに18時間後に牛胎児血清を含まないWE培地(10-7Mインスリン及び60μg/mlゲンタマイシンを含有)に交換した。培養開始28時間後にウェル当り1.25μCiの[メチル3H]チミジン(アマシャム社)を添加し、必要に応じて10μg/mlのアフィジコリン(シグマ社)を加えた。24時間後、細胞を1mlの冷10%トリクロロ酢酸で1−2時間固定し、95%エタノ−ルで3回洗浄後、1MNaOHで溶解した。中和後の細胞溶解液にシンチレ−タ−を加え、よく混合後、液体シンチレ−ションカウンタ−にて細胞中に取り込まれた放射活性を測定した。複製DNA合成値は、各放射活性カウントからアフィジコリン存在下のカウントを差し引いて算出した。コントロ−ル群として、各試料にGAG−PEを添加しなかった場合の放射活性を求め、その値に対する比で結果を示した(図1)。また、比較実験として、hHGFの代わりにグリコサミノグリカンに親和性を持たない上皮成長因子(EGF)を用いて、同様の実験を行った。 図1に結果を示す。縦軸は各試料のDNA合成誘導活性を、GAG−PEを使用しなかったコントロ−ル群のDNA合成誘導活性に対する比(%)で示してある。培養基質にHep−PEを用いた場合、細胞まき込み以前に添加されたhHGFが効果的に固相化され、培地交換後も肝実質細胞のDNA合成を刺激し得ることがわかる。すなわち、コントロ−ルに比べて66%の増強を認めた(a)。
また、Hep−PE上の肝実質細胞に、従来のようにhHGFを溶液として後添加してもコントロ−ルに比べ約20%のDNA合成増強が見られた(b)。固相化したhHGFを1MNaClで洗浄した場合、DNA合成増強は、66%から33%へと減少した(c)。これは、1MNaClの洗浄によって、固相化していたhHGFの一部が外れたためと解釈される。ヘパリン結合能を持たないEGFでは、GAG−PEの有無によって、全く差が認められなかった(dおよびe)。このことは、hHGFが予想通りグリコサミノグリカンとの結合性によってGAG−PE上に結合し、培養基質上に固相化されることを示唆する。
【0016】
以上の結果から、肝実質細胞増殖因子とグリコサミノグリカン、グルカンまたはその誘導体とを組み合わせることにより、効果的に該増殖因子が固相化され、固相化増殖因子は生理作用を発揮し得ることがわかる。
【0017】
【発明の効果】
従来、肝実質細胞増殖因子を利用する上で、かかる蛋白の活性を保持した状態での固相化方法もしくは固相化該増殖因子の利用については知られていなかった。本発明が示すように、肝実質細胞増殖因子を、適当なグリコサミノグリカン、グルカンまたはその誘導体を用いることによって活性を保持したまま固相化することが可能であり、その結果、この固相化増殖因子をin vivoまたはinvitroで利用できるようになった。本発明を基に肝実質細胞増殖因子の固相化担体を工夫することにより、医療分野での広範な利用が期待でき、さらに生体への投与における際に徐放効果・集積効果も期待できる。
【図面の簡単な説明】
【図1】合成グリコサミノグリカン脂質誘導体(Hep−PE)によるhHGFの固相化を表す図面である。
[0001]
[Industrial application fields]
TECHNICAL FIELD The present invention relates to a hepatocyte proliferating agent, and more specifically, hepatocyte proliferation in which the growth factor is immobilized by binding glycosaminoglycan, glucan or a derivative thereof to hepatocyte growth factor. It relates to the agent.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, various cell growth factors have been cloned, and among them, a group of growth factors having a strong affinity for heparin has been found. This is collectively called heparin-binding growth factor, which includes fibroblast growth factor (hereinafter abbreviated as FGF), keratinocyte growth factor (KGF), pleiotrophin, granulocyte / macrophage colony formation stimulus. Various known or unidentified growth factors such as factor (GM-CSF), interleukins 3 and 7, vascular endothelial growth factor (VEGF) are included (Experimental Medicine, 9 (14), 1772-1776 (1991). )). These factors are known to bind to glycosaminoglycans represented by heparin and heparan sulfate. Among them, FGF is stored on the cell surface and extracellular matrix by binding to heparan sulfate proteoglycan, And it was confirmed that the biological activity of FGF can be regulated by heparin (Cell, 64, 841-848 (1991)).
[0003]
Carpenter et al. Found human hepatocyte growth factor (hHGF) from the plasma of patients with fulminant hepatitis that can extract hepatocytes from the living body and promote their growth in vitro (Patent Document 1: No. 63-22526), Kitamura et al., The amino acid sequence of hHGF protein, the gene (cDNA) sequence encoding the same (Japanese Patent Laid-Open No. 3-72883), and the production method and character of hHGF protein using this cDNA A converter was invented (JP-A-3-285893). The hHGF protein produced by this invention has been recognized to promote the growth of hepatocytes in vitro. In addition, not only hHGF but also HGF protein has been found to be a kind of the above-mentioned heparin-binding growth factor having a strong affinity for heparin.
[0004]
On the other hand, it is generally considered that not only humoral factors but also extracellular matrix (ECM) adjacent to cells play an important role in regulating cell growth and motility. The main components constituting the ECM are fibrous proteins such as collagen and elastin, adhesive proteins such as fibronectin and laminin, and complex carbohydrates such as proteoglycans having glycosaminoglycan sugar chains. Of these, it is not easy to prepare proteoglycans from biomaterials, and the analysis of the physiological significance of glycosaminoglycans in ECM and the interaction with growth factors has been delayed.
[0005]
Proteoglycan is a generic name for glycosaminoglycan and protein covalently bonded compounds, but in recent years, proteoglycan model compounds in which various glycosaminoglycans are covalently bonded to other proteins and phospholipids instead of natural core proteins (Neoproteoglycan; J. Biol. Chem., 264 (14), 8012-8018 (1989), Japanese Patent Laid-Open Nos. 4-80201 and 4-80202). This neoproteoglycan makes it possible for the first time to efficiently immobilize glycosaminoglycan sugar chains on a culture dish.
[0006]
In the prior art, it was possible to add various growth factors to the solution, including heparin-binding growth factors such as hHGF, and observe the action. Since the phase could not be obtained, the effect of the solid phase growth factor has not been analyzed. In addition, when a growth factor is administered in vivo, it has been technically difficult to keep the growth factor local.
[0007]
[Means for Solving the Problems]
The present inventor attempted to immobilize the growth factor using the binding property of HGF to glycosaminoglycan and to examine the action thereof. As a result, interestingly, HGF was immobilized on a glycosaminoglycan, and it was found that it could be a growth stimulus for hepatocytes, and the present invention was completed.
[0008]
That is, the gist of the present invention resides in a solid phase hepatocyte proliferating agent characterized by binding hepatocyte growth factor to glycosaminoglycan, glucan or a derivative thereof.
Hereinafter, the present invention will be described in detail.
As the hepatocyte growth factor (HGF) used in the present invention, any of those obtained by purification from biomaterials and those obtained by expressing the cDNA by a recombinant method can be used. Specific examples of human HGF (hHGF) include protein chemical separation and purification from the plasma of patients with fulminant hepatitis according to the method described in JP-A-63-22526, or JP-A-3-285893. Examples include those obtained by constructing an expression vector containing cDNA encoding hHGF according to the method described in the publication and expressing it in a host such as CHO cells. Such hHGF starts to show hepatocyte proliferating activity at a concentration of about 0.5 to 2 ng / ml, and reaches the maximum proliferation-inducing activity at a concentration of about 5 to 10 ng / ml.
[0009]
In the present invention, glycosaminoglycan, glucan or a derivative thereof is used as a carrier for immobilizing the above HGF. Glycosaminoglycan is a general term for polysaccharides containing hexosamine as a constituent sugar, and specifically includes hyaluronic acid, chondroitin, taicuronic acid, colominic acid, chondroitin sulfate A, chondroitin sulfate B (dermatan sulfate), chondroitin sulfate C, Examples include chondroitin sulfate D and E (chondroitin polysulfate), heparin, keratosulfuric acid (keratan sulfate), heparitin sulfate (heparan sulfate), acidic glycosaminoglycan such as polyacetylgalactosamine phosphate, chitin, galactosaminoglycan, etc. It is done. On the other hand, glucan is a general term for polysaccharides containing glucose as a constituent sugar, and specifically includes dextran, dextran sulfate, laminaran, lihenan, cellulose, amylose, amylopectin, etc. In the present invention, dextran or dextran sulfate is preferred. . These can be appropriately prepared using known methods.
[0010]
Further, the glycosaminoglycan or glucan derivative is not particularly limited, but in the present invention, it is preferably a protein that can be covalently bound to glycosaminoglycan or glucan, or a derivative with phospholipid. Proteins include in vivo proteins such as albumin, and phospholipids include glycerophospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, and diphosphatidylglycerol, and sphingophospholipids such as sphingomyelin. Can be mentioned. These protein derivatives can be prepared by a method known as a method for producing a so-called neoproteoglycan (for example, the method described in J. Biol. Chem., 264 (14), 8012-8018 (1989)), and phosphorous Lipid derivatives can be prepared according to the methods described in JP-A-4-80201, JP-A-4-80202, and the like.
[0011]
In the present invention, HGF is bound to glycosaminoglycan, glucan or a derivative thereof. At this time, since HGF is originally heparin-binding, it can be easily bound by mixing the two. However, phosphate buffer-saline may be allowed to coexist as long as the properties are not impaired. HGF and glycosaminoglycan, glucan or a derivative thereof are preferably combined at a molar ratio of 1: 1 to 1: 1000. Furthermore, in the present invention, glycosaminoglycan, glucan or a derivative thereof is previously bound on a cell adhesion protein (hereinafter abbreviated as “culture substrate”) such as collagen, elastin, fibronectin, laminin, vitronectin, cadherin. It is preferable because it can be solid-phased more stably. In this case, glycosaminoglycan, glucan or a derivative thereof may be coated directly or indirectly on a culture substrate, and HGF may be added in the form of a solution thereon to be immobilized. For example, a sheet-like polymer base material may be used. Such a polymer substrate is not particularly limited as long as it is a material compatible with a living body. When a culture substrate is used, it may be used after further binding on a polymer substrate. The thus-immobilized HGF can induce the inherent physiological activity of the growth factor locally by exposure to cells or tissues.
[0012]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
Example 1 Preparation of a carrier capable of inducing hepatocyte proliferation of hHGF solid-phased with neoproteoglycan: A multi-well plastic dish (Corning) having a 2.3 cm diameter well was first prepared with a bovine-derived type I collage. Genogen solution (10 μg / ml, KOHKEN) was used as a culture substrate, and then heparin-phosphatidylethanolamine (Hep-PE) was used as a synthetic glycosaminoglycan lipid derivative (GAG-PE). Coating was carried out at a concentration of 10 μg / ml to obtain a solid-phase support (Hep-PE was prepared according to the method described in Example 1 of JP-A-4-80201). As a control experiment, a well not coated with a synthetic glycosaminoglycan lipid derivative was also prepared.
[0013]
Immobilization of hHGF: Recombinant hHGF (prepared according to the method described in JP-A-3-285893), 10 mM phosphate buffer-physiology containing 1% bovine serum albumin (BSA) to a final concentration of 10 ng / ml It was prepared with saline solution, pH 7.4 (PBS (−)) and added to the carrier. After reacting at 4 ° C. for 6 hours, the solution was removed, and the carrier was washed 5 times with PBS (−). As a comparative experiment, a well in which the carrier was further washed twice with 1M NaCl was also prepared.
[0014]
Cell preparation: According to the method of Seglen (Methods in Cell Biology, vol 13, p29, Academic Press, New York (1976)), from a Wistar male rat (body weight 200 g), 0.05% collagenase ( Hepatocytes were isolated using Type I, Sigma). The liver parenchymal cells were sowed in a multiwell plastic dish (Corning) coated with the above carrier and hHGF at a concentration of 2.5 × 10 4 cells / 0.25 ml / cm 2 and 5% carbon dioxide gas. Monolayer culture was performed at 37 ° C. in an air-containing gas phase (Tanaka et al., J. Biochem. 84, 937-946 (1978)). As a culture medium, 5% fetal calf serum (FCS, Filtron), Williams E (WE) medium (Fro Laboratories, Inc.) supplemented with 10 −8 M insulin, 10 −8 M dexamethasone and 60 μg / ml gentamicin. (Hereinafter abbreviated as “basic medium”).
[0015]
Measurement of cell proliferation inducing activity: 2 hours after the start of the culture, the medium was replaced with a new basic medium, and 18 hours later, the medium was replaced with a WE medium containing no fetal calf serum (containing 10 −7 M insulin and 60 μg / ml gentamicin). 28 hours after the start of the culture, 1.25 μCi of [methyl 3 H] thymidine (Amersham) was added per well, and 10 μg / ml of aphidicolin (Sigma) was added as necessary. After 24 hours, cells were fixed with 1 ml of cold 10% trichloroacetic acid for 1-2 hours, washed 3 times with 95% ethanol, and lysed with 1M NaOH. A scintillator was added to the neutralized cell lysate, and after mixing well, the radioactivity incorporated into the cells was measured with a liquid scintillation counter. Replicated DNA synthesis values were calculated by subtracting the count in the presence of aphidicolin from each radioactivity count. As a control group, the radioactivity was obtained when GAG-PE was not added to each sample, and the result was shown as a ratio to the value (FIG. 1). As a comparative experiment, a similar experiment was performed using epidermal growth factor (EGF) having no affinity for glycosaminoglycan instead of hHGF. The results are shown in FIG. The vertical axis represents the DNA synthesis inducing activity of each sample as a ratio (%) to the DNA synthesis inducing activity of the control group that did not use GAG-PE. It can be seen that when Hep-PE is used as a culture substrate, hHGF added prior to cell infiltration is effectively solid-phased and can stimulate liver parenchymal cell DNA synthesis even after medium replacement. That is, an increase of 66% was recognized compared with the control (a).
Further, even when hHGF was added as a solution to hepatocytes on Hep-PE as a conventional solution, about 20% of DNA synthesis was enhanced as compared with the control (b). When immobilized hHGF was washed with 1M NaCl, the DNA synthesis enhancement decreased from 66% to 33% (c). This is interpreted as a part of the solid phase of hHGF was removed by washing with 1M NaCl. For EGF without heparin binding ability, no difference was observed depending on the presence or absence of GAG-PE (d and e). This suggests that hHGF binds on GAG-PE by binding to glycosaminoglycan as expected and is immobilized on a culture substrate.
[0016]
From the above results, by combining hepatocyte growth factor and glycosaminoglycan, glucan or derivatives thereof, the growth factor can be effectively immobilized, and the immobilized growth factor can exert physiological action. I understand that.
[0017]
【The invention's effect】
Conventionally, when using a hepatocyte growth factor, there is no known method for immobilizing the protein in such a state that the activity of the protein is retained or using the immobilized growth factor. As shown in the present invention, it is possible to immobilize hepatocyte growth factor while retaining activity by using an appropriate glycosaminoglycan, glucan or a derivative thereof. The growth factor has become available in vivo or in vitro. By devising a solid phase-immobilized carrier for hepatocyte growth factor based on the present invention, it can be expected to be widely used in the medical field, and can also be expected to have a sustained release effect and an accumulation effect when administered to a living body.
[Brief description of the drawings]
FIG. 1 is a drawing showing immobilization of hHGF with a synthetic glycosaminoglycan lipid derivative (Hep-PE).

Claims (2)

コラーゲンにヘパリン-フォスファチジルエタノールアミンをコートした担体に、肝実質細胞増殖因子を固相化させた、固相化肝実質細胞増殖因子から成る肝細胞増殖剤。  A hepatocyte growth agent comprising a solid phase-enhanced hepatocyte growth factor, in which a hepatin-phosphatidylethanolamine-coated carrier is immobilized on collagen. 肝細胞の増殖誘導能を有する請求項1記載の肝細胞増殖剤。  The hepatocyte proliferating agent according to claim 1, which has an ability to induce hepatocyte proliferation.
JP25013192A 1992-09-18 1992-09-18 Solid phase hepatocyte proliferating agent Expired - Lifetime JP3859732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25013192A JP3859732B2 (en) 1992-09-18 1992-09-18 Solid phase hepatocyte proliferating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25013192A JP3859732B2 (en) 1992-09-18 1992-09-18 Solid phase hepatocyte proliferating agent

Publications (2)

Publication Number Publication Date
JPH06145065A JPH06145065A (en) 1994-05-24
JP3859732B2 true JP3859732B2 (en) 2006-12-20

Family

ID=17203294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25013192A Expired - Lifetime JP3859732B2 (en) 1992-09-18 1992-09-18 Solid phase hepatocyte proliferating agent

Country Status (1)

Country Link
JP (1) JP3859732B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661993B1 (en) * 1992-09-16 1997-05-07 Genentech, Inc. Protection against liver damage by hgf
US5464815A (en) * 1993-09-08 1995-11-07 Genentech, Inc. Inhibition of heparin-binding
JP2005168654A (en) * 2003-12-09 2005-06-30 Kissei Pharmaceut Co Ltd Growth factor-bonded low molecular weight modified heparin
US9150902B2 (en) 2005-06-28 2015-10-06 Seikagaku Corporation Method for determination of N-deacetylase/N-sulfotransferase activity
JP4942681B2 (en) * 2008-02-18 2012-05-30 生化学工業株式会社 Corneal disorder healing promoter

Also Published As

Publication number Publication date
JPH06145065A (en) 1994-05-24

Similar Documents

Publication Publication Date Title
Gribova et al. Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering
Sellaro et al. Maintenance of human hepatocyte function in vitro by liver-derived extracellular matrix gels
US7199103B2 (en) Synthetic compounds and compositions with enhanced cell binding
Schwab et al. Nanoscale control of surface immobilized BMP-2: toward a quantitative assessment of BMP-mediated signaling events
Ustun Yaylaci et al. Supramolecular GAG-like self-assembled glycopeptide nanofibers induce chondrogenesis and cartilage regeneration
EP0618802B1 (en) Synthetic compounds and compositions with enhanced cell binding
Dee et al. Conditions which promote mineralization at the bone-implant interface: a model in vitro study
US6936298B2 (en) Antithrombogenic membrane mimetic compositions and methods
Douglas et al. Interactions of collagen types I and II with chondroitin sulfates A− C and their effect on osteoblast adhesion
JP5433015B2 (en) Bioactive hydrogel
Yaylaci et al. Chondrogenic differentiation of mesenchymal stem cells on glycosaminoglycan-mimetic peptide nanofibers
EP1616939A1 (en) Cell culture medium and solidified preparation of cell adhesion protein or peptide
EP0797584A1 (en) Cooperative combinations of ligands contained within a matrix
JP2002500898A (en) Osteopontin coating surface and its use
US7897727B2 (en) Bioactive peptide for cell adhesion
Chen et al. Effect of recombinant galectin‐1 on the growth of immortal rat chondrocyte on chitosan‐coated PLGA scaffold
JP3859732B2 (en) Solid phase hepatocyte proliferating agent
US5674848A (en) Bioreactor compositions with enhanced cell binding
Huang et al. Engineering a self-assembling leucine zipper hydrogel system with function-specific motifs for tissue regeneration
JP3597474B2 (en) Blood affinity surface and production method thereof
Pullela et al. Permselectivity replication of artificial glomerular basement membranes in nanoporous collagen multilayers
Choi et al. Investigation of the Structural Mechanism and Film Growth on Cytoprotective Type I Collagen-Based Nanocoating of Individual Cellular Surfaces
EP4148133A1 (en) Chimeric protein containing fibrinogen fragment and laminin fragment, and use thereof
US8354111B2 (en) Stable cell binding chimeric peptides
EP4267211A1 (en) Decellularized mammalian extracellular matrix morsels, methods making and methods of using same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

EXPY Cancellation because of completion of term